Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)
Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
Creative Commons – Zero Waiver
Creative Commons – Attribution License
Creative Commons – Attribution Share Alike License
Creative Commons – Attribution Noncommercial License
Creative Commons – Attribution Noncommercial Share Alike License
GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State

Jennifer N. Thompson, MD
Project Hope
Objectives

DKA: Diabetic Ketoacidosis
HHS: Hyperosmolar Hyperglycemic State
 (HONKC – hyperosmolar nonketotic coma)

● What is the difference between DKA and HHS?
● How do I manage DKA and HHS?
● What complications should I look out for?
● What does the data say about cerebral edema?
<table>
<thead>
<tr>
<th></th>
<th>Diabetic Ketoacidosis</th>
<th>HHS - Hyperosmolar hyperglycemic state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose</td>
<td>Glucose >250 (13.9)</td>
<td>Glucose >600 (33.3)</td>
</tr>
<tr>
<td>Arterial pH</td>
<td>pH <7.3</td>
<td>pH >7.3</td>
</tr>
<tr>
<td>Serum Bicarbonate</td>
<td><15</td>
<td>>15</td>
</tr>
<tr>
<td>Serum osmolality</td>
<td>varies</td>
<td>>320 mOsm</td>
</tr>
<tr>
<td>Urine ketones</td>
<td>+++</td>
<td>Small or none</td>
</tr>
<tr>
<td>Anion gap</td>
<td>>12</td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td>Mostly type I DM</td>
<td>Mostly type II DM</td>
</tr>
<tr>
<td></td>
<td>Children, young people</td>
<td>Elderly, mentally or physically impaired</td>
</tr>
<tr>
<td>Insulin activity</td>
<td>Absolute functional insulin deficiency</td>
<td>Relative insulin deficiency</td>
</tr>
<tr>
<td>Mortality in admitted patients</td>
<td>1-4%</td>
<td>10% or more</td>
</tr>
</tbody>
</table>
Classic presentation of DKA

Age
- Young people, Type I DM

History
- Polydipsia, Polyuria, Fatigue
- Nausea/vomiting, diffuse abdominal pain.
- In severe cases – lethargy, confusion

Physical
- Ill appearance
- Signs of dehydration: Dry skin, dry mucous membranes, decreased skin turgor (skin tenting)
- Signs of acidosis:
 - Tachypnea → Kussmaul respirations
 - Characteristic acetone (ketotic) breath odor
Role of Insulin

- Required for transport of glucose into cells for use in making ATP
 - Muscle
 - Adipose
 - Liver

- Inhibits lipolysis

- Type I DM = inadequate insulin
Pathophysiology in DKA

Insulin

Counterregulatory hormones
- Glucagon
- Epinephrine
- Cortisol
- Growth Hormone

Gluconeogenesis
Glycogenolysis
Lipolysis
Ketogenesis
Counterregulatory Hormones - DKA

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Increases insulin resistance</th>
<th>Activates glycogenolysis and gluconeogenesis</th>
<th>Activates lipolysis</th>
<th>Inhibits insulin secretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinephrine</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glucagon</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortisol</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth Hormone</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
No Lipolysis = No Ketoacidosis

Only a small amount of functional insulin required to suppress lipolysis
Underling stressors that tip the balance

- Newly diagnosed diabetics
- Missed insulin treatments
- Dehydration
- Underlying infection
- Other physiologic stressors:
 - Ex) Pulmonary embolism, Illicit drug use (sympathomimetics), Stroke, Acute Myocardial Infarction,
- Young type II diabetics with stressors

Pathophysiology

- Glucagon
- Epinephrine
- Cortisol
- Growth Hormone

- Gluconeogenesis
- Glycogenolysis
- Lipolysis
- Ketogenesis
Workup

Most important labs to diagnose DKA:
- Basic metabolic panel (glucose, anion gap, potassium)
- Arterial or venous blood gas to follow pH
- Urine dipstick for glucose and ketones (high sensitivity, high negative predictive value)

Additional tests:
- Serum ketones
- Magnesium, phosphorus
- EKG – if you suspect hyperkalemia, hypokalemia, arrhythmias

Determine the underlying cause!
Management

- Fluids
- Insulin
- Electrolyte repletion
- Find and treat any underlying cause!
Fluids

- Increases intravascular volume
 - Reverses dehydration
 - Restores perfusion to kidneys \rightarrow ↑ GFR \rightarrow urinate out excess glucose
 - Restores perfusion to periphery \rightarrow ↑ uptake and use of glucose (when insulin present)

Take home message: Fluids hydrate patient AND reverse hyperglycemia
Fluids

Pediatrics

- Hypotension: treat with 20cc/kg NS boluses
- If no hypotension:
 - 10-20cc/kg NS bolus then 1.5 – 2x maintenance
 OR
 - Assume 10% dehydration and calculate fluid deficit plus maintenance
 - Replete deficit (plus maintenance) over 48-72hrs.
Insulin

- Allows glucose to enter and be used by cells
- Stops proteolysis and lipolysis
 - Stops Ketogenesis → Stops Acidosis
- Allows potassium to enter cells

Insulin goal: Treat the anion gap acidosis
(not the hyperglycemia)

- Never stop the insulin before the anion gap is closed.
Insulin

- Dosing: 0.05 units/kg bolus then .05 units/kg/hr insulin drip. (Previously 0.1 units/kg/hr)

- Goal: Decrease glucose by <100 (5.5) per hour
 - Avoids sudden fluid shifts that may lead to cerebral edema

- Reason for IV insulin
 - Not affected by decreased peripheral circulation as with subcutaneous insulin
 - Smooth decline of glucose
 - Short half-life allows for more precise control of serum insulin concentration
Insulin

- If pt has an anion gap and your glucose is <250 (14), do you stop the insulin drip?

- NO!
 - Add D5 when glucose <250 (14).
 - If glucose <150 (8.3), consider D10.

TAKE HOME POINT:

- Do not stop insulin until anion gap is closed.
- Main goal of insulin therapy is to fix the acidosis.
Transitioning to Subcutaneous Insulin

- ONLY after the Anion Gap is closed!
- OVERLAP IV and subcutaneous insulin administration
 - Give long-acting insulin dose (ex. lantus) at least 30 to 60 minutes prior to stopping insulin drip.
- Feed patient
Managing electrolytes

- Potassium
- Sodium
- Phosphorus
- Glucose
Electrolyte management
Potassium

Total Body Potassium depletion

- Acidosis \rightarrow K^+ exits cells as H^+ enters to buffer
- Dehydration and volume depletion
 - Osmotic diuresis + \uparrow aldosterone \rightarrow loss of K^+

\Rightarrow Although serum K^+ is usually normal or high, total body K^+ is low.
Electrolyte Management
Potassium

- With insulin therapy
 - K^+ moves into cells

- To avoid hypokalemia
 - Give oral and/or IV potassium to avoid hypokalemia when $K < 4.5$
 - Monitor K^+ levels and EKG
 - Low K – Biphasic T, U-wave
 - High K - tall peaked T, flat P waves, wide QRS
 - Cardiac dysrhythmia

- Monitor K+ levels and EKG
- With insulin therapy
 - K+ moves into cells

- To avoid hypokalemia
 - Give oral and/or IV potassium to avoid hypokalemia when K < 4.5
 - Monitor K+ levels and EKG
 - Low K – Biphasic T, U-wave
 - High K - tall peaked T, flat P waves, wide QRS
 - Cardiac dysrhythmia
Pseudohyponatremia:
- For each 100mg/dl increase of glucose above 100, Na⁺ decreases by 1.6 mEq/L

- Corrected Na⁺ = measured Na +
 \[1.6 \text{ meq/L} \times \frac{(\text{glucose}-100)}{100} \]

- Example:
 \[\text{Na⁺} = 125 \text{ meq/L and Glucose = 500 mg/dl} \]
 \[500 - 100 = 400 \]
 \[400/100 = 4 \]
 \[4 \times 1.6 = 6.4 \text{ meq/L} \]
 Corrected Na⁺ = 125 + 6.4 = 131.4 meq/L
Electrolyte Management
Phosphorus

Hypophosphatemia

- Occurs after aggressive hydration/treatment
- Monitor phosphorus and replete as needed to keep > 1
 - Total body phosphorus depleted
 - Mostly a theoretical problem
 - Potential complications: muscle weakness, myocardial dysfunction, CNS depression
Management review

- Rehydrate patient with IV fluids
- Continue insulin drip until anion gap is closed
- Until insulin drip is off:
 - Check glucose every hour. Avoid hypoglycemia.
 - Check electrolytes every 1-2hrs. Avoid hypokalemia.
- Replete potassium when K < 4.5 and patient making urine
ICU Monitoring

Careful nursing monitoring of the following:

- I/Os (input and urine output.)
- Urine dipstick with every void
 - resolution of ketonuria may lag behind clinical improvement
- Monitor for any signs of cerebral edema:
 - Change in mental status, severe headache
 - Sudden drop in heart rate
 - Neurologic deficits
DKA Complications

- Dehydration, shock, hypotension
- Hypokalemia/ hyperkalemia
- Hypoglycemia
- Aspiration pneumonia
- Sepsis
- Acute tubular necrosis
- Myocardial infarction
- Stroke
- Cerebral edema

* Death rate in U.S when managed in hospital setting
 = 1-4%
DKA Complications
Cerebral edema

- Clinical manifestations:
 - Altered mental status
 - Headache
 - Persistent vomiting
 - Sudden and persistent drop in heart rate
 - Seizure
 - Unequal or fixed, dilated pupils

- Mostly children

- High mortality rate
 - 1% of DKA pts, > 25% mortality rate

- High morbidity rate
 - High rate of neurologic complications

28
DKA Complications
Cerebral edema

Risk Factors
- Age < 5 years
- More often seen in your sickest patients
 - (high BUN, low bicarb <15)
 - Fall in serum Na or lack of increase during treatment
- Rapid correction of hyperglycemia
 - Goal: decrease glucose <100 mg/dl (5.5) per hour
- Sodium bicarbonate administration
- Excessive fluids
DKA Complications
Cerebral Edema - treatment

- Mannitol 1mg/kg IV
- Reduce IV fluid rate (ex. 70% maintenance)
- Consider intubation
 - set the ventilator close to rate that patient was breathing beforehand
 - be cautious of over hyperventilation
 - Temporary measure
 - Keep pCO2 > 22mmHg
- May consider 3% hypertonic saline
 - but not enough data to truly recommend
Diabetic Ketoacidosis

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose</td>
<td>Glucose >250 (13.9)</td>
</tr>
<tr>
<td>Arterial pH</td>
<td>pH <7.3</td>
</tr>
<tr>
<td>Serum Bicarbonate</td>
<td><15</td>
</tr>
<tr>
<td>Serum osmolality</td>
<td>varies</td>
</tr>
<tr>
<td>Urine ketones</td>
<td>+++</td>
</tr>
<tr>
<td>Anion gap</td>
<td>>12</td>
</tr>
</tbody>
</table>

HHS - Hyperosmolar hyperglycemic state

(AKA HONKC = hyperosmolar nonketotic coma)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose</td>
<td>Glucose >600 (33.3)</td>
</tr>
<tr>
<td>Arterial pH</td>
<td>pH >7.3</td>
</tr>
<tr>
<td>Serum Bicarbonate</td>
<td>>15</td>
</tr>
<tr>
<td>Serum osmolality</td>
<td>>320 mOsm</td>
</tr>
<tr>
<td>Urine ketones</td>
<td>small</td>
</tr>
<tr>
<td>Anion gap</td>
<td>>12</td>
</tr>
</tbody>
</table>

Demographics

- **Mostly type I DM**
 - Children, young people
- **Mostly type II DM**
 - Elderly

Insulin activity

- **Absolute functional insulin deficiency**
- **Relative insulin deficiency**

Mortality in admitted patients

- 1-4%
- 10% or more
HHS
(Hyperosmolar Hyperglycemic State)

- Elderly and mentally or physically impaired patients
- Usually associated with underlying physiologic stressors
 - Ex. Infection, myocardial infarction, stroke.
- Slower onset (ex. 1 week vs. 1-2 days in DKA)
- Higher Mortality rate than DKA (>10%)
 - Older patients, more comorbidities

Presentation:
- Altered mental status (confusion, neurologic deficits)
- Signs of severe dehydration (tachycardia, hypotension, dry mucous membranes, skin tenting)
Insulin Deficiency

↓ Glucose uptake

↑ Proteolysis

↓ Lipolysis

Amino Acids

Glycerol

Free Fatty Acids

Gluconeogenesis

Glycogenolysis

Ketogenesis

Hyperglycemia

Osmotic diuresis

Dehydration

Acidosis

No Lipolysis = No Ketoacidosis

Only a small amount of functional insulin required to suppress lipolysis

Low catecholamine levels in elderly patients ➔ less insulin resistance
Therapy:
- Fluid repletion
 - Total fluid deficit ≈ 10 liters in adults
 - Normal saline 2-3 liters rapidly
 - Replete ½ in first 6 hours
- Insulin drip 0.05 units/kg/hr
 - Decrease glucose by approximately 50 mEQ/hr
- Check electrolytes q1-2hrs. Check glucose q1hr
 - Monitor potassium for hypokalemia/hyperkalemia
- Treat underlying precipitating illness

Potential complications are the same as DKA
Summary

- Pathophysiologic difference between DKA and HHS
 - DKA is a state of absolute functional insulin deficiency
 - Only in DKA: Lipolysis \rightarrow ketogenesis \rightarrow acidosis

- You are never specifically treating the glucose
 - In DKA – you are treating the underlying acidosis/ketogenesis (reflected by the anion gap)
 - In HHS – you are treating the underlying shock caused by poor tissue perfusion/severe dehydration
Summary (continued)

- Being too aggressive in management may cause more harm than good
- If you don’t pay attention to details, you will cause an iatrogenic death
 - Monitor electrolytes (especially potassium)
- Beware cerebral edema.
- Therapy for DKA and HHS is similar.
Thank you
Pathophysiology of diabetic ketoacidosis
β-cell destruction → Insulin Deficiency

- Decreased Glucose Utilization & Increased Production
- Glucagon
- Increased Ketogenesis, Gluconeogenesis, Glycogenolysis

Stress
- Epi, Cortisol
- GH

Adipocytes
- Increased Lipolysis

Amino Acids

Increased Protein Catabolism

Muscle

Liver

Polyuria
- Volume Depletion
- Ketonuria

Threshold 180 mg/dl

Hyperglycemia
- Ketoacidosis
- HyperTG
Attributions for Slide 39:
- Islets of Langerhans: [Afferent (WikimediaCommons)]
- Adipocytes: [DBCLS (WikimediaCommons)]
- Muscle: [Jeremy Kemp (WikimediaCommons)]
- Liver: [Mikael Haggstrom (WikimediaCommons)]
- Kidney: [Holly Fischer (WikimediaCommons)]