Project: Ghana Emergency Medicine Collaborative

Document Title: EKG and Rhythm Interpretation 101

Author(s): Emily Sagalyn (University of Utah), MD 2012

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution Share Alike-3.0 License**: http://creativecommons.org/licenses/by-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. These lectures have been modified in the process of making a publicly shareable version. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/privacy-and-terms-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt			
{ Content the copyright holder, author, or law permits you to use, share and adapt. }			
	Ø PD-GOV	Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)	
	PD-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.	
	Ø PD-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.	
	(cc) ZERO	Creative Commons – Zero Waiver	
	(cc) BY	Creative Commons – Attribution License	
	(cc) BY-SA	Creative Commons – Attribution Share Alike License	
	CC BY-NC	Creative Commons – Attribution Noncommercial License	
	CC BY-NC-SA	Creative Commons – Attribution Noncommercial Share Alike License	
	GNU-FDL	GNU – Free Documentation License	

Make Your Own Assessment

open.michigar

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

PD-INEL Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair. 2

EKG and Rhythm Interpretation 101

Emily Sagalyn, MD Wilderness/EMS Fellow University of Utah

Objectives

- Patients who should get an EKG
- Reading an EKG
- Identifying ST elevation MI
- Atrial arrythmias
- Nodal Blocks
- Ventricular arrythmias
- ACLS algorithms

Who should get and EKG?

- Possible diagoses of:
 - Acute coronary Syndrome
 - Myocardial Infarction
 - Syncope
 - Stroke
 - Arrythmia
 - Hyperkalemia (includes renal failure)
 - Overdose
 - Other electrolyte abnormalities

Approach to reading EKGs

- Multiple ways to read EKGs
- Do it the same each time
- Rate, Rhythm, Intervals, Abnormalities
 - Precordium
 - Territories

Normal EKG:

http://www.learntheheart.com/Normal.jpgc

Electrical Anatomy

http://doctorgrasshopper.wordpress.com/tag/ekg/

Ø PD-INEL

http://www.brighamandwomens.org/ Departments_and_Services/medicine/services/cvcenter/Patient/ pacemaker.aspx

Basics:

- Rate (< 60 Bradycardia, >100 Tachycardia):
 - Find a QRS on a big box
 - Count down: 300, 150, 100, 75, 60, slow...

Rhythm

• Is there a p before every QRS? Yes \rightarrow NSR

Intervals

- PR = 0.12 0.20 ms, 3-5 small boxes
 - Corresponds to conduction from SA to AV node
- QRS < 0.12 ms, 3 small boxes</p>
 - Conduction through ventricular system

Limb leads and Precordial leads

Figure 17-42 Electrocardiographic views of the heart.

Copyright © 2005 Lippincott Williams & Wilkins. Instructor's Resource CD-ROM to Accompany Critical Care Nursing: A Holistic Approach, eighth edition.

http://allaboutim.webs.com/apps/blog/show/next?from_id=5380740

Lateral Leads

Inferior Leads

Ø PD-INEL

http://www.learntheheart.com/Normal.jpg

ST Segments

- Inline with baseline
- Elevation:
 - 3mm in precordial leads or 1mm in limb leads
 - Early repolarization vs. pericarditis vs. STEMI

Depression

- One small box below baseline
- Ischemia, reciprocal changes

Early Repolatization

Pericarditis

http://www.learntheheart.com/Normal.jpg

STEMI

Further reading: http://blog.thealo.com/thealo/blog/post/2009/07/31/STEMI-Pericarditis-Early-Repolarization.aspx

Tachycardia

- Atrial
- Ventricular

Source undetermined

Atrial Tachy-arrythmias

Sinus Node Right Atrium AV Node Right Ventricle Conduction Pathways

- Originate above AV node
- Produce narrow QRS complexes
- Afib: Irregularly irregular
- Aflutter: Regularly irregular, usually 2:1 condution (rate 150)
 - Afib/flutter often seen with respiratory problems
 - COPD/Asthma, PE
- SVT: regular, fast, narrow complex, no visible p waves
 - Drugs, electrolyte imbalance, bad wiring

Afib with RVR

Aflutter

http://www.emedu.org/ecg/crapsanyall.php

Ventricular Tachycardia

Originates below AV node

Wide complex

ACLS Tachycardia Algorithm

AV Blocks

1st degree: prolonged PR > 220ms (one big box)

Source undetermined

2nd degree AV block: Type 1

- PR interval progressively longer until it doesn't conduct
- Stable, no intervention usually needed

27

2nd degree AV Block: Type 2

- Consistent PR interval
- P that doesn't conduct
- Sign of conduction problem below the AV node
- Can progress to 3rd degree block (bad)

3rd degree block

- Complete dysfunction of AV node
- Atria and ventricles not communicating

Treatment

- IV, O2, Monitor
- Transport
- 3rd degree block + unstable
 - May need to pace
- Atropine?
- May not work given A-V dissociation
- Definitive treatment: Pacemaker

Bradycardia

Other causes:

- Sinus node dysfunction
- Heart attack
- Medications
- Electrolyte abnormalities
- Hypothermia

ACLS Bradycardia algorithm

Assess, typically < 50 BPM

Identify and treat underlying condition.

• Maintain airway and assist breathing if necessary

- Oxygen (if hypoxemic)
- Monitor
- IV access
- •12-Lead EKG, do not delay treatment if not available

ACLS Bradycardia algorithm

Persistent Bradycardia causing:

- -Hypotension
- -Acutely altered mental status
- -Signs of shock
- -Ischemic chest discomfort
- -Acute heart failure

Atropine

- If ineffective:
- Pacing or Dopamine or Epi

Dosing:

Atropine: 0.5 mg IV. Can repeat Q3-5 min. Max 3mg Dopamine: 2-10mcg/kg/min drip Epi: 2-10 mcg/min drip

Bradycardia and Tachycardia

Determine if

- Unstable: vital organ function is impaired, or impending cardiac arrest
 - Altered mental status, acute heart failure, hypotension
- Symptomatic: lightheadedness of dizziness
- If a person is symptomatic but stable, have more time
- If unstable have to intervene
- Determine cause of instability and treat underlying cause

Ventricular arrythmias

- Right Bundle Branch Block
- Left Bundle Branch Block
- Premature Ventricular Contractions (PVCs)
- Ventricular Tachycardia
- Ventricular Fibrillation
- Torsade de Points

RBBB

- QRS > 120 ms (3 small boxes)
- rsR' "bunny ears" in precordial leads
- Slurred s waves in I, V5, V6

LBBB

- WRS > 120ms (3 small boxes)
- No Q waves in I, V5, V6
- Monomorphic R wave in I, V5, V6
- ST and T waves are in opposite direction than QRS complex
 - Discordance

LBBB

Source undetermined

LBBB

- A new LBBB + symptoms of ischemic heart disease = Acute MI until proven otherwise
 - Chest pain
 - Syncope
 - Shortness of breath
 - Nausea/vomiting
 - Diaphoresis

MI in old LBBB

 If discordance is broken (QRS and ST-T waves are in the SAME direction) BE CONCERNED!

MI in LBBB

PVCs

- Occur before you would expect another beat
- Wide complex originate below AV node
- Pause after before the next
- Patients can feel "flip-flop" in chest or a skipped beat

PVCs

PVCs gone bad

Source undetermined

Vtach and Vfib

VT can have a pulse → tachycardia algorithm
 Pulses VT or VF → Cardiac Arrest algorithm

44

Torsades de Points

- "Twisting around a point"
- Type of ventricular fibrillation
- Electrolyte imbalances (Magnesium)
- Electrical Abnormalities (Prolonged QT)
- Give Mag

PEA

- Pulseless electrical Activity
- Any wave form without a pulse

Asystole

- "Flatline"
- No cardiac activity
- No ventricular depolarization

Cardiac Arrest: Treatable Causes

5Hs	5Ts	
 Hypovolemia Hypoxia Hydrogen ions (Acidosis) Hypo-/hyperkalemia 	 Tension pneumothorax Tamponade (cardiac) Toxins Thrombosis (pulmonary) Thrombosis (coronary) 	

Hypothermia

ACLS Cardiac Arrest Algorithm

- CPR: push hard and fast
 - \geq 2 inches, \geq 100/min
- Minimize interruptions
- Avoid excessive ventillation
- Change compressors every 2 min
- 30:2 ratio if no advanced airway

Adult Cardiac Arrest

Adult Cardiac Arrest

Once advanced airway is placed 100 compression/min No pauses for ventillation

56 yo male with chronic renal failure presenting with fatigue

- Hyperkalemia
- 2-3 degree heart block, wide complex tachycardias, progression to vf and asystole
- 6.5-7.5 peaked t waves
- 7.5-8.0 widening of the qrs
- 10-12 sine wave, vf, asystole

22 yo female with prolonged vomiting

- Small or absent t waves
- Prominent U waves
- First or second degree AV block
- Slight ST depression

14 yo female, no pmh, presenting with seizure. Mother has a history of depression.

- Sodium channel blocker: includes la arrythmias (quinidine, procainamide)
- IC antiarrythmias: flecainide, encainide
- Local anesthetics: bupivacaine
- Antimalarias: chloroquine, hydroxychloroquin
- Dextropropoxyphene
- Propranolol
- Carbamazepine
- Quinine
- Seizures, and ventricular arrythmias
- Ekg: intraventricular conduction delay QRS >100ms in lead II
- Right axis deviation, terminal r wave in aVR
- QRS greater than 100ms predictive of seizures, > 160 predictive of VT
- Clinical management: IV, monitor O2
- IV sodium bicarb 100meq, repeart every few mintues until QRS narrows
- Intubate: hyperventillate ph 7.5

- Seizures: IV benzos
- Hypotension: crystalloid, vasopressors (norepi)
- Arrythmias: bicarb, lidocaine if necessary