Project: Ghana Emergency Medicine Collaborative

Document Title: Non-Diabetic Endocrine Emergencies

Author(s): John W. Martel (University of Michigan), MD, PhD, 2012

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution Share Alike-3.0 License**: http://creativecommons.org/licenses/by-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. These lectures have been modified in the process of making a publicly shareable version. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about **how to cite** these materials visit http://open.umich.edu/privacy-and-terms-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt		
{ Content the copyright holder, author, or law permits you to use, share and adapt. }		
Ø PD-GOV	Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)	
Ø PD-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.	
Ø PD-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.	
(cc) ZERO	Creative Commons – Zero Waiver	
CC) BY	Creative Commons – Attribution License	
CC BY-SA	Creative Commons – Attribution Share Alike License	
CC BY-NC	Creative Commons – Attribution Noncommercial License	
BY-NC-SA	Creative Commons – Attribution Noncommercial Share Alike License	
SNU-FDL	GNU – Free Documentation License	

Make Your Own Assessment

open.michigar

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

PD-INEL Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

NON-DIABETIC ENDOCRINE EMERGENCIES

John W Martel, MD, PhD University of Michigan Department of Emergency Medicine

•WHY?

- Uncommon, but...
- Potentially lethal
- Diagnostic dilemmas
- ED treatment may be life-saving

Objectives

- Background
- What defines thyroid storm, myxedema coma, adrenal crisis?
- What are the main clinical features?
- What investigations are pertinent?
- What is the emergency management?

Background

- Hyper/Hypothyroidism, Adrenal insufficiency
 Often chronic, non-specific symptoms
 Fatigue/weakness/depression
 difficult to recognize in a typical medical encounter.
 - Classic clinical manifestations more easily recognizable with increased severity
 - Acute stresses can precipitate life-threatening
 Management based mostly on clinical judgment

Case I

- 45 yo female
- "Racing Heart" x48 hr
- Chest Pain
- Breathlessness
- Recent weight loss
- Normal appetite

Temp 39.8C
 Rapid Speech/Perseveration
 Tremulous

CCC) BY

Jonathan Trobe, M.D., University of Michigan Kellogg Eye Center, <u>Wikimedia Commons</u>

V1 V4 aVR 1 aV aVF ш V6 **V**3 ····· ···· ···· ···· ···· ···· ···· 11

© PD-INEL Source Undetermined

Definitions

O Hyperthyroidism

Conditions with thyroid hormone synthesis

Thyrotoxicosis

- Defined as any state in which thyroid hormone levels are increased in the blood
 - Overproduction (Graves' disease, toxic multinodular goiter [TMG])
 - Thyroid hormone release from an injured gland (thyroiditis)
 - Exogenous thyroid hormone.

How Common?

• Prevalence of Hyperthyroidism is 0.5-2.2%

- More than 50% of patients considered subclinical
 - Pre-hyperthyroid state
 - depressed thyroid-stimulating hormone [TSH] and normal free T₄ (tetra-iodo thyronine, thyroxine)
 - Prevalence in women tenfold > men

Biosynthesis

Follicular Cells

- Thyroglobulin = large hormonal precursor protein with numerous tyrosines
- Iodine actively transported into follicular cells and oxidized/bound to tyrosine residues.
 - \circ lodo-tyrosines+thyroglobulin \rightarrow T₄ and T₃
 - released into the circulation by proteolyisis.
- All T₄ produced in thyroid gland
- 15-20% of T₃ is synthesized directly
 Remainder via de-iodonation of T₄ in peripheral tissues.

Graves Disease

- Most common cause of thyrotoxicosis
 - Hyperthyroidism, diffuse symmetrical goiter, ophthalmopathy, and dermopathy.
 - Primarily affects females 20-40 years
 often those with a family history of thyroid disease.

• Autoimmune Disorder

- B lymphocytes produce immunoglobulins that stimulate the TSH receptor (thyroid-stimulating immunoglobulin [TSI]).
- Eye disease thought to result from thyroid antibodies sensitized to common antigens in orbital fibroblasts and muscle.

PD-SELF Mikael Häggström, Wikimedia Commons

 T_3 and T_4 increase the number and sensitivity of betaadrenergic receptors, dramatically increasing response to endogenous catecholamines

Toxic Multinodular Goiter (TMG)

Icon 2nd leading cause of hyperthyroidism

Multiple autonomously functioning nodules
 women >50 years of age, iodine-deficient

Iodine deficient populations
 Central Africa, Central/South America, Himalayas, E. Europe

Sx milder than Graves' disease, gradual in onset

- o Iodine replacement given to an iodine-deficient individual (Jod-Basedow effect) → acute presentation due to ↑substrate
- \circ Due to age \rightarrow atrial fibrillation and CHF common
 - Tremors and hyper-metabolic features are less severe
 - Muscle wasting and weakness common ≈ "Apathetic"

Thyroid Storm Pathophysiology

- Acute stress \rightarrow surge of catecholamines
 - e.g., glycogenolysis and catecholamine-mediated antagonism of insulin → hyperglycemia
 - \uparrow free T₄/T₃ \rightarrow \uparrow catecholamine-binding sites

Heightened response to adrenergic stimuli

	Score	
Fever (°F)		
99-99.9	5	
100-100.9	10	
101-101.9		
102-102.9	20	
103-103.9	25	
≥104	30	
Tachycardia (beats/min)		
90-109	5	
110-119	10	
120-129	15	
130-139	20	
≥140	25	
Mental Status		
Normal	0	
Mild agitation	10	
Delirium, psychosis		
Extreme lethargy	20	
Coma/seizures	30	
Congestive Heart Failure		
Absent	0	
Mild (edema)	5	
Moderate (rales)	10	
Pulmonary edema	15	
Atrial fibrillation	10	
	ĺ	
Gastrointestinal and Hepatic Symptoms		
None	0	
Nausea, vomiting	10	
Diarrhea, abdominal pain		
Unexplained jaundice	20	
Precipitating event		
None	0	
Present	10	
Tally the minimum score from each category. A score ≥45 suggests thyroid storm; a score of 25-44 suggests		

Tally the minimum score from each category. A score ≥45 suggests thyroid storm; a score of 25-44 suggests impending storm; and a score below 25 is unlikely to represent thyroid storm.

•Exaggeration of the clinical

Criteria

manifestions of thyrotoxicosis, further distinguished by the presence of fever, marked tachycardia, central nervous system dysfunction, and gastrointestinal symptoms.

Thyroid Storm Diagnosis

•Decompensation of one or more organ systems, such as shock or heart failure

Patient Complaints in Thyrotoxicosis

- **Constitutional:** Weight loss despite hyperphagia, fatigue, generalized weakness
- **Hypermetabolic:** Heat intolerance, cold preference, excessive perspiration
- **Cardiorespiratory:** Heart pounding and racing, dyspnea on exertion, chest pains
- **Psychiatric:** Anxiety, restlessness, hyperkinesis, emotional lability, confusion
- **Muscular:** Tremor, difficulty getting out of a chair or combing hair
- **Ophthalmologic:** Tearing, irritation, wind sensitivity, diplopia, foreign body sensation
- **Thyroid Gland:** Neck fullness, dysphagia, dysphonia
- **Dermatologic:** Flushed feeling, hair loss, pretibial swelling
- **Reproductive:** Oligomenorrhea, decreased libido, gynecomastia

(cc) BY

Jonathan Trobe, M.D., University of Michigan Kellogg Eye Center, Wikimedia Commons

-Retraction of the upper/lower eyelids revealing a rim of sclera beyond the limbus.

Eyelids are sympathetically innervated so
sensitivity to adrenergic stimuli in thyrotoxicosis leads to widening of the palpebral fissures

Etiology of Thyroid Storm Undiagnosed vs. Acute Thyroid Undertreated Precipitant Storm

•1 - 2% of patients with thyrotoxicosis will progress on to thyroid storm in the setting of an acute stressor

•20% mortality

Causes of Thyrotoxicosis

Graves' disease (toxic diffuse goiter) Toxic multinodular goiter Toxic adenoma (single hot nodule) Factitious thyrotoxicosis Thyrotoxicosis associated with thyroiditis Hashimoto's thyroiditis Subacute (de Quervain's) thyroiditis Postpartum thyroiditis Sporadic thyroiditis Amiodarone thyroiditis

hCG, human chorionic gonadotropin; TSH, thyroid-stimulating hormone Iodine-induced hyperthyroidism (areas of iodine deficiency) Amiodarone Radiocontrast media Metastatic follicular thyroid carcinoma hCG-mediated thyrotoxicosis Hydatidiform mole Metastatic choriocarcinoma Hyperemesis gravidarum TSH-producing pituitary tumors Struma ovarii

Precipitants of Thyroid Storm

Medical

Infection/sepsis Cerebral vascular accident Myocardial infarction Congestive heart failure Pulmonary embolism Visceral infarction Emotional stress Acute manic crisis

Endocrine

Hypoglycemia Diabetic ketoacidosis Hyperosmolar nonketotic coma

Pregnancy-Related

Toxemia of pregnancy Hyperemesis gravidarum Parturition and the immediate postpartum period

Trauma

Thyroid surgery Nonthyroid surgery Blunt and penetrating trauma to the thyroid gland Vigorous palpation of the thyroid gland Burns

Drug-Related

Iodine-131 therapy Premature withdrawal of antithyroid therapy Ingestion of thyroid hormone Iodinated contrast agents Amiodarone therapy Anesthesia induction Miscellaneous drugs (chemotherapy, pseudoephedrine, organophosphates, aspirin

Disease Progression

Output States of Control St

 Weight loss, heat intolerance, tremors, anxiety, diarrhea, palpitations, sweating, CP, SOB, goiter, eye findings, pre-tibial myxedema (non-pitting edema assoc with fibroblast activation → increase synthesis of glycosaminoglycans)

Fever

 Expected physiological vasodilation for heat dissipation lost as system is already vasodilated due to "running hot"

Operation Altered Mental Status (Metabolic Encephalopathy)
 ○ Mild impairment → psychosis → frank coma

Patient Population Differences

**The Elderly: Difficult to Diagnose Fewer overt signs of hyperthyroidism

- Cell surface β receptors internalized with age
- Clues: SVT/arrhythmia, new heart failure
- The Young: Difficult to Treat
 - Poor toleration of state vs elderly
 - Relatively higher number of surface β receptors leads to exaggerated adrenergic response
 - More likely to die from circulatory collapse

****Apathetic Hyperthyroidism**

- Usually Elderly (but can be any age)
- New onset Altered LOC, Afib, CHF, Angina
- Minimal fever/tachycardia
- No preceding hx of hyperthyroidism except weight loss
- More common than thyroid storm
- Output in the content of the cont
 - Altered LOC, new psychiatric presentation, Atrial Fibrillation, CHF

INVESTIGATIONS

- Thyroid Testing
 - TSH
 - Free T₄

- Solution Look for precipitant
 - ECG
 - CXR
 - Urine
 - Labs
 - Blood cultures
 - Tox screen
 - ? CT head
 - ? CSF

Thyroid Storm: Goals of Management

- 1 Decrease Hormone Synthesis/Release
- 2 Decrease Adrenergic Symptoms
- 3 Decrease Peripheral $T_4 \rightarrow T_3$
- 4 Supportive Care

Decrease Hormonal Synthesis

- Inhibition of thyroid peroxidase
- Propylthiouracil (PTU) (or Methimazole)
 - PTU 600-1000 mg PO/NG/PR then 250mg q4hr
 - No IV form
 - Pregnancy Risk category D
 - Evidence of fetal harm, consider fetal risk-maternal benefit
 - Lactation Safe
 - Adverse Rxn: rash, SJS, BM suppression, hepatotoxic
 - Contraindications: previous hepatic failure or agranulocytosis from PTU
 - Alternative: Methimazole dose: 20-25mg PO x1 then q4hr
 - NOTE: Phenytoin, Phenobarbitol enhance T₄ metabolism

Decrease Hormone Release

Iodine further decreases release cell storage

• Given \geq 1hr after PTU

 iodine load presented to an actively synthesizing gland provides further substrate for hormone

Optimize Potassium Iodide 5 drops PO/NG/PR q6hr

Or Lugol's solution 8 drops q6hr

Or Li⁺ 300 mg every 6 hours PO/NG

• Levels monitored to maintain a level of \approx 1 mg/ L.

Mechanism

Excess lodide

- Inhibits iodide trapping and thyroglobulin iodination (the Wolff-Chaikoff effect)
 - autoregulatory phenomenon that inhibits oxidation of iodide in the thyroid gland, formation of thyroid hormone within follicle cells and the release of thyroid hormone into the bloodstream
- Blocks release of thyroid hormone from the gland.
 - inhibition of thyroid hormone production and release is transient, with the gland escaping inhibition after 10 to 14 days
 - "Escape phenomenon" is believed to occur because of decreased inorganic iodine concentration secondary to down-regulation of Na⁺-I⁺ Symporter in the baso-lateralmembrane of follicular cells

Caution

 Iodide load can induce hyperthyroidism (Jod-Basedow effect) in some patients with multinodular goiter and latent Graves' disease, especially if the patient is iodine-deficient to begin with

Adrenergic Blockade

Cover for Infection *if suspected*

Impaired immune response

broad-spectrum antibiotics for elevated WBC count, Blood Cx

Symptomatic Relief (Arrythmia, Tachycardia)

Propranolol 1 mg IV (t_{1/2} 5 min) over 10min

- then q10-15min prn as tolerated
- ∘ Some T_4 → T_3 plus non-selective effects to improve tachycardia, tremor, hyperpyrexia, and restlessnes
- PO 120-240mg qD if BP stable, otherwise IVF + observe
- Reserpine if β blocker contraindicated

Steroids

- Some Inhibitition of $T_4 \rightarrow T_3$ conversion
 - Hydrocortisone 300mg IV then 100mg q6hr
 - Or Dexamethasone 2 4 mg IV q6hr
 - PTU and propranolol also have some effect

Treats relative adrenal insufficiency

Supportive/Additional Care

Fluid rehydration

- Normal saline → D5/0.9NS due to depletion of glycogen stores
- Orrect electrolyte abnormalities
- Search for precipitant
- Congestive Heart Failure
 - Primarily high output $\rightarrow \beta$ blockers
 - Diuretics not first line given hypovolemia

Temperature Control

Temperature Regulation

- Cool mist, ice packs, fans
- Acetaminophen
 - ✓ AST/ALT given possible liver compromise
- Aspirin contraindicated because it increases levels of free thyroid hormone

Risks of Aggressive Cooling

- Peripheral vasoconstriction and paroxysmal hyperthermia
- Some use of agents that act on hypothalamic heat regulation
 - Demerol 25mg IV ,Thorazine 25mg IV

Summary of Management

- PTU
- PROPRANOLOL
- POTASSIUM IODIDE
- STERIODS
- SUPPORTIVE CARE

*synergistic effect of PTU, iodide, and steroids in thyrotoxicosis can restore the concentration of T_3 to normal within 24 to 48 hours

Management of Thyroid Storm

Inhibition of Thyroid Hormone Synthesis

Propylthiouracil 600-1000 mg loading dose, then 200-250 mg every 4 hr

OR

Methimazole 20-25 mg initially, then 20-25 mg every 4 hr (*Preferred route*: PO or NG. *Alternative route*: PR. Enema prepared by pharmacy. Same dose for all routes, No IV preparation is available, but IV methimazole can be prepared with the use of a Millipore filter and given 30 mg every 6 hr)

Inhibition of Thyroid Hormone Release

Saturated solution of potassium iodide (SSKI) 5 gtt by mouth, NG, or PR every 6 hr

OR

Lugol's solution 8 gtt by mouth, NG, or PR every 6 hr *OR*

Sodium iodide 500 mg in solution prepared by pharmacy IV every 12 hr

OR

If allergic to iodine, lithium carbonate 300 mg by mouth or NG every 6 hr

Beta-adrenergic Blockade

Propanolol 60-80 mg PO every 6 hr

Metoprolol 50 mg PO every 6 to 12 hr

If IV route required, proponolol 0.5-1.0 mg IV slow push test dose, then repeat every 15 min to desired effect, then 2-3 mg every 3 hr OR

Esmolol 250-500 μ g/kg bolus, then 50-100 μ g/kg/min infusion Strict contraindication to beta-blocker: resperine 0.5 mg PO every 6 hr

Administration of Corticoesteroids (inhibit T_4 to T_3 conversion, treat relative adrenal insufficiency)

Hydrocortisone 300 mg IV, followed by 100 mg every 6 hr OR

Dexamethasone 2-4 mg IV every 6 hr

Diagnosis and Treatment of Underlying Precipitant Consider empirical antibiotics if critical

Supportive Measures

Volume resuscitation and replacement of glycogen stores D/0.9NS 125-1000 mL/hr depending on volume status and CHF Tylenol with caution Cooling blanket, fans, ice packs, ice lavage

Miscellaneous

Lorazepam or diazepam as anxiolytic and to decrease central sympathetic outflow

L-Carnitine (block entry of thyroid hormone into cells), 1 g PO every 12 hr

Cholestyramine (block enterohepatic recirculation of thyroid hormone), 4 g PO every 6 hr

CHF, congestive heart failure; D/0,9NS, 5% dextrose in 0.9% normal saline; IV, intravaneous; NG, nasogastric; PO, by mouth; PR, in rectum; T_3 , triiodothyronine; T_4 , thyroxine

Pearls and Conclusions

 Should improve overall within 18-24 hours, with mental status improvement in a few hours

On average, require 3-5L IVF (cautiously)

• Atrial Fibrillation \rightarrow most convert via β blocker

- Digoxin: increased clearance = higher dosing needed
 Short Term: risk of SMA spasm → mesenteric ischemia
 Long Term: digoxin toxicity associated with higher doses
- Calcium Channel Blockers: Do not decrease heart work
- Antocoagulation: decreased embolism risk no CHF

Thyrotoxicosis and Thyroid Storm: Special Situations

Congestive Heart Failure

If rate-related, high-output failure Beta-blockage is first-line therapy ACEI, digoxin, diuretics as needed If depressed EF Avoid beta-blocker or ¼ dose ACEI if BP adequate Digoxin and furosemide as needed If pulmonary hypertension Oxygen Sildenifil

Atrial Fibrillation

Beta-blocker preferred for rate control Calcium channel blockers prone to hypotension; diltiazem 10-mg test dose. Avoid verapamil Digoxin less effective but may be tried Amiodarone should be avoided due to iodine load Refractory to conversion to sinus unless euthyroid first

Fhyroiditis (Subacute)

NSAIDs for inflammation and pain control Prednisone 40 mg/day if refractory to NSAIDs Beta-blockade to control thyrotoxic symptoms No role for PTU, methimazole, or iodides

Factitious Thyrotoxicosis

Beta-blockade for thyrotoxic symptoms Cholestyramine to block absorption of ingested thyroid hormone No role for PTU, methimazole, oriodides

> ACEI, angiotensin-converting enzyme inhibitor; BP, blood pressure; EF, ejection fraction; NSAIDs, nonsteroidal antiinflammatory drugs; PTU, propylthiouracil

Case II

- 36 year old female with history of non insulindependent diabetes presents to A&E with altered mental status. Family reports that she is "always cold," weak and often complains of "brittle" hair. She is said to steadily gaining weight despite no change in food intake and has had a productive cough x 2 weeks with intermittent fever
- VS: HR 67, RR 5, temp 35 C, O2 82% RA

Hypothyroidism

- Prevalence of TSH elevation
 - Ranged from 3.7-9.5%, with the majority of these having a normal free T₄ (subclinical).
 - Overt hypothyroidism (↑TSH, ↓free T₄) is seen in a minority
 - 0.3% of the population overall, with the prevalence rising with age, such that patients older than 80 years have a fivefold greater likelihood of developing hypothyroidism than do 12 to 49-year-olds.

Etiologies

Hashimoto's Thyroiditis

 Thyroid gland failure caused by autoimmune destruction of the gland

Goiter

- In younger patients, elevated anti-thyroid antibodies, specifically to thyroid peroxidase, thyroglobulin, and TSH.
- TSH receptor antibody in Hashimoto's disease blocks the receptor
 - in contrast to the stimulating antibody in Graves' disease

• End-stage Graves' Disease (Hyper \rightarrow Hypo)

- Autoimmune destruction of the thyroid gland following several exacerbations of hyperthyroidism.
- Following treatment of Graves' disease with radioactive iodine or thyroidectomy

Thyroidectomy

Orug-induced hypothyroidism

- Li_2CO_3 = inhibits hormone release.
- Iodine excess
 - amiodarone, iodinated contrast media, kelp supplements, and iodine-containing cough medicines
 - impair thyroid hormone release and synthesis (Wolff-Chaikoff effect), thereby converting subclinical hypothyroid to overt hypothyroidism and sometimes precipitating hypothyroidism de novo

Causes of Hypothyroidism

Primary Hypothyroidism

Autoimmune hypothyroidism Hashimoto' s thyroiditis (chronic – atrophic thyroid, acute with goiter)

Graves' disease (end stage)

Iatrogenic

Radioactive iodine therapy for Graves' disease

- Thyroidectomy for Graves' disease, nodular goiter, or thyroid cancer
- External neck irradiation for lymphoma or head and neck cancer

Iodine-related

- Iodine deficiency (common worldwide, but rare in North America)
- Iodine excess (inhibition of hormone release can unmask autoimmune thyroid disease) (see under Drug-related)

Central Hypothyroidism

Euthyroid sick syndrome Pituitary disease Pituitary adenoma Hemorrhage Infiltrative (amyloid, sarcoid) Hypothalamic disease

Drug-related

Lithium (inhibit hormone release)

- Amiodarone (destructive thyroiditis or iodine excess)
- Interferon-alfa (precipitate Hashimoto' s thyroiditis) Iodine excess (iodinated contrast media, kelp, amiodarone)

Propylthiouracil, methimazole

Interference with thyroid hormone absorption in patients on replacement therapy (iron, calcium, chromium, phosphate binders, cholestyramind, colestipol)

Thyroiditis

- Subacute
 - Silent (sporadic)
- Postpartum
- Amiodarone

Congenital defect in thyroid hormone synthesis

Myxedema Coma

Decompensated Hypothyroidism with Vascular Collapse

• \checkmark metabolic rate \rightarrow decreased body temp \rightarrow vasoconstriction

O Physical Exam

- Appear older than stated age, cool to touch, dry skin, mild HTN, altered mental status, hypothermia (commonly<32 C)
- Swelling of hands, face, feet, periorbital tissues accumulation of glycosaminoglycans in interstitial fluids associated with capillary leak.
- Delayed deep tendon relaxation
- Precipitant \rightarrow Acute Decompensation
 - Infection \rightarrow vasodilation \rightarrow vascular collapse
 - Hemodynamics: reduced cardiac output/blood volume

Etiology of Myxedema Coma

Myxedema Coma

- Precipitants of Myxedema Coma
 - Infection (esp. Pneumonia)
 - Trauma
 - Vascular: CVA, MI, PE
 - Noncompliance with Rx
 - Any acute medical illness
 - Cold

Myxedema Coma: Aggravating or Precipitating Factors

Infection/sepsis (especially pneumonia) Exposure to cold

Cerebrovascular accident

Drug effect

Altered sensorium: Sedative-hypnotics, narcotics, anesthesia, neuroleptics Decrease T_4 and T_3 release: amiodarone, lithium, iodides Enhance elimination of T_4 and T_3 : phenytion, rifampin Inadequate thyroid hormone replacement: noncompliance; interference with absorption (iron, calcium, cholestyramine)

Myocardial infarction Gastrointestinal bleeding

Trauma/burns

Congestive heart failure

Hypoxia

Hypercapnia

Hyponatremia

Hypoglycemia

Hypercalcemia Diabetic ketoacidosis T_3 , triiodothyronine; T_4 , thyroxine

Recognition of Myxedema Coma

Patient profile: Elderly female in the winter

Known hypothyroidism; thyroidectomy scar

Hypothermia: Usually below 95.9°F; below 90°F is bad prognostic sign; as low as

75°F reported. Near normal in presence of infection

- Altered mental status: Lethargy and confusion to stupor and coma, agitation, psychosis and seizures (myxedema madness)
- Hypotension: Refractory to volume resuscitation and pressors unless thyroid hormone administered
- Slow, shallow respirations with hypercapnea and hypoxia; high risk of respiratory failure

Braxycardia (sinus)/long QT and ventricular arryhthmias

Myxdema facies: Puffy eyelids and lips, large tongue, broad nose

Evidence of severe chronic hypothyroidism: Skin, hair, reflexes, bradykinesis, voice Acute precipitating illness (e.g., pneumonia)

Drug toxicity (e.g., sedative, narcotic, neuroleptic)

Hyponatremia

BOX 126-8 SYMPTOMS AND SIGNS OF HYPOTHYROIDISM

Vital Signs

Systolic BP—normal or low Diastolic BP—normal or elevated Slow pulse to sinus bradycardia Respirations—normal or slow, shallow Temperature—normal, but prone to hypothermia with stress

Hypometabolic Complaints

Cold intolerance Fatigue Weight gain, but decreased appetite

Cutaneous

Coarse, brittle hair Alopecia Dry skin, decreased perspiration Pallor, cool hands and feet Coarse, rough skin Yellow tinge from carotenemia Thin, brittle nails Lateral thinning of the eyebrows

Neurologic

Slow mentation and speech Impaired concentrating ability and attention span Lethargy Decreased short-term memory Agitation, psychosis Seizures Ataxia, dysmetria Mononeuropathy Carpal tunnel syndrome Sensorineural hearing loss Peripheral neuropathy

Muscular

Proximal myopathy Pseudohypertrophy Delayed relaxation of reflexes (hung-up or pseudomyotonic)

Cardiac

Decreased exercise capacity Dyspnea on exertion

BP, blood pressure; HEENT, head, ear, eyes, nose, and throat.

Ø PD-INEL

Source Undetermined

Sinus bradycardia

Long QT with increased ventricular arrhythmia Chest pain—accelerated coronary disease Diastolic heart failure (delayed ventricular relaxation) Pericardial effusion (asymptomatic) Peripheral edema

Respiratory

Dyspnea on exertion Obstructive sleep apnea Primary pulmonary hypertension

Gastrointestinal

Constipation lleus Gastric atrophy

Reproductive

Oligo- and amenorrhea Menorrhagia Decreased fertility Early abortions Decreased libido Erectile dysfunction

Rheumatic

Polyarthralgias Joint effusions Acute gout or pseudogout

HEENT

Hoarseness Deep, husky voice Macroglossia Hearing loss Periorbital swelling Broad nose Swollen lips Goiter

Clinical Diagnosis

• Hyponatremia

 Elevated levels of antidiuretic hormone and/or diminished blood flow to the kidneys secondary to decreased cardiac output thought responsible for the inability to excrete free water

• Hypglycemia

- result of down-regulation of metabolism seen in hypothyroidism
- may also indicate the possibility of adrenal insufficiency
- Delayed return of deep tendon reflexes
- Hypothermia
- Altered mental status
 - Multifactorial
 - thyroid hormone deficiency, hypothermia, hypercapnea, hyponatremia, hypotension, and hypoglycemia
- Precipitating Event (infection)

Laboratory Testing

Investigations

- TSH and Free T₄
- Cortisol level
 - Prior to giving T₄

 Risk of Schmidt's Syndrome – autoimmune destruction of BOTH adrenals/thyroid glands

Look for precipitant

- ECG
- Labs
- Septic work up (CXR/BCx/urine/ +/- LP)
 - But both temp and WBC are low... Think Gram Negative
- o CT head?

Management

Treatment

 airway management, fluid resuscitation, thyroid hormone replacement, general supportive measures, and treatment of the precipitating illness

• T₄ 500mcg IVP

- Even if TSH unknown, acute effects mitigated by:
 - Illness: even slower $T_4 \rightarrow T_3$ (active form) conversion
 - Binding Proteins: majority of T₄ not available
 - Peaks in 2 weeks (vs T₃ in 24 hr) T₃ can overwhelm heart
 - 1st physical sign of efficacy = ☆ HR at 12 hr mark
- Alternative to rapidly correct young critically ill patients
 - T₃ 10-20mcg IV then 10mcg IV q4hr x24 hr
 - Then 10mcg IV q6hr x 1-2 days

• Hydrocortisone (prior to giving T_4)

- ↑ metabolism after thyroxine administration can deplete cortisol stores → adrenal insufficiency
- Central hypothyroidism with ACTH deficiency
- Schmidt Syndrome
 - Autoimmune destruction of both thyroid and adrenal glands
- Relative Adrenal Insufficiency
 - unmasked by stress and the enhanced clearance of cortisol.
- Hydrocortisone 50-100 mg IV q6-8 hr

Other Management

Airway

- May be partial obstruction from macroglossia and supraglottic edema, myopathy of respiratory muscles, and central hypoventilation.
- Most require endotracheal intubation and prolonged ventilatory support.
 - ABG predictions?
 - RR 5 breaths/min vs 55 breaths/min (less common)
 - Appropriate ventilator settings?

Fluids for Hypotension

- Intravascular volume depletion even with normal vital signs.
- Aggressiveness of administration should tempered by the risk of unmasking CHF.
- Initial fluid of choice D5/ 0.9NS because the myxedema coma patient is at high risk for both hyponatremia and hypoglycemia

Hypothermia

- Passive Re-warming using regular blankets and prevention of further heat loss.
 - risk that the resulting vasodilation will lead to a fall in peripheral vascular resistance and hypotension.
 - Avoid excessive mechanical stimulation due to risk of precipitating arrhythmias.

BOX 126-11 TREATMENT OF MYXEDEMA COMA

Protect the airway/ventilatory support; monitor for alkalosis Fluid resuscitation: 0.9NS or D₅/0.9NS if hypoglycemia Watch for unmasking of CHF Thyroid hormone replacement: T₄ alone (elderly and patients with cardiac comorbidity): T₄ 300-500 µg IV as initial bolus Or split bolus 200-300 µg IV day 1 and 2 Then 50-100 µg IV daily until able to take PO T₃ alone (younger patient, no cardiac risks; rapid correction desired): T₃ 10–20 µg IV initially, then 10 µg IV every 4 hr for 1 day, then 10 µg IV every 6 hr for 1–2 days Combination T₄ and T₃ therapy (intermediate approach): T₄ 200-250 µg IV as initial bolus T₃ 10 µg IV initial dose, then 10 µg IV every 8–12 hr T₄ 100 µg IV in 24 hr, followed by 50 µg/day Hydrocortisone 50-100 mg IV every 6-8 hr Hyponatremia Avoid hypotonic fluids, use only 0.9NS or D_s/0.9NS If less than 120 mEq/L, consider 3% saline, 50-100 mL boluses Passive rewarming Regular blankets, prevent heat loss If heating blankets considered, pretreat with IV fluids and monitor BP closely Avoid mechanical stimulation Treatment of any precipitating illness, with special attention to infectious causes BP, blood pressure; CHF, congestive heart failure; D₅/0.9NS, 5% dextrose in 0.9% normal saline; IV, intravenous; T₃, triiodothyronine; T₄, thyroxine.

Source Undetermined

Outcomes

- Without thyroid hormone replacement and a vigorous approach, the mortality rate from myxedema coma exceeds 80%
- With rapid treatment and ICU care, rate falls to $\leq 20\%$.
- Factors that predict a poor outcome
 - advanced age, body temperature < 32C, hypothermia refractory to treatment, hypotension, pulse < 44 beats per minute and sepsis

Common Mistakes

- Not considering hypothyroidism
- Active re-warming rather than passive
- Not treating infection
- Treating Hypotension with Vasopressors
 - Paradoxical worsening of hypotension \rightarrow IVF
- If not better in 24 hours look for alternative etiology (e.g., meningitis)

Case III

- 58 year old female with history of asthma, emphysema and mild heart failure who takes methylprednisolone qDay presents with altered mental status, fever, tachycardia, tachypnea and reproducible BP 60/30
 - Transferred from an outside hospital
 - Family reports that she increased her dose herself last month because it makes her feel better given that she has been coughing and wheezing. They don't know how many pills she takes a day or when her last dose was but her bottle is empty sooner that it should be.
 - Fever breaks after acetaminophen, labs/radiology pending, but patient remains hypotensive despite 5L NS.
 - Adrenaline infusion is then started but there is continued refractory hypotension with BP 65/40

Source Undetermined

1300 hours at the Previous Hospital

1345 hours (On Arrival \rightarrow Time to Treat)

Adrenal Insufficiency

Key Etiologies

O Primary = Adrenal Gland Destruction

• Addison's Disease

- West = autoimmune adrenalitis
- Globally = destruction by tuberculosis

• Disseminated Infection:

- blastomycosis, CMV, toxoplasmosis, histoplasmosis, Mycobacterium avium, Pneumocystis (primarily assoc with AIDs)
- Infiltrative:
 - Kaposi's Sarcoma (20% critical AIDs patients \rightarrow cortisol deficiency)
- Cancer:
 - most commonly metastases from lung and breast cancer
- Idiopathic, infarction/hemorrhage, post-operative, congenital adrenal hypoplasia (Peds), Drugs (etomidate infusion > RSI dose)

Secondary = Pituitary failure (no ACTH)

- ↓ responsiveness/atrophy with Chronic Glucocorticoid use
 - Generally >3 weeks, but as little as 5 days
 - > than q Day and any evening dosing have greater suppressive effect on pituitary ACTH production

• Pituitary Apoplexy

- Hemorrhage into a pituitary adenoma
- Sx: Hypotension, sudden severe headache, diplopia, visual field cuts

• Sheehan Syndrome

• Post-partum hypotension \rightarrow ischemic necrosis of the pituitary

Traumatic Brain Injury

• 13% of patients with GCS 3-13 developed ACTH-deficiency

Functional

 ○ Critically ill patients with inability to mount an adequate ACTH and cortisol response to sepsis or overwhelming stress → increased mortality

 >50% of patients with septic shock have some degree of relative adrenal insufficiency

• Associated With:

Sepsis, hepatic failure, severe acute pancreatitis, trauma

BOX 126-12 CAUSES OF ADRENAL INSUFFICIENCY

Primary Adrenal Insufficiency Chronic

Autoimmune adrenalitis (Addison's disease)—isolated or polyglandular deficiency, HIV infection (direct involvement or disseminated CMV, MAI, TB, cryptococcosis, histoplasmosis, blastomycosis, toxoplasmosis, *Pneumocystis* pneumonia)
TB and disseminated infections as seen with HIV Metastatic cancer (breast, lung)
Infiltrative (sarcoid, hemochromatosis, amyloid)
Congenital (adrenal hypoplasia, adrenoleukodystrophy, ACTH resistance)
Bilateral adrenalectomy
Drug toxicity (etomidate, ketoconazole, rifampicin)

Acute

Adrenal hemorrhage Meningicoccemia and other sepsis Anticoagulation (heparins and warfarin) Anticardiolipin antibody syndrome Trauma

Secondary Adrenal Failure

Chronic

Pituitary tumor (primary or metastatic) Pituitary surgery or irradiation Chronic steroid use with functional deficiency Infiltrative (sarcoid, eosinophilic granuloma, TB) Traumatic brain injury Postpartum pituitary necrosis (Sheehan's syndrome) Empty sella syndrome

Acute

Pituitary apoplexy (hemorrhage into a pituitary tumor) Postpartum pituitary necrosis (Sheehan's syndrome) Traumatic brain injury Relative adrenal insufficiency (sepsis, hepatic failure, severe acute pancreatitis, trauma)

ACTH, adrenocorticotropic hormone; CMV, cytomegalovirus; HIV, human immunodeficiency virus; MAI, Mycobacterium avium-intracellulare; TB, tuberculosis.

Ø PD-INEL

Source Undetermined

Progression of Adrenal Crisis

Acute Adrenal Crisis?

- Underlying Adrenal insufficiency
 - Addison's disease
 - Chronic steroid use
 - Most common
 - Acute illness or stress overwhelms the patients limited cortisol reserve.

- O Precipitants
 - Surgery
 - Anesthesia
 - Procedures
 - Infection
 - MI/CVA/PE
 - Alcohol/drugs
 - Hypothermia

No known underlying Adrenal Insufficiency = Infarct/Hemorrhage?

Adrenal Hemorrhage/Infarction

Sepsis

• Waterhouse-Friderichsen Syndrome (Meningococcal sepsis)

Trauma or surgery

Blunt thoraco-abdominal trauma (< < liver, spleen, kidney)

Coagulopathy

- Warfarin/Heparin
 - Excess use or use during severe stress

Spontaneous

 Antiphospholipid Ab Syndromes (venous infarction), Sheehan Syndrome, Apoplexy

Key Features of Adrenal Crisis

- Sx Vague/Nonspecific
- Psychiatric (Early)
 - Depression, apathy, memory impairment → confusion, delirium, dementia-like picture, and psychosis

Refractory Shock

- Unresponsive to fluids/ pressors
- Hypotension out of proportion to current illness
- Laboratory
 - **↓**Na⁺, **↑**K⁺
 - metabolic acidosis ([↑]H⁺)

- Known Adrenal insufficiency?
- Undiagnosed adrenal insufficiency?
 - Persistent weakness, fatigue, weight loss, anorexia, N/V, abdominal pain, salt craving, postural hypotension
 - Hyperpigmentation
 - sun-exposed areas
 - palmar creases, nipples, axillae, recent scars, and all mucous membranes

BOX 126-13 CLINICAL FEATURES OF ADRENAL INSUFFICIENCY

General

Weakness, fatigue	100%
Anorexia	100%
Gastrointestinal symptoms	92%
Weight loss	100%
Hyponatremia	90%
Blood pressure ≤110/70 mm Hg	88-94%
Fevers (mild)	Common
Depression, apathy	20-40%
Myalgia, arthralgias	6–13%
Auricular calcifications	5%

Primary

Hyperpigmentation	94-97%
Salt craving	16-22%
Orthostasis, syncope	12-16%
Vitiligo	10%
Hyperkalemia	65%
Hyperchloremia and acidosis	65%
Hypoglycemia	Mild, occasional

Secondary

Hyperkalemia Hyperpigmentation Hypoglycemia Orthostasis, hypotension Amenorrhea Axillary and pubic hair loss Decreased libido

Crisis

Refractory hypotension

Not present Not present More severe, common Uncommon Common Occasional Occasional

107

100%

Hyperpigmentation

© PD-SELF FlatOut, Wikimedia Commons

Original Image: ^(cc) BY-NC-SA chris@APL, <u>Flickr</u> Altered Image: ^(cc) BY-SA Lena Carleton, University of Michigan Hyperpigmentation

ACTH

- Share POMC precursor with melanocyte-stimulating hormone (MSH)
 - \circ POMC cleavage → ACTH, γ-MSH, β-lipoprotein
 - ACTH subunit further cleavage $\rightarrow \alpha$ -MSH (pigments skin)
 - Given ↓ feedback on Ant Pituitary → ↑ACTH

Investigations

- Adrenal Function
 - ✓Electrolytes
 - Random cortisol
 - ACTH

- Solution Look for Precipitant
 - ECG
 - CXR
 - Labs
 - Urinalysis
 - ±EtOH/Tox panel

Electrolyte Derangement

- Adrenal gland failure $\rightarrow \Psi$ aldosterone, Ψ Na⁺
- Cortisol deficiency $\rightarrow \uparrow ADH \rightarrow \uparrow Free H_20$
 - Although aldosterone is not deficient in secondary adrenal insufficiency, ADH secretion alone results in hyponatremia in about 50% of patients
- Due to aldosterone deficiency, hyperkalemia is seen in about two thirds of patients with primary adrenal insufficiency
- Output Appendix Metabolic Acidosis
 - Accompanies the elevated potassium due to impaired exchange of sodium with hydrogen and potassium when aldosterone is deficient
 - What resuscitation fluid is appropriate here?

Cosyntropin (ACTH) Stimulation Test

- Random cortisol <20 μ g/dL \rightarrow stimulation test
 - Can be performed any time of the day**
 - Baseline cortisol then 250 µg of ACTH IV bolus
 - Repeat serum cortisol levels at 30 or 60 minutes.
 - Post-ACTH cortisol >20 µg/dL to exclude diagnosis.

• Acutely III Patient:

- **the physiologic stress should result in an elevation of serum cortisol regardless of the time of the day, such that a random level is adequate.
- cortisol level below 15 µg/dL is presumptive evidence of hypo-adrenalism.

Table 126-3 Diagnosis of Hypoadrenal States		
	LEVEL (µg/dL)	DIAGNOSTIC CONCLUSION
Chronic, Nonstressed		
Serum cortisol (6-8 AM)	<3 <10 10-20 >20	Diagnostic Suggestive Normal Excludes
ACTH stimulation test (peak)	<20 >20	Diagnostic Excludes
Acute Crisis		
Serum cortisol (random)	<15 15–33 >33	Diagnostic Indeterminant Excludes
ACTH stimulation test (delta)	<9	Diagnostic
Relative Hypoadrenalism of Sepsis and Critical Illness		
Serum cortisol (random)	<25	Likely
ACTH stimulation test (delta)	<9	Diagnostic

© PD-INEL Source Undetermined

Corticosteroid Replacement

O Physiologial Stress Dose

• 200-300 mg qDay

Replacement Strategy
 Hydrocortisone 50-100 mg IV q6-8hr ("Stress Dose")
 Dexamethasone sub-optimal (no mineralocorticoid effect)
 Mineralocorticoid (Fludrocortisone) not acutely required

 Measures will improve the blood pressure and clinical picture over 4-6 hour

Other Management

- Correct electrolytes/acidosis
 - rapid correction is generally seen with IV fluid and hydrocortisone administration
- Fluid resuscitation (NS 2-3L)
 - If more needed, consider changing to RL given concurrent risk of hyperchloremic metabolic acidosis in disease state + high volume saline input
- Oextrose for hypoglycemia
- Address precipitating factor/ illness

BOX 126-14 TREATMENT OF HYPOADRENALISM

Maintenance

Hydrocortisone 20 mg AM, 10 mg PM Fludrocortisone 100 µg/day

Maintenance during Minor Illness

Hydrocortisone 40 mg AM, 20 mg PM Fludrocortisone 100 µg daily

Coverage during Procedural Stress

Hydrocortisone 100 mg IV (one time only)

Adrenal Crisis or Relative Adrenal Insufficiency of Critical Illness

Hydrocortisone 50–100 mg IV every 6 hr OR Hydrocortisone 50–100 mg IV followed by an infusion, 20 mg/hr 0.9 NS 2-3 L over the first few hours

Switch to D₅ NS if hypoglycemia Treat precipitating illness

D₅ NS, 5% dextrose in normal saline.

Ø PD-INEL Source Undetermined

KEY CONCEPTS

- Thyroid storm is a life-threatening decompensation of severe hyperthyroidism precipitated by an intercurrent illness, typically sepsis. The hallmarks of thyroid storm include hyperthermia, exaggerated tachycardia, altered mental status, and gastrointestinal symptoms. Therapy of thyroid storm includes actions to reduce production of thyroid hormone, to inhibit thyroid hormone release, to block peripheral conversion of T₄ to T₃, to initiate beta-adrenergic blockade, to institute general supportive measures, and to identify and treat the precipitating event.
- Myxedema coma is a life-threatening deterioration of severe chronic hypothyroidism precipitated by an acute intercurrent illness. The prototypical case is an elderly woman in the winter who presents with marked hypothermia, altered mental status, respiratory failure, and hypotension. The management of myxedema coma requires immediate attention to airway management, fluid resuscitation, thyroid hormone replacement, general supportive measures, and treatment of the precipitating illness.
- Hallmarks of chronic adrenal insufficiency include generalized weakness, malaise, fatigue, gastrointestinal symptoms, weight loss, blood pressure less than 110/70 mm Hg, and hyponatremia. Primary autoimmune adrenal failure is the more common cause and is distinguished by the presence of hyperpigmentation, hyperkalemia, and more severe orthostasis. Hypopituitarism resulting in secondary adrenal insufficiency is distinguished by more severe hypoglycemia and the lack of the classic features seen in primary disease.
- Hypotension refractory to fluid resuscitation may be the only clue to the diagnosis of adrenal crisis or relative adrenal insufficiency of critical illness. In this setting, a random serum cortisol level should be obtained and IV hydrocortisone administered before confirmation is obtained.

References

- Basaria S, Cooper DS. Amiodarone and the thyroid. Am J Med. Jul 2005;118(7): 706-14.
- Burch HB, Wartofsky L. Life-threatening thyrotoxicosis. Thyroid storm. *Endocrinol* Metab Clin North Am. Jun 1993;22(2):263-77.
- Chong HW, See KC, Phua J. Thyroid storm with multiorgan failure. *Thyroid. Mar* 2010;20(3):333-6.
- Glauser J, Strange GR. Hypothyroidism and hyperthyroidism in the elderly. *Emerg Med Rep. 2002;1(2):1-12.*
- Hahner S, Loeffler M, Bleicken B, et al. Epidemiology of adrenal crisis in chronic adrenal insufficiency - the need for new prevention strategies. *Eur J Endocrinol. Dec 2* 2009
- Zull D. Thyroid and Adrenal Disorders. *In*: Rosen's Emergency Medicine, Concepts and Clinical Practice. 7th ed.

Corticosteriod Stress Dosing: Who? When? How much?

- Who needs stress steroids?
 - ?Addison' s
 - ?Chronic prednisone
 - ?Chronic Inhaled Steroids

• When?

- ? Laceration suturing
- ? Colle's fracture reduction
- ? Cardioversion for Afib
- ? Trauma or septic shock
- How Much?

Effects of Exogenous Corticosteroids

- Hypothalamic Pituitary Adrenal axis suppression
 - Has occurred with ANY route of administration (including oral, dermal, inhaled, intranasal)
 - Adrenal suppresion may last for up to a year after a course of steroids
 - HPA axis recovers quickly after prednisone
 50 po od X 5/7

Streck 1979: Pituitary – Adrenal Recovery Following a Five Day Prednisone Treatment

Who needs Corticosteroid Stress Dosing?

- Coursin JAMA 2002: Corticosteroid Supplementation for Adrenal Insufficiency
 - All patients with known adrenal insufficiency
 - All patients on chronic steroids equivalent to or greater than PREDNISONE 5 mg/day

Corticosteroid Stress Dosing: La Rochelle Am J Med 1993

- ACTH stimulation test to patients on chronic prednisone
- Prednisone < 5 mg/day</p>
 - No patient had suppressed HPA axis
 - Three had intermediate responses
- Prednisone > or = 5 mg/day
 - 50% had suppressed HPA axis, 25% were intermediate, 25% had normal response

- What duration of prednisone is important?
- What about intermittent steroids?
- What about inhaled steroids?

Corticosteroid Stress Dosing: Summary of literature review

- Short courses of steroids are safe
 - Many studies in literature documenting safety of prednisone X 5 – 10 days
- Wilmsmeyer 1990
 - Documented safety of 14 day course of prednisone
- Sorkess 1999
 - Documented HPA axis suppression in majority of patients receiving prednisone 10 mg/day X 4 weeks
- Many studies documenting HPA axis suppression with steroid use for > one month

- Inhaled Corticosteroids: Allen 2002.
 Safety of Inhaled Corticosteroids.
 - Adrenal suppression has occurred in moderate doses of ICS (Flovent 200 – 800 ug/day)
 - Adrenal suppression is more common and should be considered with chronic high doses of ICS (Flovent > 800 ug/day)

- "There is NO consistent evidence to reliably predict what dose and duration of corticosteroid treatment will lead to H-P-A axis suppression"
- Why?

Corticosteroid Stress Dosing: The bottom line

Consider potential for adrenal suppression:

- Chronic Prednisone 5 mg/day or equivalent
- Prednisone 20 mg/day for one month within the last year
- > 3 courses of Prednisone 50 mg/day for 5 days within the last year
- Chronic high dose inhaled corticosteroids

When are stress steroids required?

When is stress dosing required? (Cousin JAMA 2002)

- Any local procedure with duration < 1hr that doesn't involve general anesthesia or sedatives does NOT require stress dosing
- All illnesses and more significant procedures require stress dosing

(cc) BY-SA John Martel, University of Michigan

MINOR

 Double chronic steroid dose for duration of illness (only needs iv if can't tolerate po)

MODERATE

Hydrocortisone 50 mg po/iv q8hr

MAJOR

Hydrocortisone 100 mg iv q8hr

- What about procedural sedation?
 - ? Stress dose just before sedation/ procedure
 - Recommended by Coursin JAMA 2002 but NO supporting literature specific to procedural sedation in emerg
 - Should be done -----> Hydrocortisone 50 mg iv just before procedure and then continue with normal steroid dose

Non-diabetic Endocrine Emergencies

- Recognize key features
- O Pattern of underlying dz + precipitant
- Emergent management
 - P3S2, levothyroxine, dex
 - Supportive care and look for precipitant
- Consider corticosteroid stress dosing