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License

This work is licensed under the Creative Commons Attribution 3.0 Unported License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send
a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,
94041, USA.

The programs are available under the simplified BSD license:

Copyright (©)2012, Gong Chen, Brandon Cloutier, Ning Li , Benson Muite, Paul Rigge
and Sudarshan Balakrishnan, Andre Souza Jeremy West. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Chapter 1

Overview

1.1 Summary

We start by taking a quick look at finite-precision arithmetic. We then discuss how to solve
ordinary differential equations (ODE) and partial differential equations (PDE) using the
technique of separation of variables. We then introduce numerical time-stepping schemes
that can be used to solve ODEs and PDEs. Next we introduce pseudo spectral methods by
giving an overview of the discrete Fourier Transform (DFT) and the Fast Fourier Transform
(FFT) algorithm that is used to quickly calculate the DFT. Finally we will combine all of
this to solve a couple of different PDEs first in a serial setting and then in a parallel setting.
The programs will use MatlaHT] and Fortran. A Pythonf| implementation of some of the
Matlab programs is also provided.

1.2 Prerequisites

We assume that the reader has introductory programming experience, for example using C,
C++, Fortran, Matlab, Octave, Python or equivalent. Since detailed programming examples
have been provided, we do not expect a significant programming background, but hope the
required knowledge will be acquired as one works through the examples. We also assume the
level of mathematical maturity obtained in a demanding calculus course, for example at the
level of Courant and Johns “Introduction to Calculus and Analysis”. A course in differential
equations would also be helpful, but for many scientists or engineers, their fields of interest
will provide numerous examples of these. More programming experience or mathematical
background will make the material easier to understand. Checking whether the simulations
are correct may also be easier for those with knowledge of the behavior of solutions of the
partial differential equations that are being approximated, however we have tried to choose

http://www.mathworks.com/products/matlab/index.html| — if this is not available, we suggest mod-
ifying the Matlab programs to use Octave which can be freely downloaded at http://www.gnu.org/
software/octave/|

“http://python.org/
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representative differential equations that will make it easy for one to use the programs and
then adapt them to the use being considered.

1.3 Using the Programs

The programs have been tested on several different computers. The programs are located
in program directories which correspond to the chapter in which the programs first appear.
While they are not explicitly hyperlinked, one can find their locations either by reading the
LaTeX source code or by searching the appropriate directory.

The Matlab programs are guaranteed to work with Matlab R2011b, but should also
work with other recent versions of Matlab. They should also be easy to modify so that
they work with Octave. The Fortran programs have been tested primarily with the GCC
4.6.2 compiler suite, although they should work with most other recent compilers. If using
an implementation of MPI that depends on a particular compiler, we suggest also using
the GCC compiler. We expect that the programs should work with minor modifications
with other compilers, but cannot guarantee this. For simplicity and to allow checking of
program correctness, we have chosen to use a low compiler optimization level. We encourage
users to increase the compiler optimization level and compiler flags once they have checked
that the programs are working correctly on their systems. FFTW, a free Fast Fourier
transform library, is also required to run the programs. This can be downloaded from
http://fftw.org/. The MPI programs make use of the library 2DECOMP&FFET which
can be downloaded from http://www.2decomp.org. Finally, the last part of the tutorial
requires the use of the free and open source Vislt parallel visualization program, which can
be obtained from https://wci.llnl.gov/codes/visit/home.html. If you expect to do
large parallel simulations (A guide for large at present is 20% of the system for systems
larger than 10,000 cores), it may be worth learning the most efficient system settings for
performing output and for parallelization. We do not address this in this tutorial, but
suggest that you contact your computing center for suggestions.

1.4 Course Outlines / Assessment Rubric

The material in these notes can form the basis of a short course. The most important portions
are chapters 1 to 11. A selection can then be made from chapters 12, 13 and 14. A selection
of the problems can be used to assess student learning. Note that problems in chapters
8. 12, 13 and 14 can develop into extensive research projects, so only a sample of these
should be given to any students if they only have a limited time to solve them. A student
will have successfully understood the material if they can run the example Matlab/Python,
serial Fortran, OpenMP Fortran and MPI Fortran programs, and can also modify them to
solve related problems. Successful completion of problems which test these abilities will be
enough to indicate that students have understood the fundamental concepts.
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Chapter 2

Finite Precision Arithmetic

[ Because computers have a fixed amount of memory, floating point numbers can only be
stored with a finite number of digits of precision. This limits the accuracy to which the
solution to a numerical problem can be obtained in finite time. Most computers use binary
IEEE 754 arithmetic to perform numerical calculations. There are other formats, but this
will be the one of most relevance to us.

2.1 Exercises

1) Download the most recent IEEE 754 standard. http://ieeexplore.ieee.org/xpl/
mostRecentIssue. jsp7punumber=2355, see alsohttp://grouper.ieee.org/groups/
754/ — unfortunately the links to the official standard requires either IEEE mem-
bership or a subscription. If you do not have this please see the wikipedia page
(http://en.wikipedia.org/wiki/IEEE_754-2008) for the information you will need
to answer the questions belowf}

a) In this standard what is the range and precision of numbers in:
i) Single precision
ii) Double precision
b) What does the standard specify for quadruple precision?
c) What does the standard specify about how elementary functions should be com-

puted? How does this affect the portability of programs?

2) Suppose we discretize a function for # € [—1,1]. For what values of € is
elog (COSh <£>> = |z|
€

For more on this see a text book on numerical methods such as Bradie [4].
2These links are correct as of 1 April 2012, should they not be active, we expect that the information
should be obtained by a search engine or by referring to a numerical analysis textbook such as Bradie [4].

in
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i)
ii)

Single precision?

Double precision?

3) Suppose we discretize a function for x € [—1,1]. For what values of € is

in

; h(:{;) 1 >0
anh ( — ) =
€ -1 <0

Single precision?

Double precision?

What is the magnitude of the largest 4 byte integer in the IEEE 754 specification
that can be stored?

Suppose you are doing a simulation with N? grid points and need to calculate
N3. If N is stored as a 4 byte integer, what is the largest value of N for which
N3 can also be stored as a 4 byte integer?

16



Chapter 3

Separation of Variables

Separation of variables is a technique which can be used to solve both ODEs and PDEs. The
basic idea for an equation in two variables is to rewrite the equation so that each of the two
variables is located on different sides of an equality sign, and since both sides of the equation
depend on different variables, the two sides must be equal to a constant. We introduce this
idea with the simple first order linear ODE

dy _
a7

(3.1)

As long as y(t) # 0 for any value of ¢, we can formally separate variables and rewrite eq.

B as

dy _

Y

dt.

Now we can solve for y(t) by integrating both sides

y
y

Iny+a

eln y+a

6ln Yol

y
y(t)

Where a, b, and c¢ are arbitrary constants of integration.

We now perform a similar example for a linear partial differential equation.

equation is

U =

—Ugy-
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We suppose that u = X (z)T'(t), so that we obtain

X(a;)‘z—f(t) - —‘ii ;2( (2)T(t). (3.10)

We can rewrite this as
dt dxz?
()  X(z)
where C' is a constant independent of z and t. The two sides can be integrated separately
to get T(t) = exp(—Ct) and either X (z) = sin(v/Cx) or X (x) = cos(v/Cz). Since the heat
equation is linear, one can then add different solutions to the heat equation and still obtain
a solution of the heat equation. Hence solutions of the heat equation can be found by

Z 0ty exp(—Ct) sin(y/Crt) + B exp(—Cit) cos(y/Cpx) (3.12)

i) EX(x)

—C, (3.11)

where the constants «,,, £, and C,, are appropriately chosen. Convergence of such series to
an actual solution is studied in mathematics courses on analysis (see for example Evans [17]
or Renardy and Rogers [50]), however the main ideas necessary to choose the constants, a,,,
B, and C), and hence construct such solutions are typically encountered towards the end of a
calculus course or at the beginning of a differential equations course, see for example Courant
and John [I3] or Boyce and DiPrima [6]. Here, we consider the case where x € [0, 27], and
for which we have periodic boundary conditions. In this case v/C,, must be integers, which
we choose to be non-negative to avoid redundancies. At time ¢ = 0, we shall suppose that
the initial condition is given by

u(z,t =0) = f(z). (3.13)
Now,
2m T m=mn
/0 sin(nx) sin(mz) = {0 mAn’ (3.14)
2m T m=n
/0 cos(nx) cos(mzx) = {0 mtn (3.15)
and
/27r cos(nz) sin(maz) = 0. (3.16)
0

Thus we can consider the trigonometric polynomials as being orthogonal vectors. It can be
shown that a sum of these trigonometric polynomials can be used to approximate a wide
class of periodic functions on the interval [0, 27]; for well behaved functions, only the first
few terms in such a sum are required to obtain highly-accurate approximations. Thus, we

can suppose that
= Z ay sin(/Cpz) + B, cos(v/Crx). (3.17)
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Multiplying the above equation by either sin(y/C,x) or cos(y/C,x) and using the orthogo-

nality of the functions, we deduce that

_ Jy f(@)sin(v/Crz)da
fo% sin?(v/Cpz)dz

n

and

4 _ 2T f(x) cos(v/Crr)da
! fOQWCOSQ(\/C_nx)d.CE .

(3.18)

(3.19)

Most ODEs and PDEs of practical interest will not be separable. However, the ideas
behind separation of variables can be used to allow one to find series solutions to a wide
class of PDEs. These series solutions can also be found numerically and are what we will
use to find approximate solutions to PDEs, and so the ideas behind this simple examples are

quite useful.

3.1 Exercises

1) Solve the ordinary differential equation
u=u(u—1) u(t=0)=0.38

using separation of variables.

2) a) Use separation of variables to solve the partial differential equation

Ut = Uy
with
u(z = 0,t) = u(x = 27,t),
u(z,t = 0) = sin(6x) + cos(4x)
and

u(x, t =0) =0.

b) Create plots of your solution at several different times and/or create an animation

of the solution you have found ]

¢) The procedure required to find the coefficients in the Fourier series expansion for
the initial condition can become quite tedious/intractable. Consider the initial
condition u(z,t = 0) = exp(sin(z)). Explain why it would be difficult to compute
the Fourier coefficients for this by hand. Also explain why it would be nice to

have an algorithm or computer program that does this for you.

Your solution should involve only a few modes and so you should be able to use a wide variety of software
to create plots, for example a graphing calculator, a spreadsheet program such as Excel, Mathematica,

Wolfram Alpha, Matlab, Maple, Python, Sage etc. You can use Wolfram Alpha and Sage online.
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Chapter 4

Motivation for Numerical Methods

Many partial differential equations do not have exact closed-form solutions for all choices of
initial conditiong'] Irregular boundary conditions can also make finding an analytic solution
difficult for many partial differentail equation. In these cases, finding an approximate solution
with a numerical method can be helpful either for physical purposes, engineering purposes
or for mathematical investigations of the behavior of solutions to these partial differential
equations. There are also cases where the partial differential equations have explicitly known
exact solutions, but the formulae used to express the exact solutions require a large number
of computations to evaluate themPl In this case we are interested in making numerical
approximations that result in accurate and cost-efficient solutions.

Numerical methods allows us to use a computer to calculate approximate solutions to
partial differential equations. The accuracy of the solution will depend on which numerical
method is used and usually more accurate numerical methods tend to be more complicated
than less accurate methods. We will therefore start with some simple numerical methods to
familiarize ourselves with how numerical methods work. We encourage the reader to take a
full course on the numerical solution of partial differential equations as well as reading the
references to find out about numerical techniques not discussed here.

! An example is the Navier-Stokes equation which is thought to describe the motion of an incompressible
viscous fluid.
2An example is the sine-Gordon equation.
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Chapter 5
Timestepping

We now briefly discuss how to solve initial value problems. For more on this see Bradie [4],
Chap. 7]. A slightly longer but still quick introduction to these ideas can also be found in
Boyce and DiPrima [6].

5.1 Forward Euler

In order to compute solutions to differential equations on computers efficiently, it is con-
venient to do our calculations at a finite number of specified points and then interpolate
between these points. For many calculations it is convenient to use a grid whose points are
equally distant from each other.

For the rest of the section A will be our step size, which is assumed to be constant. When
solving an ODE or PDE, the choice of h isn’t selected at random, but rather requires some
intuition and/or theoretical analysis. We are going to start with the forward Euler method
which is the most basic numerical method. Let us first denote the time at the nth time-step
by " and the computed solution at the n'* time-step by 3", where y" = y(t = t"). The step
size h in terms of ¢ is defined as h = t"*1 — . Lets first start with a basic ODE with initial
conditions, in which f(¢,y) is some arbitrary function and y(¢) is our solution,

dy
2 =y oy =4 (5.1)
The differential equation can be approximated by finite differences,
ynJrl _ yn -
= ") (5.2)
Now all we have to do is solve for y™! algebraically,
Yt =y hf (", y") (Forward Euler/Explicit method) (5.3)

If we wanted to calculate % at time t°, then we could generate an approximation for the

value at time t"*! using (5.3 by first finding y(¢°) and using it to compute y"™'. We then
repeat this process until the final time is reached.
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Figure 5.1: A numerical solution to the ODE in eq. (5.1)) with f(¢,y) = y demonstrating the
accuracy of the Forward Euler method for different choices of timestep.

5.1.1 An Example Computation

Let us consider the ODE in eq. with f(¢,y) = y and initial conditions y(¢°) = 1 where
t® = 0. Two numerical solutions are computed using the forward Euler method with h = 1
and h = .1

It should be no surprise that a smaller step size like h = .1 compared to h = 1 will
be more accurate. Looking at the line for h = 1, you can see that y(t) is calculated at
only 4 points then straight lines interpolate between each point. This is obviously not very
accurate, but gives a rough idea of what the function looks like. The solution for h = .1
might require 10 times more steps to be taken, but it is clearly more accurate. Forward
Euler is an example of a first-order method and approximates the exact solution using the
first two terms in the Taylor expansion||

+ O(h?), (5.4)

tn

dy
"4+ h) =y(t") +h —=
y(t" +h) =y") + 7

where terms of higher order than O(h?) are omitted in the approximate solution. Substituting
this into eq. (5.3) we get that

d
v | O =y ()

tTL

'The derivation of the Taylor expansion can be found in most books on calculus.
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after cancelling terms and dividing by h, we get that

dy -

from which it is clear that the accuracy of the method changes linearly with the step size,
and hence it is first-order accurate.

5.2 Backwards Euler

A variation of forward Euler can be obtained by approximating a derivative by using a
backward difference quotient. Using eq. (5.1)) and applying
y -y n o, n
& ft"y") (5-5)
g o=y RS Y. (5.6)
Stepping the index up from n to n + 1 we obtain,

Yyt =y + hf(t" y"t) (Backwards Euler/Implicit method) (5.7)

Notice how y"*! is not written explicitly like it was in the forward Euler method. This
equation instead implicitly defines y"*! and must be solved to determine the value of y"**.
How difficult this is depends entirely on the complexity of the function f. For example, if
f is just y?, then the quadratic formula could be used, but many nonlinear PDEs require
other methods. Some of these methods will be introduced later.

5.3 Crank-Nicolson

By taking an average of the forward and backward Euler methods, we can find the Crank-
Nicolson method:

n+1 n
Yy -y 1 n+1  n+l 1 n o n
— = —f(t —f(t 5.8
Rearranging we obtain,
h
Yyt =y 4 5 [FE T y™ ) + F(E,y™)] (Crank-Nicolson) (5.9)

Notice again how y"*! is not written explicitly like it was in forward Euler. This equation

instead implicitly defines y"*! and so the equation must be solved algebraically to obtain
n+1
Yy
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5.4 Stability of Forward Euler, Backward Euler and
Crank-Nicolson

Let’s look at the following ODE

dy
— = —)\y(t 5.10
Y i (5.10)
where A is a constant and y(t°) = 1 where t° = 0. Lets numerically solve this ODE using

the forward Euler, backward Euler and Crank-Nicolson time-stepping schemes. The results
are as follows

y" =yt = A" (5.11)
= (14y——)\h) (Backward Euler)

(5.12)
2 \h
yn—l-l yn < )

SEBYA (Crank-Nicolson)

(Forward Euler)

and the exact solution is given by

y(t) = e M (Exact solution)

i

- [==Exact

¢ | Forward Euler

¢ §==Backward Euler
{me=Crank Nicolson

-

y(t)

o 1y g o

trHb

[N
an'r'.‘,',”'
l”ﬂ”,l:‘”‘

b g

0.5 1
time

Figure 5.2: A numerical solution to the ODE in eq. (5.10) with A = 20 and with a timestep

of h = 0.1 demonstrating the instability of the Forward Euler method and the stability of
the Backward Euler and Crank Nicolson methods.

Figure above shows how both methods converge to the solution, but the forward

Euler solution is unstable for the chosen timestep. Listing is a Matlab program where
you can play around with the value of A to see how, for a fixed timestep, this changes the
stability of the method.
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Listing 5.1: A Matlab program to demonstrate instability of different timestepping methods.

% A program to demonstrate instability of timestepping methods
% when the timestep is inappropriately choosen.

%Differential equation: y'(t)=-y(t) y(t_0)=y_0
%Initial Condition, y(t_0)=1 where t_0=0

© 0w N O Uk W N

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40

clear all; clc; clf;

%Grid

h=.1;

tmax=4;

Npoints = tmax/h;
lambda=.1;

%Initial Data
y0=1;

t_0=0;
t(1)=t_0;
y_be (1)=y0;
y_fe(1)=y0;
y_imr (1) =y0;

for n=1:Npoints
%Forward Euler

y_fe(n+1)=y_fe(n)-lambda*h*xy_fe(n);

%Backwards Euler
y_be(n+1)=y_be(n)/(1+lambdax*h);
%Crank Nicolson

y_imr(n+1)=y_imr (n)*(2-1lambdax*h)/(2+1lambdax*h)

t(n+1)=t(n)+h;
end

%Exact Solution
tt=[0:.001:tmax];
exact=exp(-lambdax*tt) ;

%Plot

figure(1); clf; plot(tt,exact,'r-',t,y_fe,'b:',t,y_be,'g--',t,y_imr,'k-.")

)

xlabel time; ylabel y;

legend ('Exact', 'Forward Euler', 'Backward Euler',...

'"Crank Nicolson');
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5.5 Stability and Accuracy of Forward Euler, Back-
ward Euler and Crank-Nicolson Time Stepping Schemes
for y = —\y

The examples discussed show that numerical stability is an important consideration when
finding approximate solutions to differential equations on computers. Numerical stability
requires a careful choice of numerical method and timestep for each numerical solution
to a differential equation. We now try to understand these observations so that we have
some guidelines to design numerical methods that are stable. The numerical solution to
an initial value problem with a bounded solution is stable if the numerical solution can
be bounded by functions which are independent of the step size. There are two methods
which are typically used to understand stability. The first method is linearized stability,
which involves calculating eigenvalues of a linear system to see if small perturbations grow
or decay. A second method is to calculate an energy like quantity associated with the
differential equation and check whether this remains bounded.

We shall assume that A > 0 so that the exact solution to the ODE does not grow without
bound. The forward Euler method gives us

y"tt = (1 — ARh)y"
= [y > (L= M)y (1= AR)[ > 1
= [y <[ =AY i (1= M) < L

We can do a similar calculation for backward Euler to get

Yy -y n+1
7 )
A Yy
n+1 yn
YT T
1
= n+1 < n : <
< | sl e [

Thus, the backward Euler method is unconditionally stable, whereas the forward Euler
method is not. We leave the analysis of the Crank-Nicolson method as an exercise.

A second method, often used to show stability for partial differential equations is to look
for an energy like quantity and show that this bounds the solution and prevents it from
becoming too positive or too negative. Usually, the quantity is chosen to be non negative,
then all one needs to do is deduce there is an upper bound. We sketch how this is done for
an ordinary differential equation so that we can use the same ideas when looking at partial
differential equations. Recall that the forward Euler algorithm is given by



Multiplying this by y™™! we find that
(y"+)? = (1= Ay "yt
Now to obtain a bound on |y"™!| in terms of |y"|, we use the following fact

(y")* + (y")°
2

(a—b)?>0=a®+b > 2ab= > iyt
Hence a sufficient condition for stability if
(1—hA) >0

is that

(yn+1>2 S (1 o h)\) (yn+1)2 + (yn)2

2
1+hX 1—hA
n+1\2 < n\2
) ="
1—hX
n+12<— n\2

thus if 1 — hA > 0, then 0 < % < 1 and so we have stability, we again see that the
algorithm is stable provided the timestep is small enough. There are many situations for
which A is large and so the timestep, h needs to be very small. In such a situation, the
forward Euler method can be very slow on a computer.

Stability is not the only requirement for a numerical method to approximate the solution
to an initial value problem. We also want to show that as the timestep is made smaller, the

numerical approximation becomes better. For the forward Fuler method we have that

yn+h _ yn
et —A n
h y
now if
y" = y(t)
"=yt +h)
then
d
Yyt =y(t) + hd—? + O(h?)

2We will use big ‘Oh’ to mean that there exists a constant so that if f O(h), then for h — 0, we have
that ‘%‘ < C', where C is some constant.
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SO

yn+1h_ yn + )\yn _ y(t + h})L _ y(t) + )\y(t)
— % +O(h) + My(t)
= O(h).

We can do a similar calculation to show that the Crank-Nicolson method is second-order.
In this case however, we use Taylor expansions around y(t + h/2).

yn+1 _ yn yn+1 + yn
g I N\ I
h 2
SO
dy 1d%y
"yt +h) =yt +h/2) + (h/2)== + (h/2)*=—= h?
YU =yl h) =yl +h2) + (h/2) L+ (2P S+ 00
dy 21dzy 3
"=uylt) =yt +h/2)— (h/2)—= h/2)"——= h
v = ult) =yt +h/2) — (/2L + (/275 T+ 00
hence
n+l _ ,n n+1 n d
e ;y = SV O + A [ylt + /2) + O(h?)]
:O(h2).

Thus this is a second-order method.

5.6 Exercises

1) Determine the real values of A and timestep h for which the implicit midpoint rule is
stable for the ODE

dy

T

Sketch the stable region in a graph of \ against timestep h.

2) Show that the backward Euler method is a first-order method.
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Chapter 6

One-Dimensional Discrete Fourier
Transforms

[] The discrete Fourier transform (DFT) takes a function sampled at a finite number of points
and finds the coefficients for the linear combination of trigonometric polynomials that best
approximates the function; the number of trigonometric polynomials used is equal to the
number of sample points. Suppose we have a function f(z) which is defined on the interval
a <z <b. Due to memory limitations, a computer can only store values at a finite number
of sample points, i.e. a < xg < 71 < ... < x, < b. For our purposes these points will be
equally spaced, for example 1 — xy = r3 — x9, and so we can write

r; =a+ jh, j=0,1,2,...n (6.1)
where x; are the sample points, n is the number of sample points and
h—
h=""2 (6.2)

n

It is convenient to use the standard interval, for which 0 < z < 2. Rewriting x in terms of
standard interval yields
27 47 29 2(n—1)m

20=0,01 = —, 0= —,T; = —, .., Ty | = ——— (6.3)
n n n n

Notice how x,, = 27 is omitted; periodicity implies that the value of the function at 27 is
the same as the value of the function at 0, so it need not be included. We will introduce the
DFT using the language of linear algebra. Much of this formalism carries over to continuous
functions that are being approximated. It also makes it easier to understand the computer
implementation of the algorithms. Many computer packages and programs are optimized to
perform calculations through matrix operations, so the formalism is also useful when actually
calculating transforms. We write the approximation to f(z) at the sample points as a finite
dimensional vector

= (fo, f1, ---afn—l)T = (f(zo), f(21), ..., f(wn-1)) (6.4)

1For more detail, see Olver and Shakiban [47].
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where

=ty =1 (2F). (65)

The DFT decomposes the sampled function f(z) into a linear combination of complex ex-
ponentials, exp(ikx) where k is an index. Since

exp(tkx) = cos(kz) + isin(kz), (6.6)

we also obtain an expansion in trigonometric functions, which may be more familiar from
courses in calculus and differential equations. Since the function is sampled at n points, the
highest frequency of oscillation that can be resolved will have n oscillations. Any frequencies
higher than n in the original function are not adequately resolved and cause an aliasing error
(see, for example, Boyd [7] or Uecker [59] for more on this). This error can be reduced by
sampling at a greater number of points so that the number of approximating exponentials
functions can also be increased. There is a tradeoff between increasing the accuracy of
the simulation and the time required for the simulation to complete. For many cases of
scientific and practical interest, simulations with up to thousands of grid points can be
computed relatively quickly. Below we explain how a function f(z) can be approximated by
an interpolating trigonometric polynomial p(z) so that

n—1

fl@) m p(x) = co+ €™ + e™ 4 4 e e =Y ol (6.7)
k=0

The ~ symbol means that f(z) and p(z) agree on each sample point, i.e., f(z;) = p(z;)
for each j = 0,1,...n — 1, but the interpolated polynomial p(x) is only an approximation
of the true solution f(x) away from the sample points.. The ¢, are called discrete Fourier
coefficients and are what we will be looking to solve for. p(z) represents the values of
interpolating trigonometric polynomial of degree < n — 1, so if we have the values of these
coefficients then we have a function we can use as an approximation of f(z). Since we are
working in a finite-dimensional vector space, a useful approach is to rewrite the discrete
Fourier series as a vector. We let

wp = (ezkx()’ ezkaq’ Bkaz, . ezkxn)T

2kmi/n _4dkwi/n 2(n—1)kwi/n\T
= (1,e%mi/n glhmi/n o Hn—Lkmi/n)

Y

where & = 0,1,...,n — 1. The interpolation conditions, f(z;) = p(z;), can also be rewritten
in vectorial form

f = Cowo + Ci1w1 + ... +Cp_1Wn_1. (610)

Here f is a vector evaluated at the sample points, which is decomposed into vectors wy, much
as a vector in three dimensional space can be decomposed into the components in the x, y and
z directions. The DFT allows us to compute the coefficients ¢; given the value of the function
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at the sample points. This may at first seem unmotivated, but in many applications, such as
solving differential equations, it is easier to manipulate a linear combination of trigonometric
polynomials; wy, ..., w,_1, than it is to work with the original function. In order to solve for
¢k, we use the orthonormality of the basis elements wy, ..., w,_1. We now explain how this
is done P

Define &, = €?>™/™. We observe that

2min

(60" = exp ( ) — cos(2r) + isin(2m) = 1 (6.11)

For this reason &, is known as the primitive n** root of unity. Note also that for 0 < k < n, we
have that (%)™ = 1, so all other roots of unity when taken to the power n can be obtained
from the primitive n'" root of unity. We will use this to perform the DFT algorithm to
calculate the coefficients ¢, ..., cx_1 in eq. . The main idea behind the DFT algorithm
is to use orthogonality of the vectors wy. To show the orthogonality between the vectors wy,
and w;, we let w; denote the complex conjugate of w;, and then take the inner product of
wy, and w; and find that

122 2mikm 2milm 1™
(wr,w)) = — exp exp( )

n 4~ n n

1 & (2%2(/{ — l)m)
== exp

m=0 n

i (W(k — l)m) . <7r k— l)m)
= — COS + 781n

n 4~ n n

1 ifk=1

B {0 otherwise
To deduce the last part, if & = [ then exp(0) = 1, and if k¥ # [, then we are sampling the sine
and cosine functions at equally spaced points on over an integral number of wavelengths.
Since these functions have equal magnitude positive and negative parts, they sum to zero,
much as the integral of a sine or cosine over an integral number of wavelengths is zero. This

implies that we can compute the Fourier coefficients in the discrete Fourier sum by taking
inner products

n—1
1 —mk
=< >= — mEf 6.12
Ck f,(-()k n mzzogn f] ( )

We note the close connection between the continuous and discrete settings, where an integral
is replaced by a sum.

2For a more detailed explanation see Olver and Shakiban [47].
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6.1 Fast Fourier Transform

Computing the Fourier coefficients, cq, ..., c,_1 using the DFT from the definition can be
very slow for large values of n. Computing the Fourier coefficients cy, ...c,_1 requires n?> —n
complex multiplications and n? — n complex additions. In 1960, Cooley and Tukey [12]
rediscovered a much more efficient way of computing DF'T by developing an algorithm known
as the Fast Fourier Transforms (FFT) — the method was known to Gauss, but received little
attention since he did not publish it [24]. The FFT cuts the number of arithmetic operations
down to O(nlogn). For large values of n, this can make a huge difference in computation
time compared to the standard DFT. The reason why the FFT is so important is that it is
heavily used in spectral methods. The basic FFT algorithm used by Cooley and Tukey [12] is
well documented in many places, however, there are other implementations of the algorithm
and the best version of the algorithm to use depends heavily on computer architecture. We

therefore do not give further descriptions here.
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Chapter 7

Finding Derivatives using Fourier
Spectral Methods

Spectral methods are a class of numerical techniques that often utilize the FFT. Spectral
methods can be implemented easily in Matlab, but there are some conventions to note. First
note that Matlab’s “fft” and “ifft” functions store wave numbers in a different order than
has been used so far. The wave numbers in Matlab and in most other FFT packages are
ordered, 0,1,..., 5, -5 + 1, =3 + 2,..., —1. Secondly, Matlab does not take full advantage of
real input data. The DFT of real data satisfies the symmetry property o(—k) = v(k), so it is
only necessary to compute half of the wave numbers. Matlab’s “fft” command does not take
full advantage of this property and wastes memory storing both the positive and negative
wave numbers. Third, spectral accuracy (exponential decay of the magnitude of the Fourier
coefficients) is better for smooth functions, so where possible be sure your initial conditions
are smooth — When using a Fourier spectral method this requires that your initial

conditions are periodic.

7.1 Taking a Derivative in Fourier Space

Let u(z) be a function which is sampled at the n discrete points x; € h, 2h, ..., th, .., 2w — h, 27
and h = 27/n in real space. Now take the FFT

FFT(u;) =4y  where k¢ _7" 41, g (7.1)

2, .
The Fourier transform of % can be easily computed from zl
ﬁ”uj
oxVv

Thus, differentiation in real space becomes multiplication in Fourier space. We can then
take the inverse fast Fourier Transform (IFFT) to yield a solution in real space. In the

FFT( ) = (tk)"uy, where 4, =0 ,if v isodd. (7.2)

More details can be found in Trefethen [56, Chap. 3]
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next section we will use this technique to implement forward Euler and backward Euler
timestepping schemes to compute solutions for several PDEs.

7.1.1 Exercises

1) Let u(x) = >, 4y exp(ikz) be the Fourier series representation of a function wu(x).

Explain why
du oy
i Z(zk) Uy,

provided the series converges.
2) H Consider the linear KdV equation
Uy + Ugae = 0
with periodic boundary conditions for z € (0,27] and the initial data

(2,0) 0 fo0<zx<nm
u(z,0) =
’ 1 ifr<a<2r

a) Using separation of variables, show that the “solution” is

1 2 ~sin((2 + Do — (27 + 1)%)
t = — — =
u(t) =5 -2 2j + 1

Quotation marks are used because the expression for the solution that is given
does not converge when differentiated either once in time or twice in space.

b) As explained by Olver [46], this solution has a fractal structure at times that are
an irrational multiple of 7 and a quantized structure at times that are rational
multiples of m. The Matlab program in listing 7.1 uses the Fast Fourier transform
to find a solution to the linearized KdV equation. Explain how this program finds
a solution to the linearized KdV equation.

¢) Compare the numerical solution produced by the Matlab program with the ana-
lytical solution. Try to determine which is more accurate and see if you can find
evidence or an explanation to support your suggestions.

Listing 7.1: A Matlab program which solves the linearized KdV equation using the
Fast Fourier transform.

1 % This program computes the solution to the linearly dispersive
2 % wave equation using the Fast Fourier Transform

2This question was prompted by an REU and UROP project due to Sudarshan Balakrishan which is
available at http://www.math.lsa.umich.edu/undergrad/REU/projects.html.
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N = 512;

h = 2*%pi/N;
x = h*x(1:N);
t = .05%pi;
dt = .001;

u0 = zeros(1,N);

uO(N/2+1:N)= ones (1,N/2);
k=(1i*[0:N/2-1 0 -N/2+1:-1]);
k3=k."3;

u=ifft (exp(k3*t) .*fft (ud));
plot(x,u, 'r-");

xlabel x; ylabel u;
title ([ 'Time

",num2str (t/(2*pi)),"

)
)
b
A
A
A
b
b

A
A
b

Number of grid points.
Size of each grid.
Variable x as an array.
Time to plot solution at
Appropriate time step.
Array to hold initial data
Defining the initial data
Fourier wavenumbers

Calculate the solution
Plot the solution
Label the axes of the graphs

\pi'l);
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Chapter 8

Examples in Matlab

We now want to find approximate numerical solutions using Fourier spectral methods. In
this section we focus primarily on the heat equation with periodic boundary conditions for
x € [0,27). Many of the techniques used here will also work for more complicated partial
differential equations for which separation of variables cannot be used directly.

8.1 1D Heat Equation

The 1D heat equation

ou _ Pu
ot~ “or?

is a well known second order PDE for which exact series solutions can be found using
separation of variables. It arises in several contexts such as in predicting the temperature in a
thin uniform cross section rod. The equation and its derivation can be found in introductory
books on partial differential equations and calculus, for example [6], [13] and [26], The
constant « is the thermal diffusivity and u(z,t) is temperature. We have already described
how to solve the heat equation using separation of variables. Let us first discretize x such
that z; where j = 0,1,2,...,n. x; are uniformly spteaced in [0, 27). Let’s now take the FFT
of both sides of the 1D heat equation to obtain

(8.1)

u  Pu
— =a—. 8.2
o~ "o (8.2)
We then rewrite the spatial derivative using eq. (7.2)) [[
o o \2A
6—: = alik)?iy, (8.3)

so that the partial differential equation now becomes a collection of independent ODEs.
While we can solve these ODEs in time exactly, we will use techniques that will also allow

IThe k subscript denotes the coefficient of the k*"* Fourier mode.
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us to obtain approximate solutions to PDEs we cannot solve exactly. We will discuss two
methods for solving these ODEs, forward Euler and backward Euler.

8.1.1 Forward Euler

Using the forward Euler method in time, we obtain

~n+1 _An
el . Uk a(ik)2an (8.4)
aptt = a4 + ah(ik)*a} (8.5)

All that is left is to take the IFFT of the computed solution after all timesteps are taken to
transfer it back to real space. This is a linear PDE, so only one IFFT is needed at the end.
We will later see that this is different for a nonlinear PDE. A Matlab implementation of this
is in listing [8.1]

Listing 8.1: A Matlab program to solve the heat equation using forward Euler timestepping.

%Solving Heat Equation using pseudo-spectral and Forward Euler
%u_t= \alpha*u_xx

%BC= u(0)=0, u(2*pi)=0

%#IC=sin (x)

clear all; clc;

%hGrid

N = 64; %Number of steps

h = 2xpi/N; %step size

x = hx(1:N); %discretize x-direction

alpha = .5; %Thermal Diffusivity constant
t = 0;

dt = .001;

%Initial conditions

v = sin(x);

k=(1i*[0:N/2-1 0 -N/2+1:-1]1);

k2=k."2;

%Setting up Plot

tmax = 5; tplot = .1;

plotgap= round(tplot/dt);

nplots = round(tmax/tplot);

data = [v; zeros(mplots,N)]; tdata = t;

for i = 1:nplots
v_hat = fft(v); JFourier Space
for n = 1:plotgap
v_hat = v_hat+dt*alphax*k2.*v_hat; /FE timestepping
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Figure 8.1: A numerical solution to the heat equation, eq. (8.1)) computed using the backward
Euler method.

end
v = real(ifft(v_hat)); %Back to real space
data(i+1,:) = v;
t=t+plotgapx*dt;
tdata = [tdata; t]; %Time vector
end

%Plot using mesh
mesh (x,tdata,data), grid on,
view(-60,55), xlabel x, ylabel t, zlabel u, zlabel u

8.1.2 Backward Euler

To derive this method, we start by applying the FFT and then perform timestepping using
backward Euler. We then rewrite the implicit form into a form that gives the next iterate,

.
% = a(ik)% (8.6)

ATL—O—l_"n
Sk = ik (8.7)
Wt (1 — ah(ik)?) = af (8.8)
T S— (8.9)

(1 — ah(ik)?)

Below is a graph of the numerical solution to the heat equationﬂ where n = 64 obtained
using the Matlab program in listing [8.2]

2Methods to obtain the exact solution can be found in, among other places, Boyce and DiPrima [6].
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Listing 8.2: A Matlab program to solve the heat equation using backward Euler timestepping.

%#Solving Heat Equation using pseudospectral methods with Backwards Euler:

%u_t= \alpha*u_xx

%BC = u(0)=0 and u(2*pi)=0 (Periodic)
%IC=sin (x)

clear all; clc;

%Grid
N = 64; h = 2%pi/N; x = h*(1:N);

% Initial conditions

v = sin(x);

alpha = .5;

t = 0;

dt = .001; %Timestep size

%(ik) "2 Vector
k=(1i*x[0:N/2-1 0 -N/2+1:-1]);
k2=k."2;

%Setting up Plot

tmax = 5; tplot = .1;

plotgap= round(tplot/dt);

nplots = round(tmax/tplot);

data = [v; zeros(nplots,N)]; tdata = t;

for i = 1:nplots
v_hat fft(v); %Converts to fourier space
for n l:plotgap
v_hat = v_hat./(1-dt*alphax*k2); %Backwards Euler timestepping

end
v = ifft(v_hat); %Converts back to real Space
data(i+1,:) = real(v); %Records data
t=t+plotgapx*dt; %Records time
tdata = [tdata; t];

end

%Plot using mesh
mesh (x,tdata,data), grid on, %axis([-1 2*pi 0 tmax -1 1]1),
view (-60,55), xlabel x, ylabel t, zlabel u, zlabel u,

8.1.3 Exercises

1) Write a program to solve the heat equation using the Crank-Nicolson method.
2) Solve the advection equation u; = u, for z € [0,27) with the initial data

a) u(t =0,x) = cos(x)
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x>T

b) u(t = 0,z) = {2 il

up to a time T = 1. You can do this either by using separation of variables or
by assuming that the solution is of the form u(x,t) = f(z + t) and deducing what
f is in order to satisfy the initial conditions. In both cases please use the forward
Euler, backward Euler and Crank-Nicolson timestepping schemes. After calculating
the exact solution in each of these cases, examine how the maximum error at the final
time depends on the timestep for each of these three methods.

8.2 Nonlinear Equations

8.2.1 The 1D Allen-Cahn Equation

So far we have dealt only with linear equations. Now it’s time for a nonlinear PDE. The
Allen-Cahn equation models the separation of phases in a material. It was introduced by

Sam Allen and J. W. Cahn [I] and is
ou  0%u 3

=€z tu—u

o 92 , (8.10)

where € is a small but positive constant. The way to numerically solve this is similar to

the method used for the heat equation, but there are some notable differences. The biggest

difference is that FFT(u®)£AFFT(u)?, so the v® must be computed before taking the FFT.
The FFT is a linear operation but cubing is non-linear operation, so the order matters

Oty 0?1y,

=€

ot 0x?

+ Gy, — U (8.11)

Next rewrite the first term on the right hand side, just like we did in the heat equation
Oty

In order to solve this numerically we are going to use a combination of implicit (backward
Euler) and explicit (forward Euler) methods. We are going to skip forward Euler because it
is unstable.

Implicit-Explicit Method

You might have already noticed that backward Euler is not going to work for the Allen-Cahn
in its present state because of the nonlinear term. If you go to implement backward Euler
you can see that you can’t factor out all of the ﬂZH. Luckily there is a simple intuitive

way around this that isn’t detrimental to the accuracy of the solution. Write all the terms
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implicitly (backwards Euler) except for the nonlinear term which is expressed explicitly.
Applying this to Allen-Cahn we find that H

~n+1l _ ~n —
Uy, - U _ e(ik)QﬁZH +ap — (un)3, (8.13)
1 1 —
apt! (—6(ik)2 + E) D R el GO (8.14)
gt _ (G A1) — ()’ (8.15)
’ (—e(ik)? + 7)

Now we have a form that we can work with. We can set the initial conditions to be u(z,0) =
;11 sin(x) and plot the computed space-time evolution calculated by the Matlab code in listing

B.3] The computed result is in Fig. [8.2]

Listing 8.3: A Matlab program to solve the 1D Allen-Cahn equation using implicit explicit
timestepping.

%Solving 1D Allen-Cahn Eq using pseudo-spectral and Implicit/Explicit
method

%u_t=u_{xx} + u - u"3

%where u-u~3 is treated explicitly and u_{xx} is treated implicitly

%#BC = u(0)=0, u(2*pi)=0 (Periodic)

%IC=.25%sin(x) ;

clear all; clc;

%Grid and Initial Data
N = 8000; h = 2*xpi/N; x

hx(1:N); t = 0;

dt = .001; Y%timestep size
epsilon= .001;

%initial conditions
v = .25*xsin(x);

%(ik) and (ik) "2 vectors
k=(1i*[0:N/2-1 0 -N/2+1:-11);
k2=k."2;

%setting up plot

tmax = 5; tplot = .2;

plotgap= round(tplot/dt);

nplots = round(tmax/tplot);

data = [v; zeros(mnplots,N)]; tdata = t;

3Notice that when programming you are going to have to update the nonlinear term (u?) each time you
want to calculate the next timestep n + 1. The reason this is worth mentioning is because for each timestep
you are going to have to go from real space to Fourier space to real space, then repeat. For, the heat equation
you can perform any number of timesteps in Fourier space and only convert back when you record your data.
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Figure 8.2: A numerical solution to the 1D Allen-Cahn equation, eq. (8.10), with ¢ = 0.001
and u(z,t = 0) = 0.25sin(x) computed using an implicit explicit method.

for i = 1:nplots
for n = 1:plotgap

v_hat = fft(v); Jconverts to Fourier space

vv = v. 3; %computes nonlinear term in real space

vv = fft(vv); %converts nonlinear term to Fourier space

v_hat = (v_hat*x(1/dt+1) - vv)./(1/dt-k2*epsilon); %Implicit/
Explicit

v = ifft(v_hat); %Solution back to real space
end
data(i+1l,:) = real(v); JRecords data each "plotgap"
t=t+plotgap*dt; %Real time
tdata = [tdata; t];
end

mesh (x,tdata,data), grid on, axis([-1 2*pi 0 tmax -1 1]),
view(-60,55), xlabel x, ylabel t, zlabel u

8.2.2 The 2D Allen-Cahn Equation
Now we will look at the 2D form of the Allen-Cahn Equation, where u(z,y,t) satisfies

ou Pu ' 5
e =24 22 —u’. 8.16
r 6(8x2+8y2)+u u (8.16)
The convert it into Fourier space by taking the FFT of both sides
Oty OPhy 0%y, . ~
Sl — 1
5 € ( o2 + 3y + Uy, — udg (8.17)
aﬁk . 2 A . 2 A ~ /3\
5 = € ((iky) s, + (iky)?ay) + e — (U3), (8.18)

where k, and k, is to remind us that we take the FFT in respected directions. We will also

define
flu)=u—u® (8.19)



Time 500

Figure 8.3: A numerical solution to the 2D Allen-Cahn equation, eq. (8.16)) at time ¢t = 500
with € = 0.1 and u(z,y,t = 0) = sin(27rx) + 0.001 cos(167x) computed using an implicit
explicit method.

The way to deal with the first two terms on the right hand side is to take the FFT in the
x-direction and then take it in the y-direction. The order in which the FFT is done, x first
or y first is not important. Some software libraries offer a two dimensional FFT. It usually
depends on the equation being solved whether it is more efficient to use a multidimensional
FFT or many one dimensional FFTs. Typically, it is easier to write a program which uses
a multidimensional FFT, but in some situations this is not very efficient since one can
immediately reuse data that has just been Fourier transformed.

Implicit-Explicit Method

In this method, the nonlinear term in eq. (8.19) is calculated explicitly, while the rest of the
terms will be written implicitly such that

~n+l _ ~n —

Sk — e (ki + (ki) + F ), (8.20)
. | O AN

et (et = it + 3 ) =+ T, (8.21)
= PA G (8.22)

(—e(ikm)Q — e(iky)? + %)

we can then substitute in for f(u)

i (D) — @),
(_E(ikx)Q — e(iky)?* + %) ‘

The Matlab code used to generate Fig. [8.3]is in listing [8.4]

~n+1 __
Uy, =

(8.23)

Listing 8.4: A Matlab program to solve the 2D Allen-Cahn equation using implicit explicit
timestepping.

%Solving 2D Allen-Cahn Eq using pseudo-spectral with Implicit/Explicit
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%hu_t= epsilon(u_{xx}+u_{yy}) + u - u~3

%where u-u~3 is treated explicitly and epsilon(u_{xx} + u_{yyl})

implicitly
%#BC = Periodic
%IC=v=sin (2*pi*x)+0.001*cos (16*pi*x;
clear all; clc;

%Grid
N = 256; h = 1/N; x = h*x(1:N);
dt = .01;

%»x and y meshgrid
y=x';
[xx,yy]l=meshgrid(x,y);

%initial conditions
v=sin (2*xpi*xx)+0.001*cos (16*pi*xx);
epsilon=.01;

%(ik) and (ik) "2 vectors in x and y direction

kx=(1i*[0:N/2-1 0 -N/2+1:-1]1);
ky=(1i*[0:N/2-1 0 -N/2+1:-1]1");
k2x=kx. " 2;
k2y=ky. " 2;

[kxx ,kyyl=meshgrid (k2x,k2y) ;

for n = 1:500

v_nl=v."3; %calculates nonlinear term in real space

%FFT for linear and nonlinear term

v_nl = fft2(v_nl);
v_hat=fft2(v);
vnew=(v_hat*(1+1/dt)-v_nl) ./

is treated

(-(kxx+kyy)*epsilon+1/dt); % Implicit/Explicit timestepping

%converts to real space in x-direction

v=ifft2(vnew) ;
%Plots each timestep

mesh(v); title(['Time ',num2str(n)]);

xlabel x; ylabel y; zlabel u;
view (43,22); drawnow;
end

axis ([0 N O N

8.2.3 Exercises

Many of these exercises are taken from Uecker [59]. Another introductory source of infor-
mation on these equations is Trefethen and Embree [57].

1) Burgers equation is given by:

ou

ot~ o
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where v € R™ and u has periodic boundary conditions. Solve this equation using an
implicit-explicit method. If you take v to be small, ensure that a sufficient number of
grid points are used to get the correct numerical solution. A simple way to check this
is to keep increasing the number of grid points and checking that there is no change
in the solution. Another way to check this is to calculate the Fourier coefficients and
check that the highest ones decay to machine precision.

2) The Kuramoto-Sivashinsky equation is given by:
ou  Pu 0w Ou

ot 02 Oxt —u%

where u has periodic boundary conditions.

a) What does this equation model and what type of behavior do you expect its
solutions to have?

b) Find numerical solutions to this equation using an implicit-explicit method.
3) The 1D Gray-Scott equations are given by:
ou 0?

U
o =Yg w0 TS0,
ov 0*v

E :d2@+uv2—(f+k‘)v

where dy, do, f and k are constants.
a) What does this equation model and what type of behavior do you expect its
solutions to have?

b) Find numerical solutions to this equation using an implicit-explicit method. Try
several different values of dy, dy, f and k£ and compare the resulting patterns to
what you can find in the literature.

4) The 2D Swift-Hohenberg equation is given by:

ou

ot

a) What does this equation model and what type of behavior do you expect its
solutions to have?

—A%u+2Au + (a — Du —u?,

b) Find numerical solutions to this equation using an implicit-explicit method for
several values of a.

5) The 2D Gray-Scott equations are given by:

ou
— = d; Au — uv? 1—
5 diAu — uv® + f(1 — u)
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where di, ds, f and k are constants.

a) What does this equation model and what type of behavior do you expect its
solutions to have?

b) Find numerical solutions to this equation using an implicit-explicit method.
6) The 2D Complex Ginzburg-Landau equation is given by:

%—f — A+ (1+ia)AA— (1 +if)|APA.

An introductory tutorial to this equation can be found at http://codeinthehole.
com/static/tutorial/index.html

a) What does this equation model and what type of behavior do you expect its
solutions to have?

b) Find numerical solutions to this equation using an implicit-explicit method for
several values of o and f.
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Chapter 9

Nonlinear Ordinary Differential
Equations and Iteration

The implicit explicit method avoids the direct solution of nonlinear problems. This can be
advantageous for some problems, but can also lead to severe time step restrictions in others.
Furthermore, the resulting numerical schemes can sometimes have undesirable qualitative
properties. For this reason, we need to describe methods that allow us to solve the nonlinear
equations generated in fully-implicit numerical schemes.

We consider an ordinary differential equation

d
== f(t.y) (9.1)
for t € [to,t*], and for which f(¢,y) is not necessarily a linear function of y. We want
to use an implicit numerical method to obtain an approximate solution of this problem —
for example backward Euler’s method. If we want to demonstrate the convergence of the
numerical scheme, we need to demonstrate convergence of functional iteration which we use
to find the solution for the nonlinear equation term in using backward Euler’s method.

The results that follow are primarily taken from Iserles [29], although this material is
also often found in calculus texts such as Lax, Burstein and Lax [37], and Hughes et al. [20].
We will let t; denote the time at time step i, y; denote the approximate solution at time
step ¢ and h denote the time step. We will assume f is Lipschitz continuous, a condition
that is weaker than differentiable but stronger than continuous, which we will give a precise
definition of. There are two classical iteration methods:

e fixed-point iteration
e Newton’s (Newton-Raphson) method.

We will prove convergence of these two methods (a proof of the convergence of the modified
Newton-Raphson method is in Iserles [29, p. 130]). We will analyze the specific problem
y'(t) = y* with initial data y(0) = 1 and ¢ € [0,0.99].
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9.1 Exact Solution to an Example Nonlinear Ordinary
Differential Equation

We consider
dy
at 7
with initial data y(t = 0) = 1 and ¢ € [0,0.99]. Whenever the solution y(t) exists, it will be
positive all the time, because the initial value is positive and % is positive.
To integrate this equation explicitly, we use separation of variables to find that

O] 3 t
/ Lag= / dr (9.3)
y(0) Y 0

(9.2)

which implies

1
———=t+c (9.4)
y(t)
where ¢ is the constant of integration. Using our initial data we get ¢ = —1, so
(t) = ! (9.5)
- '

is our exact solution for this problem. We will use this exact solution to compare the
numerical solutions obtained by the different iterative methods. Notice that this exact
solution becomes infinite as t — 1.

9.2 Definitions Required to Prove Convergence

Definition 9.2.1. The Lipschitz Condition A function f(x):x € D C R is Lipschitz if
| f(x1) = f(x2)|| < A||zy — x2|| for all x1 and xo in the domain D.

There are two specific definitions of the Lipschitz condition.

Definition 9.2.2. Locally Lipschitz Condition The function f(x) is called locally Lip-
schitz if, for each z € R, there exists an L > 0 such that f is Lipschitz on the open ball of
center z and radius L.

Definition 9.2.3. Globally Lipschitz Condition If f(x) is Lipschitz on all of the space
R (i.e. The open ball is R in above definition), then f is globally Lipschitz.

Note the fundamental difference between the local and global versions of the Lipschitz-
condition. Whereas in the local version the Lipschitz “constant” (A) and the open ball depend
on each point x € R | in the global version the “constant” () is fixed and the open ball is R.
In particular, a globally Lipschitz function is locally Lipschitz continuous, but the converse
is not true.
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9.3 Existence and Uniqueness of Solutions to Ordinary
Differential Equations

Peano’s theorem states that if f(z) is continuous, then a solution to the ordinary differential
equation z/(t) = f(z) with initial condition x(ty) = z exists at least in some neighbourhood
of time to — this solution need not be unique. Picard’s theorem states that if f(z) is locally
Lipschitz, then the solution for the ordinary differential equation z'(t) = f(x) with initial
condition z(tg) = o is unique when it exists. A comprehensive statement of these theorems
is in Iserles [29 p. 445], and there are proofs of these theorems in many books on ordinary
differential equations (for example Birkhoff and Rota [2, Chap. 6, pg. 192]).

9.4 Backward Euler

We recall that the backward FEuler method is given by
v =yt hfyr). (9.6)

Note that if f is nonlinear, we need to solve a nonlinear equation in each step advancing the
solution (numerical). It is usually hard to solve a nonlinear equation exactly using analytical
methods, so we also use numerical methods. For our example equation, we get

yn+1 =y +h (yn+1)2 (9_7>

This example has the advantage that we can find its solutions algebraically, so we can then
examine the behavior of numerical schemes.

9.5 Convergence of Functional Iteration

We often use functional iteration to solve nonlinear equations. We recall that there are two
popular methods: fixed-point iteration and Newton’s method.

9.5.1 Convergence of the Fixed-Point Method

We want to find a root of x = f(x). We try to use the fixed-point method and to construct
a sequence x,.1 = f(z,) wheren =0,1,2....

Theorem 9.5.1. Let f(x) have a fized-point & = f(Z), be Lipschitz continuous for x €
(a,b) C R with Lipschitz constant k < 1 and f(z) be continuous on [a,b]. Then the fized
point method x,.1 = f(x,) converges to the unique fized-point of T = xo = f(xs) for
x € [a,b].
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Proof. Since f(x) is Lipschitz continuous, we find that,

|xn+1 - xoo| = |f($n) - f(xoo)| < k |I‘n — Lo (98)
forn =1,2.... Hence by induction we conclude that
|Tp11 — Too| < K" |21 — oo - (9.9)

Since k < 1, lim,,_, k™71 — Zo| = 0, so we obtain a solution 2., = f(2), where x, is the
fixed point. We can show that the limit is unique by supposing that there are two different
limits and reaching a contradiction. O]

For a proof of the existence of the fixed-point under the assumptions used in this theorem,
see a book on numerical analysis, such as Bradie [4] or Iserles [29].

Regarding our problem, we apply fixed-point iteration, we want to find the root of an
equation of the form:

w = hw?+ B = f(w). (9.10)

When the timestep A is small enough then f/'(w) = 2hw < 200h < 1. So fixed-point iteration
is convergent provided the time-step is small enough. We note that eq. (9.10]) has two roots,
and so the domain of the initial iterate plays an important role in determining which root is
choosen.

9.5.2 Convergence of Newton’s Method

We now consider Newton’s method. We want to find a root, 2* of f(x) such that f(z*) = 0.
Newton’s method is a fixed-point method where the iterates are constructed by

n

(9.11)

where n = 0,1,2.... If the function f(x) is sufficiently well behaved, then Newton’s method
has a quadratic rate of convergence.

Theorem 9.5.2. Suppose f(x) is twice continuously differentiable and that its second deriva-
tive is bounded. Suppose also that there exists x* for which f(x*) = 0. Suppose f'(x) # 0 in
the interval [x* — |x* — xo| , 2 + |x* — xo|], f"(x) is finite in the same interval and |xo — x*|
1s small. Then, Newton’s method is of quadratic convergence.

Proof. .
F(@®) = flwn) + ['(@) (@ = 2a) + 51" (20) (@7 = 20)” (9.12)

by Taylor expansion with Lagrange form remainder. In the above z, € [x,,x*]. Since
f(z*) = 0, we have

0= Fle) + P =) + o ()@ — 2 (9.13)
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SO

f(xn) * 1 f”(Zn) * 2
_ = __ — ) .14
() + (2" — x) 21 F/(z) (z Tn) (9.14)
Plug in the formula for x,1, from eq. (9.11)) we have
* ]' f”(Zn) *
T = T = — g o) (2% — x,)°. (9.15)
Let
en = |x* — x,]. (9.16)
We have L (o)
_ “n) | 2
€nt1 = ‘5 F(z) €n (9.17)

and by our assumption, we know there is a constant ¢ such that

1 7 Zn
1 f"(zn) (9.18)
2! f'(zp)
Hence we have e,11 < mefl for some finite constant m. So Newton’s method is convergent
provided eg = |xg — z*| is sufficiently small. O

Regarding our problem, we consider

fly) =y —hy* = 8. (9.19)

Hence f'(y) = 1 — 2hy # 0 and f”(y) is finite, so our problem satisfies all assumptions if
we choose our initial data and initial iterates suitably. Hence the Newton iterations will
converge and give an approximation to the nonlinear term in backward Euler’s method.

9.6 Convergence of the Theta Method

The backward Euler, forward Euler and Crank-Nicolson methods are special case of the theta
method, so we will first prove the convergence of the theta method to encompass these three
methods. The theta method is the following algorithm,

=y ROFE ) + (L= 0) (g (9-20)

where n = 0,1,... and 6 € [0,1]. Notice that for # = 1/2 we obtain the Crank-Nicolson
method or trapezoidal rule.
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First, substituting the exact solution y(¢) and using the Taylor expansion we have

Y1) = (1) = BIOF(E y(1")) + (1= B (¢ (a7 ))] (9.21)
= y(t") —y(t") — hloy' (") + (1 = O)y'(t" )]
= (") + Ay (1) + %) + )
— (")~ RO () + (= ) (67) + by (1) + 51" ()]} + O(h)
= (0= 5) e+ (G0 3 ) W) + o)

Subtracting the last expression from

v =yt = ROF(E ") + (L= 0 f (YT =0, (9-22)
we have that when h is small enough
enthh (9.23)

= ™"+ OR[f(t", y(t") + €M) — f(t", y(t"))]
+ (L= QAL y(t™Hh) 4 ™) — fm Tyt )]
—1—12h3y”’(t”) + O(h4), f = %
+(0 — %)hzy”(t”) +O(h3), 0+ %
where ¢’ = y* — y(#'). Using the triangle inequality and by the Lipschitz continuity of f,
there exist constants ¢ and A such that
e ] (9.24)
W= 1
< e et 0o+ {03
c

When 0 = %, the theta method reduces to the trapezoidal rule. It is possible to show that
the Crank-Nicolson method has second order convergence, see for example, Iserles [29]. Now
let’s consider 0 # %

o) < T E R et (925
We claim that T .
nhi| < S| _LE0RA T
|e™"]| < X Kl— (1—9)m) 1} h (9.26)
We prove this statement by induction. When n = 0, ||e"’h|| = 0, since the initial conditions

is exactly calculated. Now suppose this statement is true for n = k, where £ > 0 and is a
integer. We want to show this statement is true for n = k + 1. Consider

k+1,h 1 4 0hA k.h ¢ 2
fore < LA o1
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then plug in

k
kn.h c 1+ 0hA
M< - ———— | —1|h. 9.28
< 5| (e 029
We have
[Caaindl (9.29)
i k41
SE 1+ 60hA B 1+ 60hA bt c 2
A 1—(1—=0)hA 1—(1—0)hA 1—(1—-6)hA
i k41
_ ¢ 1+ 60h\ 1l
A 1—(1—-60)hX
So our claim is true for all n . Note that
1+ 6hA\ h
_— = _ 9.30
—(0—0hr 1= —0)hn (:30)
<o h\
=P AT T — o
by a Taylor expansion of the exponential function. Thus, we have
o h c 1+ 6hA "
M< || ——————— ) —1|h 31
Ie H‘A[(l—(l—@)h/\ (5:31)
c 1+ 60hA "
< —(—— ) h
— A (1 —(1 —Q)h)\)
< ch o nhA
— X e — .
=N IS a o
By our condition, nh < t*. Therefore
nh ch A
| g — ). 9.32
el = 5 e (1— (1 —H)hA) (9-32)
So we have lim;,_,q He”’hH =0 and 0 < nh < t*. Hence the theta method is convergent of

order 1 when 0 # 1.

Note that the backward Euler method is a special case of the theta method when 6 = 0,

so backward Euler’s method is convergent of order 1. We arrive at our theorem.

Theorem 9.6.1. Backward Fuler’s method is convergent of order 1.

Remark 9.6.1. If f is globally Lipschitz, then we can apply the above argument with respect
to any time interval. If f is only locally Lipschitz, then we need to analyze the situation more
carefully. First, by Picard’s theorem, there is a unique solution of this ordinary differential
equation for a short amount of time. Indeed, we just need to know that the Lipschitz constant

1s finite without necessarily needing to know the exact value.
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Remark 9.6.2. If one did not know of Picard’s theorem, one could deduce the existence and
uniqueness of solutions to ODEs by using time discretization.

Now we consider y' = y* and ¢ € [0,0.99]. The exact solution of this problem is y(t) = .

So 1 <y < 100. In our problem, f = y? is clearly analytic and it is locally Lipschitz. It is
easy to show f is not globally Lipschitz. If a function f(z) is globally Lipschitz condition
then there is a finite constant A such that

1/ (=) = f)ll

<A\ (9.33)
lz =yl

for all z,y € R. In our problem, let z = 0 and ||y|| — oo, it is easy to check

1f @) = fll .,
Tz =gl — 0. (9.34)

We now discuss how one can find local Lipschitz constants A\. When f is differentiable, we
often just differentiate f and find the maximum value of its derivative in the domain of
interest. In our example, f is simple and we only need to know that the Lipschitz constant
is finite. So we use a more rough method to show that the Lipshitz constant is finite,

IF @ = F@A)I =Ny + 97l ly" = ol < (o™l + lg* D Ml =7l 0:35)

So it suffices to find the maximal value of ||y|| in this problem. In our problem, y(¢) is
continuous. Furthermore, y(¢) will be positive all the time, because the initial value is
positive and v is positive. A continuous function has finite maximal value in a closed and
bounded set. Note that the exact solution of our problem is y(t) = %_t ,s0 1 <y <100. So
we know that the Lipschitz constant in our problem is finite.

Finally, we get the convergence of functional iteration and backward Euler’s method
of our problem. Thus our numerical scheme for ¢/ = y? with initial data y(0) = 1 and
t €10,0.99] is convergent.

Corollary 9.6.1. By the theorems for existence and uniqueness of the solution for ordinary
differential equations and Theorem 4.1 ,Theorem 4.2 and Theorem 4.3, we arrive at our
final goal that the numerical solution generated by backward Euler’s method with functional
iteration exists and is unique when the time-step, hO approaches zero.

Remark 9.6.3. This requires careful choice of initial iterates when doing functional itera-
tion.

Remark 9.6.4. Typically, the exact solution of an ODE is not known, although it is possible
to deduce local Lipschitz continuity. Should the solution become infinite, a numerical method
will either not converge or display very large values if the approximate solution closely approz-
imates the exact solution. Some care is required in interpreting such numerical simulations
in these cases.
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9.7 Example Programs which use Iteration to Solve a
Nonlinear Ordinary Differential Equation

The following two Matlab programs demonstrate backward Euler’s method for the example
equation. The first one uses fixed-point iteration to solve for the nonlinear term and the
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second one uses Newton’s method to solve for the nonlinear term.

Listing 9.1: A Matlab program to demonstrate fixed-point iteration.

% A program to solve y'=y~2 using the backward Euler
% method and fixed point iteration
% This is not optimized and is very simple

clear all; format compact; format short;

set (0, 'defaultaxesfontsize',25, 'defaultaxeslinewidth',.7,...
'defaultlinelinewidth',6, 'defaultpatchlinewidth' ,3.7,...
'defaultaxesfontweight', 'bold"')

n=10000; 7 Number of timesteps
Tmax=0.99; % Maximum time
yO0=1; % Initial value
t01=0.1"10; % Tolerance for fixed point iterations
dt=Tmax/n; 7% Time step
y=zeros(l,n); % vector for discrete solution
t=zeros(1,n); % vector for times of discrete solution
y(1)=y0;
t(1)=0;
tic, % start timing
for i=1:n
yold=y(i); ynew=y(i); err=1;
while err>tol
ynew=dt*yold "2+y (i) ;
err=abs (ynew-yold) ;
yold=ynew;
end
y(i+l)=ynew;
t(i+1)=t (i) +dt;
end
toc, % stop timing
yexact=1./(1-t); max(abs(y-yexact)), % print the maximum error
figure(1); clf; plot(t,y,'r+',t,yexact,'b-."');

xlabel Time; ylabel Solution; legend('Backward Euler', 'Exact solution');

title ('Numerical solution of dy/dt=y~2');

Listing 9.2: A Matlab program to demonstrate Newton iteration.

% A program to solve y'=y~2 using the backward Euler
% method and Newton iteration
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% This is not optimized and is very simple

set (0, 'defaultaxesfontsize',25, 'defaultaxeslinewidth',.7,...
'defaultlinelinewidth',6, 'defaultpatchlinewidth' ,3.7,...

'defaultaxesfontweight', 'bold"')

n=100000; % Number of timesteps
Tmax=0.99; % Maximum time
y0=1; % Initial value
t0l1=0.1"10; % Tolerance for fixed point iterations
dt=Tmax/n; 7% Time step
y=zeros(1l,n); % vector for discrete solution
t=zeros(1l,n); % vector for times of discrete solution
y(1)=y0;
t(1)=0;
tic, % start timing
for i=1:n
yold=y(i); ynew=y(i); err=1;
while err>tol
ynew=yold-(yold-y(i)-dt*yold~2)/(1-2xdt*yold);
err=abs (ynew-yold) ;
yold=ynew;
end
y(i+l)=ynew;
t(i+1)=t(i)+dt;
end
toc, % stop timing

yexact=1./(1-t); max(abs(y-yexact)), 7% print maximum error

figure(1); clf; plot(t,y,'r+',t,yexact,'b-.");
xlabel Time; ylabel Solution;

legend ('Backward Euler', 'Exact solution');
title ('Numerical solution of dy/dt=y~2');

9.8 Exercises

1) Run the fixed-point iteration program in Matlab and check that the outcome is reason-
able. Now investigate how changing the number of time steps taken to go from a time
of 0 to a time of 0.99, and the tolerance for fixed point iterations affects the maximum
error. In particular try a range of 1,000-1,000,000 (in powers of 10) for the number of
time steps and a tolerance ranging from 10~! — 1077 (in powers of 107!). You should
observe that there is an “ideal” combination of subdivisions and tolerance to minimize
the error. What are these combinations? Do this whole process again using Newton
iteration instead. How have the answers changed?

2) Write a Matlab program to solve ¥’ = y* with y(0) = 1 using the Crank-Nicolson
method and fixed point iteration. Explain why there are two fixed-points to which
the fixed-point iteration can converge. Which of these fixed-points gives the correct
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3)

)

approximation to the solution of the differential equation? Comment on how the choice
of initial iterate for the fixed-point iteration determines the fixed-point to which the
method converges.

a) Show that the differential equation v’ = +/|y|, with y(0) = 0 is not Lipschitz
continuous.

b) Find at least two analytical solutions to this differential equation.

¢) Compute a numerical solution to this differential equations using the forward
Euler method.

d) Compute a numerical solution to this differential equations using the backward
Euler method. Be sure to try different initial guesses for the fixed-point iteration,
not just the value at the previous time step; you should be able to calculate the
influence of the choice of initial iterate on the selection of solution by the numerical
method. Comment on this.

e) Compute a numerical solution to this differential equations using the implicit
midpoint rule. Be sure to try different initial guesses for the fixed point iteration,
not just the value at the previous time step; you should be able to calculate
the influence of the choice of initial iterate on the selection of “solution” by the
numerical method. Comment on this.

f) Repeat (d) and (e) with Newton iteration.

g) Comment on the applicability of numerical methods for solving differential equa-
tions without unique solutions.

Modify the program for the 1-D Allen-Cahn equation so that it uses the Crank-Nicolson
and fixed-point iteration for the nonlinear term. You will need to calculate the non-
linear term in real space, so that your resulting scheme is

Lkl _ e ag;rl,kJrl_*_a;Lx 1 - 3 1 - .3
= et a4 S fur - @], (9:36)

where n denotes the time step and k£ denotes the iterate. Stop the iterations once the
maximum difference between successive iterates is sufficiently small.

Modify the program for the 2-D Allen-Cahn equation so that it uses the Crank-Nicolson
method and fixed-point iteration for the nonlinear term. You will need to calculate
the nonlinear term in real space.
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Chapter 10

Fortran Programs

10.1 Example Programs

To do parallel programming using OpenMP or MPI (Message passing interface), we typically
need to use a lower level language than Matlab such as Fortran. Another possible choice
of language is C, however Fortran has superior array handling capabilities compared to C,
and has a similar syntax to Matlab, so is typically easier to use for scientific computations
which make heavy use of regular arrays. It is therefore useful to introduce a few simple
programs in Fortran before we begin studying how to create parallel programs. A good
recent reference on Fortran is Metcalf, Reid and Cohen [44]. We recognize that most people
will be unfamiliar with Fortran and probably more familiar with MatlahT| C or C++, but
we expect that the example codes will make it easy for anyone with some introductory
programming background. A recent guide which describes how to write efficient parallel
Fortran code is Levesque and Wagenbreth[4I]. Our programs are written to be run on the
Flux cluster at the University of Michigan. More information on this cluster can be found
at http://cac.engin.umich.edu/resources/systems/flux/ and at http://cac.engin.
umich.edu/started/index.html. Below are four files you will need to run this.

1) A makefile to compile the Fortran code on Flux in listing [10.1] This should be saved
as makefile. Before using the makefile to compile the code, you will need to type
module load fftw/3.2.1-intel
at the command line prompt once logged into Flux. Then place the makefile and
heat.f90 in the same directory, the example files below assume this directory is
$HOME/ParallelMethods/Heat
and type
make
to compile the file. Once the file is compiled type
gsub fluxsubscript
to get the cluster to run your program and then output the results. The programs that

L Although Matlab is written in C, it was originally written in Fortran and so has a similar style to Fortran.
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follow use the library FFTW to do the fast Fourier Transforms. More information on
this library can be found at http://www.fftw.org/.

Listing 10.1: An example makefile for compiling a Fourier spectral Fortran heat equa-
tion program.

© W N O o W N =

T I~ S S S S
G W N = O

2) The Fortran program in listing — this should be saved as heat.f90

Listing 10.2: A Fortran Fourier spectral program to solve the heat equation using
backward Euler timestepping.

PURPOSE

This program solves heat equation in 1 dimension
u_t=\alpha*u_{xx}
using a the backward Euler method for x\in[0,2\pi]

© W N O e W N

un
(=]

The boundary conditions are u(0)=u(2\pi)
The initial condition is u=sin(x)

=
[V

Parameters
Nx = number of modes in x - power of 2 for FFT
Nt = number of timesteps to take
Tmax = maximum simulation time
plotgap = number of timesteps between plots
FFTW_IN_PLACE = value for FFTW input
FFTW_MEASURE value for FFTW input
FFTW_EXHAUSTIVE = value for FFTW input

e e
o N o vk W

= =
© =

[
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FFTW_PATIENT
FFTW_ESTIMATE

value for FFTW input
value for FFTW input

ERROR INDICATORS AND WARNINGS

FURTHER COMMENTS
Check that the initial iterate is consistent with the
boundary conditions for the domain specified

External routines required

External libraries required
FFTW3 -- Fast Fourier Transform in the West Library
(http://wuw.fftw.org/)

PROGRAM main

! Declare variables
IMPLICIT NONE

60

saved

1
!

'  FFTW_FORWARD = value for FFTW input

! FFTW_BACKWARD = value for FFTW input

' pi = 3.14159265358979323846264338327950288419716939937510d0
' L = width of box

! alpha = heat conductivity

! Scalars

U | = loop counter in x direction

' n = loop counter for timesteps direction

! allocatestatus = error indicator during allocation

! start = variable to record start time of program
!' finish = variable to record end time of program

! count_rate = variable for clock count rate

! planfx = Forward 1d fft plan in x

! planbx = Backward 1d fft plan in x

' dt = timestep

! Arrays ..

U = approximate REAL solution

' v = Fourier transform of approximate solution
!  vna = temporary field

! Vectors ..

' kx = fourier frequencies in x direction

U ¢ = x locations

' time = times at which save data

! name_config = array to store filename for data to be
!

! REFERENCES

!

! ACKNOWLEDGEMENTS

!

! ACCURACY

1

1

!

!

1

1
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71
72
73
74
75
76
77
78
79
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81
82
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84

85
86
87
88
89
90
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92
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94
95
96
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98
99
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104
105
106
107
108

110
111
112
113
114

115
116
117

INTEGER (kind=4) , PARAMETER :: Nx=64

INTEGER (kind=4) , PARAMETER :: Nt=20

REAL (kind=8), PARAMETER &
pi=3.14159265358979323846264338327950288419716939937510d0

REAL (kind=8), PARAMETER :: L=5.0d0

REAL (kind=8), PARAMETER :: alpha=0.504d0

REAL (kind=8) :: dt=0.2d0/REAL (Nt ,kind (0d0))

COMPLEX (KIND=8), DIMENSION(:) ,ALLOCATABLE :: kx

REAL (kind=8), DIMENSION(:),ALLOCATABLE N X

COMPLEX (KIND=8), DIMENSION(:,:),ALLOCATABLE :: u,v

REAL (kind=8), DIMENSION(:),ALLOCATABLE :: time

COMPLEX (KIND=8), DIMENSION(:),ALLOCATABLE :: vna

INTEGER (kind=4) :: i,j,k,n

INTEGER (kind=4) :: start, finish, count_rate, AllocateStatus

INTEGER (kind=4), PARAMETER :: FFTW_IN_PLACE = 8, FFTW_MEASURE = O,
&

FFTW_EXHAUSTIVE = 8, FFTW_PATIENT = 32, FFTW_ESTIMATE = 64
INTEGER (kind=4), PARAMETER :: FFTW_FORWARD = -1, FFTW_BACKWARD=1
COMPLEX (KIND=8) , DIMENSION(:) ,ALLOCATABLE :: fftfx,fftbx
INTEGER (kind=8) :: planfx,planbx
CHARACTER*100 :: name_config

CALL system_clock(start,count_rate)
ALLOCATE(kx(1:Nx),x(1:Nx),u(1:Nx,1:1+Nt),v(1:Nx,1:1+Nt) ,&
time (1:1+Nt),vna(1:Nx),fftfx(1:Nx),fftbx (1:Nx) ,&
stat=AllocateStatus)
IF (AllocateStatus .mne. 0) STOP

I set up ffts
CALL dfftw_plan_dft_1d(planfx ,Nx,fftfx(1:Nx),fftbx(1:Nx) ,&
FFTW_FORWARD ,FFTW_ESTIMATE)
CALL dfftw_plan_dft_1d(planbx ,Nx,fftbx(1:Nx),fftfx(1:Nx) ,&
FFTW_BACKWARD ,FFTW_ESTIMATE)

PRINT *,'Setup FFTs'

! setup fourier frequencies
DO i=1,1+Nx/2
kx(i)= cmplx(0.0d0,1.0d0)*REAL(i-1,kind(0d0))/L
END DO
kx (1+Nx/2)=0.00d0
DO i = 1,Nx/2 -1
kx (i+1+Nx/2)=-kx (1-i+Nx/2)
END DO
DO i=1,Nx
x(i)=(-1.00d0 + 2.00d0*REAL(i-1,kind (0d0))/REAL (Nx,KIND(0d0)))*pi
*L
END DO

PRINT *,'Setup grid and fourier frequencies and splitting
coefficients'
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u(1:Nx,1)=sin(x(1:Nx))
! transform initial data

CALL dfftw_execute_dft_(planfx,u(1:Nx,1),v(1:Nx,1))
PRINT *,'Got initial data, starting timestepping'

time (1)=0.04d0

vna(1:Nx)=v(1:Nx,1)

PRINT =*,'Starting timestepping'

DO n=1,Nt
DO i=1,Nx

vna(i)=vna(i)/(1-dt*kx(i)*kx(i))

END DO

PRINT *, 'storing plot data
time (n+1)=time (n)+dt
v(1:Nx,n+1)=vna(1:Nx)

,

CALL dfftw_execute_dft_(planbx,v(1l:Nx,n+1) ,u(l:Nx,n+1))

u(l:Nx,n+1)=u(1:Nx,n+1) /REAL (Nx,KIND(0d0))

END DO

PRINT *,'Finished time stepping'

CALL system_clock(finish,count_rate)
PRINT*, 'Program took ',REAL(finish-start)/REAL(count_rate), 'for

execution'
! Write data out to disk

name_config = 'u.dat'

OPEN (unit=11,FILE=name_config,status="UNKNOWN")

REWIND (11)
DO j=1,1+Nt
DO i=1,Nx
WRITE (11,%*) REAL(u(i,j))
END DO
END DO
CLOSE (11)

name_config = 'tdata.dat'

OPEN (unit=11,FILE=name_config,status="UNKNOWN")

REWIND (11)
DO j=1,1+Nt
WRITE (11,%) time(j)
END DO
CLOSE (11)

name_config = 'xcoord.dat'

OPEN (unit=11,FILE=name_config,status="UNKNOWN")

REWIND (11)
DO i=1,Nx
WRITE (11,%*) x(i)
END DO
CLOSE (11)
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PRINT *,'Saved data'
DEALLOCATE (kx ,x,u,v,&
time ,vna,fftfx,fftbx ,&
stat=AllocateStatus)
IF (AllocateStatus .mne. 0) STOP

CALL dfftw_destroy_plan(planbx)

CALL dfftw_destroy_plan(planfx)

CALL dfftw_cleanup ()

PRINT *,'Program execution complete'
END PROGRAM main

) An example submission script to use on the cluster in Listing [10.3| - this should be
saved as flursubscript. More examples can be found at http://cac.engin.umich.
edu/resources/software/pbs.html. To use it, please change the email address from
your_unigname@umich.edu to an email address at which you can receive notifications
of when jobs start and are finished.

Listing 10.3: An example submission script for use on Flux.

#!/bin/bash

#PBS -N heatequation

#PBS -1 nodes=1,walltime=00:10:00

#PBS -1 qos=math471f11_flux

#PBS -A math471f11_flux

#PBS -q flux

#PBS -M your_uniqname@umich.edu

#PBS -m abe

#PBS -V

# Create a local directory to run and copy your files to local.

# Let PBS handle your output

mkdir /tmp/${PBS_JOBID}

cp ${HOME}/ParallelMethods/Heat/heatequation /tmp/${PBS_JOBID}/
heatequation

cd /tmp/${PBS_JOBID}

./heatequation

#Clean up your files

cd

cd ParallelMethods/Heat

# Retrieve your output

cp /tmp/${PBS_JOBID}/u.dat ${HOME}/ParallelMethods/Heat/u.dat

cp /tmp/${PBS_JOBID}/xcoord.dat ${HOME}/ParallelMethods/Heat/xcoord.
dat

cp /tmp/${PBS_JOBID}/tdata.dat ${HOME}/ParallelMethods/Heat/tdata.dat

/bin/rm -rf /tmp/${PBS_JOBID}
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4) A Matlab plotting scriptE| to generate Fig. |10.1]is in listing |10.4}

Listing 10.4: A Matlab program to plot the computed results.

% A Matlab program to plot the computed results

clear all; format compact, format short,
set (0, 'defaultaxesfontsize',18, 'defaultaxeslinewidth',.9, ...
'defaultlinelinewidth',3.5, 'defaultpatchlinewidth',5.5);

% Load data
load('./u.dat');
load('./tdata.dat');
load('./xcoord.dat');
Tsteps = length(tdata);

© 0w N9 O s W N =

= e
(S e}

Nx = length(xcoord); Nt = length(tdata);

=
= W

u = reshape(u,Nx,Nt);

=
[ e

% Plot data
figure(3); clf; mesh(tdata,xcoord,u); xlabel t; ylabel x; zlabel('u')

=
(e

>

10.2 Exercises

1) Please read the resources on the web page http://cac.engin.umich.edu/started/
index.html to learn how to use the Flux cluster.

2) Modify the Fortran program for the 1-D heat equation to solve the Allen-Cahn equa-
tion, with your choice of time stepping scheme. Create a plot of the output of your
run. Include the source code and plot in your solutions.

3) Modify the Fortran program for the 1-D heat equation to solve the 2-D heat equation
with your choice of time stepping scheme. Your program should save the field at each
time step rather than putting all the fields in a single large array. Create a plot of the
initial and final states of your run. Include the source code and plots in your solutions.

2For many computational problems, one can visualize the results with 10-100 times less computational
power than was needed to generate the results, so for problems which are not too large, it is much easier to
use a high level language like Matlab to post-process the data.
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Figure 10.1: The solution to the heat equation computed by Fortran and post-processed by
Matlab.
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Chapter 11

Introduction to Parallel Programming

11.1 Overview of OpenMP and MPI

To solve large computational problems quickly, it is necessary to take advantage of multi-
ple cores on a CPU (central processing units) and multiple CPUs. Most programs written
up until now are sequential and compilers will not typically automatically generate paral-
lel executables, so programmers need to modify the original serial computer code to take
advantage of extra processing power. Two standards which specify what libraries that al-
low for parallel programming should do are OpenMP and MPI (the message passing inter-
face). In this section, we cover the minimal amount of information required to understand,
run and modify the programs in this tutorial. More detailed tutorials can be found at
https://computing.llnl.gov/tutorials/ and at http://www.citutor.org.

OpenMP is used for parallel programming on shared memory architectures — each com-
pute process has a global view of memory. It allows one to incrementally parallelize an
existing Fortran, C or C++ code by adding directives to the original code. It is there-
fore easy to use. However some care is required in getting good performance when using
OpenMP. It is easy to add directives to a serial code, but thought is required in creating a
program which will show improved performance and give correct results when made to run
in parallel. For the numerical solution of multidimensional partial differential equations on
regular grids, it is easy to perform efficient and effective loop based parallelism, so a complete
understanding of all the features of OpenMP is not required. OpenMP typically allows one
to use 10’s of computational cores, in particular allowing one to take advantage of multicore
laptops, desktops and workstations.

MPT is used for parallel programming on distributed-memory architectures — when sepa-
rate compute processes have access to their own local memory and processes must explicitly
receive data held in memory belonging to other processes which have sent the data. MPI is
a library which allows one to parallelize Fortran, C and C++ programs by adding function
calls which explicitly move data from one process to another. Careful thought is required
in converting a serial program to a parallel MPI program because the data needs to be
decomposed onto different processes, so it is usually difficult to incrementally parallelize a
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program that uses MPI. The best way to parallelize a program which will use MPI is problem
dependent. When solving large problems, one typically does not have enough memory on
each process to simply replicate all the data. Thus one wants to split up the data (known as
domain decomposition) in such a way as to minimize the amount of message passing that is
required to perform a computation correctly. Programming this can be rather complicated
and time consuming. Fortunately, by using the 2DECOMP&FFT library [38] [35] which is
written on top of MPI, we can avoid having to program many of the data passing opera-
tions when writing Fourier spectral codes and still benefit from being able to solve partial
differential equations on up to O(10°) processor cores.

11.2 OpenMP

Please read the tutorial at https://computing.llnl.gov/tutorials/openMP/, then an-
swer the following questions:

11.2.1 OpenMP Exercises
1) What is OpenMP?

2) Download a copy of the latest OpenMP specifications from www.openmp.org. What
version number is the latest specification?

3) Explain what each of the following OpenMP directives does:

i) 1SOMP PARALLEL
ii) !SOMP END PARALLEL

iii) !$SOMP PARALLEL DO

i)
i)
iv) 1$SOMP END PARALLEL DO
v) 1$OMP BARRIER

vi) ISOMP MASTER

i)

vii) I$OMP END MASTER

4) Try to understand and then run the Hello World program in listing on 1, 2, 6 and
12 threads. Put the output of each run in your solutions, the output will be in a file
of the form
helloworld. oxkkkskskkskskk
where the last entries above are digits corresponding to the number of the run. An
example makefile to compile this on Flux is in listing [I1.2] An example submission
script is in listing [I1.3] To change the number of OpenMP processes that the program
will run on from say 2 to 6, change

ppn=2
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to

ppn=6

and also change the value of the OMP_NUM_THREADS variable from
OMP_NUM_THREADS=2

to

OMP_NUM_THREADS=6

On Flux, there is a maximum of 12 cores per node, so the largest useful number of
threads for most applications is 12.

Listing 11.1: A Fortran program taken from http://en.wikipedia.org/wiki/
OpenMP, which demonstrates parallelism using OpenMP.

PURPOSE

This program uses OpenMP to print hello world from all available
threads

Parameters

Scalars
id = thread id
nthreads = total number of threads
Arrays
Vectors
REFERENCES

http:// en.wikipedia.org/wiki/OpenMP

ACKNOWLEDGEMENTS

The program below was modified from one available at the intermnet
address in the references. This internet address was last checked
on 30 December 2011

ACCURACY

ERROR INDICATORS AND WARNINGS

FURTHER COMMENTS
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Listing 11.2: An example makefile for compiling the helloworld program in listing [11.1
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External routines required

!
!
! External libraries required
! OpenMP library
PROGRAM hello90
USE omp_1lib
IMPLICIT NONE
INTEGER:: id, nthreads
! $OMP PARALLEL PRIVATE (id)
id = omp_get_thread_num()
nthreads = omp_get_num_threads ()
PRINT *, 'Hello World from thread',6 id
! $OMP BARRIER
IF ( id == 0 ) THEN
PRINT*, 'There are', nthreads, 'threads'
END IF
! $0MP END PARALLEL
END PROGRAM
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s #PBS -m abe

9 #PBS -V

10 #

11 # Create a local directory to rumn and copy your files to local.

12 # Let PBS handle your output

13 mkdir /tmp/${PBS_JOBID}

14 cp ${HOME}/ParallelMethods/helloworldOMP/helloworld /tmp/${PBS_JOBID
}/helloworld

15 cd /tmp/${PBS_JOBID}

16

17 export OMP_NUM_THREADS=2

18 ./helloworld

19

20 #Clean up your files

21 cd ${HOME}/ParallelMethods/hellowor1dOMP

22 /bin/rm -rf /tmp/${PBS_JOBIDZ}

5) Add OpenMP directives to the loops in the 2-D heat equation solver. Run the resulting
program on 1,3,6 and 12 threads and record the time it takes to the program to finish.
Make a plot of the final iterate.

11.3 MPI

A copy of the current MPI standard can be found at http://www.mpi-forum.org/. It
allows for parallelization of Fortran, C and C++ programs. There are newer parallel
programming languages such as Co-Array Fortran (CAF) and Unified Parallel C (UPC)
which allow the programmer to view memory as a single addressable space even on a
distributed-memory machine. However, computer hardware limitations imply that most
of the programming concepts used when writing MPI programs will be required to write
programs in CAF and UPC. Compiler technology for these languages is also not as well
developed as compiler technology for older languages such as Fortran and C, so at the
present time, Fortran and C dominate high performance computing. An introduction to
the essential concepts required for writing and using MPI programs can be found at http:
//www.shodor.org/refdesk/Resources/Tutorials/. More information on MPI can be
found in Gropp, Lusk and Skjellum [22], Gropp, Lusk and Thakur [23] and at https:
//computing.llnl.gov/tutorials/mpi/. There are many resources available online, how-
ever once the basic concepts have been mastered, what is most useful is an index of MPI
commands, usually a search engine will give you sources of listings, however we have found
the following sites useful:

e http://www.mpi.forum.org/docs/mpi-11-html/nodel182.html

e http://publib.boulder.ibm.com/infocenter/zos/v1ir13/index. jsp?topic=/2Fcom.

ibm.zos.r13.fomp200%2Fipezps00172.htm

e http://www.open-mpi.org/doc/vl.4/
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11.3.1 MPI Exercises

b
2)

3)
3)

What does MPI stand for?

Please read the tutorials at http://www.shodor.org/refdesk/Resources/Tutorials/
BasicMPI/ and at https://computing.llnl.gov/tutorials/mpi/, then explain what
the following commands do:

e USE mpi or INCLUDE ’mpif.h’
e MPI_INIT

e MPI_COMM_SIZE

e MPI_COMM_RANK

e MPI _FINALIZE

What is the version number of the current MPI standard?

Try to understand the Hello World program in listing [11.4] Explain how it differs from
[11.1} Run the program in listing on 1, 2, 6, 12 and 24 MPI processed] Put the
output of each run in your solutions, the output will be in a file of the form
helloworld. ox*k*xskkskkxkk

where the last entries above are digits corresponding to the number of the run. An
example makefile to compile this on Flux is in listing [11.5] An example submission
script is in listing [I1.6] To change the number of MPI processes that the program will
run on from say 2 to 6, change

ppn=2

to

ppn=6

and also change the submission script from

mpirun -np 2 ./helloworld

to

mpirun -np 6 ./helloworld.

On Flux, there is a maximum of 12 cores per node, so if more than 12 MPI processes
are required, one needs to change the number of nodes as well. The total number of
cores required is equal to the number of nodes multiplied by the number of processes
per node. Thus to use 24 processes change

nodes=1:ppn=2

to

nodes=2:ppn=12

and also change the submission script from

mpirun -np 2 ./helloworld

to

mpirun -np 24 ./helloworld.

1One can run this program on many more than 24 processes, however, the output becomes quite excessive
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Listing 11.4: A Fortran program which demonstrates parallelizm using MPI.

PURPOSE

This program uses MPI to print hello world from all available
processes

Parameters

Scalars
myid process id
numprocs = total number of MPI processes
ierr = error code

Arrays
Vectors

REFERENCES
http:// en.wikipedia.org/wiki/OpenMP

ACKNOWLEDGEMENTS

The program below was modified from one available at the internet
address in the references. This internet address was last checked
on 30 December 2011

ACCURACY

ERROR INDICATORS AND WARNINGS

FURTHER COMMENTS

External routines required

External libraries required
MPI 1library

PROGRAM hello90

USE MPI

IMPLICIT NONE

INTEGER (kind=4) :: myid, numprocs, ierr

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
CALL MPI_COMM_RANK (MPI_COMM_WORLD, myid, ierr)
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PRINT*, 'Hello World from process', myid
CALL MPI_BARRIER(MPI_COMM_WORLD,ierr)

IF ( myid == 0 ) THEN
PRINT*, 'There are ', numprocs, ' MPI processes'
END IF

CALL MPI_FINALIZE(ierr)
END PROGRAM

Listing 11.5: An example makefile for compiling the helloworld program in listing [T1.4]
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16

#define the complier

COMPILER = mpif90

# compilation settings, optimization, precision, parallelization
FLAGS = -00

# libraries

LIBS =

# source list for main program
SOURCES = helloworld.f90

test: $(SOURCES)
${COMPILER} -0 helloworld $(FLAGS) $(SOURCES)

clean:
rm *.o0

clobber:
rm helloworld

Listing 11.6: An example submission script for use on Flux.

#!/bin/bash

#PBS -N helloworld

#PBS -1 nodes=1:ppn=2,walltime=00:02:00
#PBS -q flux

#PBS -1 qos=math471f11_flux

#PBS -A math471f11_flux

#PBS -M your_unigname@umich.edu

#PBS -m abe

#PBS -V

#

# Create a local directory to run and copy your files to local.

# Let PBS handle your output

mkdir /tmp/${PBS_JOBID}

cp ${HOME}/ParallelMethods/helloworldMPI/helloworld /tmp/${PBS_JOBID
}/helloworld

cd /tmp/${PBS_JOBID}
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17 mpirun -np 2 ./helloworld

19 #Clean up your files
20 cd ${HOME}/ParallelMethods/helloworl1ldMPI
21 /bin/rm -rf /tmp/${PBS_JOBID}

11.4 A first parallel program: Monte Carlo Integration

To introduce the basics of parallel programming in a context that is a little more complicated
than Hello World, we will consider Monte Carlo integration. We review important concepts
from probability and Riemann integration, and then give example algorithms and explain
why parallelization may be helpful.

11.4.1 Probability
Definition 11.4.1. f: U C R? — R, is a probability density function if

//deAzl

Definition 11.4.2. If f is a probability density function which takes the set U C R?, then
the probability of events in the set W C U occurring is

rov) = [ /W fdA.

Example 11.4.1. The joint density for it to snow x inches tomorrow and for Kelly to win
y dollar in the lottery tomorrow is given by

C

/= (1 + 2)(100 + )

for
x,y € [0,100] x [0, 100]

and f =0 otherwise. Find c.

Definition 11.4.3. Suppose X is a random variable with probability density function fi(z)
and Y is a random variable with a probability density function fo(y). Then X and Y are
independent random variables if their joint density function is

f(x,y) = fi(z)faly).

Example 11.4.2. The probability it will snow tomorrow and the probability Kelly will win
the lottery tomorrow are independent random variables.
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Definition 11.4.4. If f(x,y) is a probability density function for the random variables X

and Y, the X mean is
=X = //xfdA

,ungfz//yfdA.

Remark 11.4.1. The X mean and the Y mean are the expected values of X and Y.

and the Y mean is

Definition 11.4.5. If f(x,y) is a probability density function for the random variables X
and Y, the X variance is

o= =X = [ [ xpsaa
and the Y variance s
=0 -V7 = [ [w-¥yraa
Definition 11.4.6. The standard deviation is defined to be the square root of the variance.

Example 11.4.3. Find an expression for the probability that it will snow more than 1.1
times the expected snowfall and also that Kelly will win more than 1.2 times the expected
amount in the lottery.

11.4.2 Exercise

1) A class is graded on a curve. It is assumed that the class is a representative sample of
the population, the probability density function for the numerical score x is given by

f@) = Cexp (_M) |

202

For simplicity we assume that x can take on the values —oo and oo, though in actual
fact the exam is scored from 0 to 100.

a) Determine C' using results from your previous homework.

b) Suppose there are 240 students in the class and the mean and standard deviation
for the class is not reported. As an enterprising student, you poll 60 of your fellow
students (we shall suppose they are selected randomly). You find that the mean
for these 60 students is 55% and the standard deviation is 10%. Use the Student’s
t distribution http://en.wikipedia.org/wiki/Student’27s_t-distribution
to estimate the 90% confidence interval for the actual sample mean. Make a
sketch of the t-distribution probability density function and shade the region
which corresponds to the 90% confidence interval for the sample mean.E]

2The Student’s t distribution is implemented in many numerical packages such as Maple, Mathematica,
Matlab, R, Sage etc., so if you need to use to obtain numerical results, it is helpful to use on of these packages.
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Remark Fortunately, all the students are hard working, so the possibility of a negative
score, although possible, is extremely low, and so we neglect it to make the above
computation easier.

11.4.3 Riemann Integration

Recall that we can approximate integrals by Riemann sums. There are many integrals one
cannot evaluate analytically, but for which a numerical answer is required. In this section,
we shall explore a simple way of doing this on a computer. Suppose we want to find

1 4
12d = / / z? + 22 dyda.
0 Jo

If we do this analytically we find
12d = 44.

Let us suppose we have forgotten how to integrate, and so we do this numerically. We can
do so using the following Matlab code:

Listing 11.7: A Matlab program which demonstrates how to approximate an integral by a
sum.

% A program to approximate an integral

clear all; format compact; format short;

nx=1000; % number of points in x

xend=1; % last discretization point

xstart=0; % first discretization point
dx=(xend-xstart)/(nx-1); % size of each x sub-interval
ny=4000; % number of points in y

yend=4; % last discretization point

ystart=0; % first discretization point
dy=(yend-ystart)/(ny-1); % size of each y sub-interval

% create vectors with points for x and y
for i=1:mnx
x(i)=xstart+(i-1) *dx;

end

for j=1:ny
y(j)=ystart+(j-1) *dy;

end

% Approximate the integral by a sum
I2d=0;
for i=1:nx
for j=1:ny
I12d=I2d+(x (i) "2+2*y(j) ~2) *dy*dx;
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end
end
% print out final answer
I2d

We can do something similar in three dimensions. Suppose we want to calculate

1 1 4
13d = / / / 22 + 2y + 322dzdyda.
0o Jo Jo

13d = 68

Analytically we find that

11.4.4 Exercises
1) Modify the Matlab code to perform the three dimensional integral.

2) Try and determine how the accuracy of either the two or three dimensional method
varies as the number of subintervals is changed.

11.4.5 Monte Carlo Integration

Pl It is possible to extend the above integration schemes to higher and higher dimensional
integrals. This can become computationally intensive and an alternate method of integration
based on probability is often used. The method we will discuss is called the Monte Carlo
method. The idea behind it is based on the concept of the average value of a function,
which you learned in single-variable calculus. Recall that for a continuous function f(x), the
average value f of f over an interval [a,b] is defined as

1

B b
f = b—a/a f(z)dzx . (11.1)

The quantity b — a is the length of the interval [a,b], which can be thought of as the
“volume” of the interval. Applying the same reasoning to functions of two or three variables,
we define the average value of f(x,y) over a region R to be

F = 2 J[ #@paa. (11.2)

where A(R) is the area of the region R, and we define the average value of f(z,y, z) over

a solid S to be )
f = W/S//f(x,y,z)dv, (11.3)

3This section is taken from Chapter 3 of Vector Calculus by Michael Corral which is available at http:
//wuw.mecmath.net/| and where Java and Sage programs for doing Monte Carlo integration can be found.
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where V(S) is the volume of the solid S. Thus, for example, we have

//f(x,y)dA — AR)F . (11.4)
R

The average value of f(z,y) over R can be thought of as representing the sum of all the
values of f divided by the number of points in R. Unfortunately there are an infinite number
(in fact, uncountably many) points in any region, i.e. they can not be listed in a discrete
sequence. But what if we took a very large number N of random points in the region R
(which can be generated by a computer) and then took the average of the values of f for
those points, and used that average as the value of f? This is exactly what the Monte Carlo
method does. So in formula the approximation we get is

//f(x,y) dA ~ AR+ AR L= (11.5)

N
where N N
L o i )2
f_‘ — Zlil {\;xm yl) and f2 — le(f]E[‘IZ’ yl)) , <116)
with the sums taken over the N random points (x1, 1), ..., (n,yn). The + “error term”

in formula does not really provide hard bounds on the approximation. It represents a
single standard deviation from the expected value of the integral. That is, it provides a likely
bound on the error. Due to its use of random points, the Monte Carlo method is an example
of a probabilistic method (as opposed to deterministic methods such as the Riemann sum
approximation method, which use a specific formula for generating points).

For example, we can use the formula in eq. to approximate the volume V' under
the surface z = x? + 2y? over the rectangle R = (0,1) x (0,4). Recall that the actual volume
is 44. Below is a Matlab code that calculates the volume using Monte Carlo integration

Listing 11.8: A Matlab program which demonstrates how to use the Monte Carlo method
to calculate the volume below z = z? + 2y?, with (z,y) € (0,1) x (0,4).

% A program to approximate an integral using the Monte Carlos method

% This program can be made much faster by using Matlab's matrix and vector
% operations, however to allow easy translation to other languages we have
% made it as simple as possible.

Numpoints=65536; % number of random points

I2d=0; % Initialize value

I2dsquare=0; % initial variance

for n=1:Numpoints
% generate random number drawn from a uniform distribution on (0,1)
x=rand (1) ;
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y=rand (1) *4;
I2d=12d+x"2+2%y"~2;
I2dsquare=I2dsquare+(x"2+2*y~2) "2;
end
% we sclae the integral by the total area and divide by the number of
% points used
I2d=I2d*4/Numpoints
% we also output an estimated error
I2dsquare=I2dsquare*4/Numpoints;
EstimError=4*sqrt( (I2d"2-I2dsquare)/Numpoints)

The results of running this program with various numbers of random points are shown
below:

16: 41.3026 +/- 30.9791
= 256: 47.1855 +/- 9.0386
= 4096: 43.4527 +/- 2.0280
65536: 44.0026 +/- 0.5151

=2 =2 =2 =
|

As you can see, the approximation is fairly good. As N — oo, it can be shown that
the Monte Carlo approximation converges to the actual volume (on the order of O(v/N), in
computational complexity terminology).

In the above example the region R was a rectangle. To use the Monte Carlo method for
a nonrectangular (bounded) region R, only a slight modification is needed. Pick a rectangle
R that encloses R, and generate random points in that rectangle as before. Then use those
points in the calculation of f only if they are inside R. There is no need to calculate the
area of R for formula in this case, since the exclusion of points not inside R allows
you to use the area of the rectangle R instead, similar to before.

For instance, one can show that the volume under the surface z = 1 over the nonrect-
angular region R = {(x,y) : 0 < 22 + 92 < 1} is 7. Since the rectangle R = [—1,1] x [~1,1]
contains R, we can use a similar program to the one we used, the largest change being a
check to see if 2 + 2® < 1 for a random point (z,y) in [—1,1] x [-1,1]. A Matlab code
listing which demonstrates this is below:

Listing 11.9: A Matlab program which demonstrates how to use the Monte Carlo method
to calculate the area of an irregular region and also to calculate .

% A program to approximate an integral using the Monte Carlos method

% This program can be made much faster by using Matlab's matrix and vector
% operations, however to allow easy translation to other languages we have
% made it as simple as possible.

Numpoints=256; % number of random points

I2d=0; % Initialize value
I2dsquare=0; % initial variance
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for n=1:Numpoints
% generate random number drawn from a uniform distribution on (0,1)
and
% scale this to (-1,1)
x=2*rand (1) -1;
y=2*rand (1) -1;
if ((x"2+y~2) <1)
I2d=12d+1;
I2dsquare=I2dsquare+1;
end
end
% We scale the integral by the total area and divide by the number of
% points used
I2d=I2d*4/Numpoints
% we also output an estimated error

5 I2dsquare=I2dsquare*4/Numpoints;

EstimError=4*sqrt( (I2d"2-I2dsquare)/Numpoints)

The results of running the program with various numbers of random points are shown
below:

16: 3.5000 +/- 2.9580
256: 3.2031 +/- 0.6641
= 4096: 3.1689 +/- 0.1639
65536: 3.1493 +/- 0.0407

=== =
o

To use the Monte Carlo method to evaluate triple integrals, you will need to generate
random triples (x,y, z) in a parallelepiped, instead of random pairs (z,y) in a rectangle, and
use the volume of the parallelepiped instead of the area of a rectangle in formula . For
a more detailed discussion of numerical integration methods, please take a further course in
mathematics.

11.4.6 Exercises

1) Write a program that uses the Monte Carlo method to approximate the double integral
[[ e dA, where R = [0,1] x [0,1]. Show the program output for N = 10, 100, 1000,

R
10000, 100000 and 1000000 random points.

2) Write a program that uses the Monte Carlo method to approximate the triple integral
[[[ e dV, where S = [0,1] x [0,1] x [0,1]. Show the program output for N = 10,
S

100, 1000, 10000, 100000 and 1000000 random points.

3) Use the Monte Carlo method to approximate the volume of a sphere of radius 1.
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22
23
24
25
26
27
28
29
30

11.4.7 Parallel Monte Carlo Integration

As you may have noticed, the algorithms are simple, but can require very many grid points
to become accurate. It is therefore useful to run these algorithms on a parallel computer.
We will demonstrate a parallel Monte Carlo calculation of 7. Before we can do this, we need
to learn how to use a parallel computelﬂ.

We now examine a Fortran program for calculating 7. These programs are taken from
http://chpc.wustl.edu/mpi-fortran.html, where further explanation can be found. The
original source of these programs appears to be Using MPI by Gropp, Lusk and Skjellum.

Serial

Listing 11.10: A serial Fortran program which demonstrates how to calculate 7 using a
Monte Carlo method.

PURPOSE
This program use a monte carlo method to calculate pi

Parameters

http://chpc.wustl.edu/mpi-fortran.html
Gropp, Lusk and Skjellum, "Using MPI" MIT press (1999)

1

1

!

!

1

1

!

! npts = total number of Monte Carlo points
! xmin = lower bound for integration region
! xmax = upper bound for integration region
! Scalars

LR | = loop counter

U = average value from summation

' sum = total sum

!  randnum = random number generated from (0,1) uniform
! distribution

'ox = current Monte Carlo location
! Arrays

!

! Vectors

!

! REFERENCES

!

1

4Many computers and mobile telephones produced today have 2 or more cores and so can be considered
parallel, but here we mean computers with over hundreds of cores.
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

ACKNOWLEDGEMENTS

The program below was modified from one available at the intermnet
address in the references. This internet address was last checked
on 30 March 2012

ACCURACY

ERROR INDICATORS AND WARNINGS

FURTHER COMMENTS

External routines required

External libraries required
None

PROGRAM monte_carlo

IMPLICIT NONE

INTEGER (kind=8) , PARAMETER :: npts = 1el0

REAL (kind=8), PARAMETER :: xmin=0.0d0,xmax=1.0d0
INTEGER (kind=8) .

REAL (kind=8) :: f,sum, randnum,x

DO i=1,npts
CALL random_number (randnum)

x = (xmax-xmin)*randnum + xmin
sum = sum + 4.0d0/(1.0d0 + x*%*2)
END DO
f = sum/npts
PRINT*,'PI calculated with ' ,npts,' points = ',f
STOP
END

Listing 11.11: An example makefile for compiling the program in listing [11.10]

#define the complier

COMPILER = mpif90

# compilation settings, optimization, precision, parallelization
FLAGS = -00

# libraries

LIBS =

# source list for main program

SOURCES = montecarloserial.f90

test: $(SOURCES)

${COMPILER} -o montecarloserial $(FLAGS) $(SOURCES)

82



13
14
15
16
17
18

Nl = N R S

e e T
W N o= O

15
16
17
18
19
20

© 0w N O Ok W N

_ e
= o

clean:
rm *.0

clobber:
rm montecarloserial

Listing 11.12: An example submission script for use on Trestles located at the San Diego
Supercomputing Center.

#!/bin/bash

# the queue to be used.

#PBS -q shared

# specify your project allocation

#PBS -A mial22

# number of nodes and number of processors per node requested

#PBS -1 nodes=1:ppn=1

# requested Wall-clock time.

#PBS -1 walltime=00:05:00

# name of the standard out file to be "output-file".

#PBS -o job_output

# name of the job

#PBS -N MCserial

# Email address to send a notification to, change "youremail"
appropriately

#PBS -M youremail@umich.edu

# send a notification for job abort, begin and end

#PBS -m abe

#PBS -V

cd $PBS_O_WORKDIR #change to the working directory

mpirun_rsh -np 1 -hostfile $PBS_NODEFILE montecarloserial

Parallel

Listing 11.13: A parallel Fortran program which demonstrates how to calculate 7 using MPI.

PURPOSE

This program uses MPI to do a parallel monte carlo calculation of pi
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Parameters

npts
xmin
xmax
Scalars
mynpts
myid
nprocs
ierr

start
finish
Arrays

Vectors

REFERENCES

http://chpc.

Gropp, Lusk

= total
= lower

number of Monte Carlo points
bound for integration region

upper bound for integration region

= this processes number of Monte Carlo points
process id

total
= error

average

number of MPI processes

code

loop counter

value from summation

total sum

sum on this process

random number generated from
distribution

current Monte Carlo location

simulation start time

simulation end time

wustl.edu/mpi-fortran.html

and Skjellum,

ACKNOWLEDGEMENTS
The program below was modified from one available at the internet

address in the references.

on 30 March

ACCURACY

2012

"Using MPI" MIT press

This

ERROR INDICATORS AND WARNINGS

FURTHER COMMENTS

External routines required

External libraries required

MPI 1library

PROGRAM monte_carlo_mpi

USE MPI

IMPLICIT NONE

INTEGER (kind=8),
REAL (kind=8),

INTEGER (kind=8)
INTEGER (kind=4)

PARAMETER
PARAMETER

npts = 1lel0
mynpts

ierr, myid, nprocs
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63
64
65
66
67
68
69
70
71
72
73
74
75
76
s
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104

INTEGER (kind=8) HER |
REAL (kind=8) :: f,sum,mysum,randnum
REAL (kind=8) :: x, start, finish

! Initialize MPI

CALL MPI_INIT(ierr)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
start=MPI_WTIME ()

Calculate the number of points each MPI process needs to generate
IF (myid .eq. 0) THEN

mynpts = npts - (nprocs-1)*(npts/nprocs)
ELSE

mynpts = npts/nprocs
ENDIF

! set initial sum to zero
mysum = 0.0d0
use loop on local process to generate portion of Monte Carlo integral
DO i=1,mynpts
CALL random_number (randnum)

x = (xmax-xmin)*randnum + xmin
mysum = mysum + 4.0d0/(1.0d0 + x*%2)
ENDDO

Do a reduction and sum the results from all processes

CALL MPI_REDUCE (mysum,sum,1l,MPI_DOUBLE_PRECISION ,MPI_SUM,&
0,MPI_COMM_WORLD ,ierr)

finish=MPI_WTIME ()

I Get one process to output the result and running time
IF (myid .eq. 0) THEN

f = sum/npts

PRINT*,'PI calculated with ',npts,' points = ',f

PRINT*, 'Program took ', finish-start, ' for Time stepping'
ENDIF

CALL MPI_FINALIZE (ierr)

STOP
END PROGRAM

Listing 11.14: An example makefile for compiling the program in listing [T1.13]

#define the complier

COMPILER = mpif90

# compilation settings, optimization, precision, parallelization
FLAGS = -00
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# libraries
LIBS =
# source list for main

program

SOURCES = montecarloparallel.f90

test: $(SOURCES)

${COMPILER} -o montecarloparallel $(FLAGS) $(SOURCES)

clean:
rm *.o

clobber:

rm montecarloparallel

Listing 11.15: An example submission script for use on Trestles located at the San Diego

Supercomputing Center.

#!/bin/bash

# the queue to be used.
#PBS -q normal

# specify your project
#PBS -A mial22

# number of nodes and number of processors per node requested

#PBS -1 nodes=1:ppn=32
# requested Wall-clock
#PBS -1 walltime=00:05:
# name of the standard
#PBS -o job_output

# name of the job, you
#PBS -N MPI_MCPARALLEL

allocation

time.
00

out file to be "output-file".

may want to change this so it is unique to you

# Email address to send a notification to,

appropriately

#PBS -M youremail@umich.edu
# send a notification for job abort, begin

#PBS -m abe
#PBS -V

# change to the job submission directory

cd $PBS_O_WORKDIR
# Run the job

mpirun_rsh -np 32 -hostfile $PBS_NODEFILE

change

and end

montecarloparallel

11.4.8 Exercises

1) Explain why using Monte Carlo to eval