Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b))
 *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Inotropes and Vasoactives

Robert Preston, MD
Division of Burn, Trauma and Critical Care
Division of Emergency Medicine
University of Utah
Robworldwide@Gmail.com
Objectives

• Review factors central to cardiac output
• Review physiology and receptors used by inotropic and vasoactive drugs
• Review different types of inotropic and vasoactive drugs
Physiology

• Vasopressor = Vasoconstriction
• Goal: Re-establish blood flow to organs
• Vasopressors are NOT a volume substitute
Physiology

• Sometimes, you need a drug that increases cardiac output without necessarily increasing blood pressure
 – Inotropic agents
 – Vasoconstrictors
 – Both
Cardiac Output

- Cardiac Output (Q) = HR x SV
- Heart rate
 - Chronotropism: increase in HR decreases filling time, increases O_2 consumption
 - Nature of HR important
- Stroke volume
 - Contractility (inotropic state of the myocardium)
 - preload and afterload dependent
Cardiac Output

• Preload
 – Volume of venous return that dictates cardiac output via the Frank-Starling Curve
 – How to increase?
 • Fluid boluses
 • increasing venous tone
Cardiac Output

• Afterload
 – The impedance to ventricular ejection
 – The factor in the equation that, when reduced, will increase the cardiac output
 • Measured (MAP) or calculated (SVR)
 – Becomes the dominant factor in determining cardiac output when contractility of the heart is impaired*
Cardiac Output

Inotropism
Increase in force and velocity of contraction

Lusitropism
Promoting diastolic relaxation to improve filling and coronary perfusion
Cardiac Output

Inotropism
Increase in force and velocity of contraction

Lusitropism
Promoting diastolic relaxation to improve filling and coronary perfusion

GOAL: IMPROVE CARDIAC FUNCTION
Understanding Receptors

- α-adrenergic receptors
- β-adrenergic receptors
- Dopaminergic receptors
- Vasopressin receptors
Understanding Receptors

<table>
<thead>
<tr>
<th>Agent (typical dosages)</th>
<th>β-1</th>
<th>β-2</th>
<th>α-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoproterenol (0.01–0.1 μg/kg/min)</td>
<td>+++</td>
<td>+++</td>
<td>O</td>
</tr>
<tr>
<td>Norepinephrine (0.05–1 μg/kg/min)</td>
<td>++</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Epinephrine (0.05–2 μg/kg/min)</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Phenylephrine (0.5–5 μg/kg/min)</td>
<td>O</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Dopamine* (1–20 μg/kg/min)</td>
<td>+(++)</td>
<td>+</td>
<td>+(++)</td>
</tr>
<tr>
<td>Dobutamine (2.5–20 μg/kg/min)</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Dopamine effects at “high-dose,” which are typically greater than 3 to 5 μg/kg/min, are shown in parentheses. O, no effect; +, minimal effect; ++, moderate effect; ++++, substantial effect.
Understanding Receptors

• α_1-adrenergic receptors
 – Post-synaptic – constricts VSM

• Debates:
 – Existence of both α_{1a} and α_{1v}?
 – α_1 receptors located in the heart?
Understanding Receptors

• α_2-adrenergic receptors
 – Pre- and post-synaptic
 • Post-synaptic – constricts VSM (as for α_1)
 • Pre-synaptic – inhibit NE release into synaptic cleft
 • More α_2 receptors in the venous system
 – Central actions
 • Decrease SNS, Increase PSNS
Understanding Receptors

• β_1-adrenergic receptors
 – Receptors predominate in the myocardium
 – + rate, + contractility, + conduction velocity
 – Equally sensitive to EPI and NE

• β_2-adrenergic receptors
 – Mainly located in smooth muscles of blood vessels and bronchus
 – More sensitive to EPI than NE
Understanding Receptors

• Dopaminergic Receptors
 – Re: Dopamine is a precursor of NE and EPI
 – Two major DA receptors
 – DA$_1$ receptors
 • mainly post-synaptic on renal sm and mesentery
 • Vasodilation and increased blood flow
 – DA$_2$ receptors
 • Pre-synaptic: inhibit NE release
 • Post-synaptic: vasoconstriction
Understanding Receptors

• Vasopressin Receptors
 – V1R – Vasoconstrict vascular smooth muscle
 – V2R – Anti-diuretic effects
 – V3R - ACTH release from pituitary
 – OTR – Vasodilation
FINALLY!
The War Chest

- Norepinephrine (Levophed)
- Epinephrine
- Dopamine
- Dobutamine
- Milrinone
- Vasopressin
- Phenylephrine (Neosympinephrine)
Norepinephrine (Levophed)

- Identical to endogenous catecholamine synthesized by adrenal medulla
- Effects on α_{1+2} and β_1 receptors
- Low doses: β effects predominate
- Higher doses: α effects predominate
 - Venoconstriction (venous > arterial)

<table>
<thead>
<tr>
<th>Agent (typical dosages)</th>
<th>β-1</th>
<th>β-2</th>
<th>α-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoproterenol (0.01–0.1 μg/kg/min)</td>
<td>+++</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>Norepinephrine (0.05–1 μg/kg/min)</td>
<td>++</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Epinephrine (0.05–2 μg/kg/min)</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Phenylephrine (0.5–5 μg/kg/min)</td>
<td>O</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Dopamine* (1–20 μg/kg/min)</td>
<td>+(+++)</td>
<td>+</td>
<td>+(+++)</td>
</tr>
<tr>
<td>Dobutamine (2.5–20 μg/kg/min)</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

* Dopamine effects at “high-dose,” which are typically greater than 3 to 5 μg/kg/min, are shown in parentheses. O, no effect; +, minimal effect; ++, moderate effect; ++++, substantial effect.
Norepinephrine (Levophed)

- Onset: < than 2 min
- Metabolism: Hepatic (mostly)
- Dosing: 0.01 – 1.0 mcg/kg/min
- !! - Rebound hypotension if rapid D/C
- Indicated mainly for distributive shock after adequate hydration
Norepinephrine (Levophed)

• At high doses, α_1 effects predominate - THINK about what this means in your patient!
 – Case I: Septic shock – dilated periphery
 • NE may increase organ perfusion
 – Case II: Hypotension with normal SVR
 • NE could dramatically increase afterload and increase the work of the LV (dangerous if ischemic myocardium)
 • Increased renal arterial constriction – worsening oliguria

• HR might decrease reflex increase in PS tone
Epinephrine

- Endogenous catecholamine produced, stored, released by adrenal medulla
- Usually: ACLS, Anaphylaxis, CT Surgery
- Has both α and β effects
- Bronchodilator
- Histamine antagonist

<table>
<thead>
<tr>
<th>Agent (typical dosages)</th>
<th>β-1</th>
<th>β-2</th>
<th>α-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoproterenol (0.01–0.1 μg/kg/min)</td>
<td>+++</td>
<td>+++</td>
<td>O</td>
</tr>
<tr>
<td>Norepinephrine (0.05–1 μg/kg/min)</td>
<td>++</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Epinephrine (0.05–2 μg/kg/min)</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Phenylephrine (0.5–5 μg/kg/min)</td>
<td>O</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Dopamine* (1–20 μg/kg/min)</td>
<td>(+++)</td>
<td>+</td>
<td>(+++)</td>
</tr>
<tr>
<td>Dobutamine (2.5–20 μg/kg/min)</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Dopamine effects at “high-dose,” which are typically greater than 3 to 5 μg/kg/min, are shown in parentheses. O, no effect; +, minimal effect; ++, moderate effect; ++++, substantial effect.
Epinephrine

- Onset: < 2 min
- Elimination: Renal (predominantly)
- Dosing – as for norepinephrine
 - 0.01 – 1.0 mcg/kg/min
- Very Arrhythmogenic
Dopamine

• Endogenous precursor of norepinephrine
• Can affect multiple receptors
 – DA, α, and β depending on dose (in theory)
• Indications: MI, Sepsis, CHF, Renal insufficiency
• Contraindications: Pheochromocytoma or tachydysrhythmia

<table>
<thead>
<tr>
<th>Agent (typical dosages)</th>
<th>β-1</th>
<th>β-2</th>
<th>α-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoproterenol (0.01–0.1 μg/kg/min)</td>
<td>+++</td>
<td>+++</td>
<td>O</td>
</tr>
<tr>
<td>Norepinephrine (0.05–1 μg/kg/min)</td>
<td>++</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Epinephrine (0.05–2 μg/kg/min)</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Phenylephrine (0.5–5 μg/kg/min)</td>
<td>O</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Dopamine* (1–20 μg/kg/min)</td>
<td>+(+*)</td>
<td>+</td>
<td>(+++)</td>
</tr>
<tr>
<td>Dobutamine (2.5–20 μg/kg/min)</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Dopamine effects at “high-dose,” which are typically greater than 3 to 5 μg/kg/min, are shown in parentheses. O, no effect; +, minimal effect; ++, moderate effect; ++++, substantial effect.
Dopamine

- Onset of action: < 5 min
- Metabolism
 - Hepatic and renal* to inactive metabolites (75%) and NE (25%)
- Dosing: 1-20 µg/kg/min
 - Low or “Renal dose” 0.5-2 µg/kg/min
 - Moderate doses 2-10 µg/kg/min
 - High doses > 10 µg/kg/min
Dopamine

• “Renal dose” 0.5-2 µg/kg/min
 – Mainly DA_1 and DA_2 receptors
 • DA_1 post-synaptic effects - mostly Vasodilation
 • DA_2 some vasoconstriction and inhibition NE release

• Moderate doses: 2-10 µg/kg/min
 – Activates β receptors
 • + HR and + Contractility

• High doses > 10 µg/kg/min
 – α-mediated vasoconstriction > DA and β
Role of Dopamine

• Renal Effects
 – Pioneer work by Goldberg in 1974
 – Theoretical benefits...
 • blunting of the NE induced vasoconstriction (renal vasodilation to increase GFR) leading to better natriuresis and diuresis
 – Led to belief that “renal dose” dopamine might confer protection against ARF
Role of Dopamine

– Australian and New Zealand Intensive Care Society Group
 • No benefit in ARF, no improvement in outcome
– NA Septic Shock trial (NORASEPT)
 • No reduction in incidence of ARF, need for hemodialysis, or mortality from patients with oliguria
Role of Dopamine

Conclusions

• Benefits not confirmed in study
• Any apparent benefit (i.e. increased diuresis) likely due to β effects and better cardiac output rather than renal tropism
• This apparent increase in diuresis may actually increase risk of ARF in normo- or hypovolemic pts
Dobutamine

- Mainly a β_1 stimulant (strong inotrop) with only a weak β_2 interaction (vasodilation)
- Weak chronotropic effect
 - HR may actually decrease
- Risk of arrhythmias due to myocardial O2 demand at higher dose

<table>
<thead>
<tr>
<th>Agent (typical dosages)</th>
<th>β-1</th>
<th>β-2</th>
<th>α-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoproterenol (0.01–0.1 μg/kg/min)</td>
<td>+++</td>
<td>+++</td>
<td>O</td>
</tr>
<tr>
<td>Norepinephrine (0.05–1 μg/kg/min)</td>
<td>++</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Epinephrine (0.05–2 μg/kg/min)</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Phenylephrine (0.5–5 μg/kg/min)</td>
<td>O</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Dopamine* (1–20 μg/kg/min)</td>
<td>(+++)</td>
<td>+</td>
<td>+(++)</td>
</tr>
<tr>
<td>Dobutamine (2.5–20 μg/kg/min)</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*Dopamine effects at “high-dose,” which are typically greater than 3 to 5 μg/kg/min, are shown in parentheses. O, no effect; +, minimal effect; ++, moderate effect; ++++, substantial effect.
Dobutamine

- Doses range from 2 - 20µg/kg/min
- Onset of action: 1-2 min
- Renal excretion
- Mainly indicated for cardiogenic shock (low output heart failure states)
- Contraindicated in idiopathic hypertrophic subaortic stenosis
Milrinone

- Phosphodiesterase inhibitor
- Selectively inhibits PDE III
 - Elevates cAMP
 - increased protein kinase and activation of a similar cascade as adrenergic drugs
- Inotropic action
- Vasodilates* and afterload reduces (which is why we often use it with a PAC)
Milrinone

- Onset of action 5-15 minutes
- Requires bolus of 50 \(\mu g/kg \) over 10 minutes
- Drip dose 0.25 - 0.75 \(\mu g/kg/min \)
- Indicated for severe heart failure, cardiogenic shock
- May result in less arrhythmias than Dobutamine
Vasopressin

• Identical to endogenous ADH
• Primary role: maintain serum osmolality
• Larger doses: stimulates V1R receptors in smooth muscles resulting in calcium release from sarcoplasmic reticulum
• Net effect is vasoconstriction
Vasopressin

• Onset of action immediate
• Usual dose of 0.02-0.04U/min
• Indications: ACLS, GI hemorrhage, and septic shock
• Pressor sparing?
Phenylephrine

- Mainly an α_1 agonist
- Vasoconstriction with minimal HR effect
- Onset is immediate
- Dose 25 – 100 mcg IV (typical)
- Infusion: 0.5 – 5 μg/kg/min

<table>
<thead>
<tr>
<th>Agent (typical dosages)</th>
<th>β-1</th>
<th>β-2</th>
<th>α-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoproterenol (0.01–0.1 μg/kg/min)</td>
<td>+++</td>
<td>+++</td>
<td>O</td>
</tr>
<tr>
<td>Norepinephrine (0.05–1 μg/kg/min)</td>
<td>++</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Epinephrine (0.05–2 μg/kg/min)</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Phenylephrine (0.5–5 μg/kg/min)</td>
<td>O</td>
<td>O</td>
<td>+++</td>
</tr>
<tr>
<td>Dopamine* (1–20 μg/kg/min)</td>
<td>(+++)</td>
<td>+</td>
<td>+(++)</td>
</tr>
<tr>
<td>Dobutamine (2.5–20 μg/kg/min)</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Dopamine effects at “high-dose,” which are typically greater than 3 to 5 μg/kg/min, are shown in parentheses. O, no effect; +, minimal effect; ++, moderate effect; ++++, substantial effect.