Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.

Creative Commons – Zero Waiver

Creative Commons – Attribution License

Creative Commons – Attribution Share Alike License

Creative Commons – Attribution Noncommercial License

Creative Commons – Attribution Noncommercial Share Alike License

GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ*

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Fever in the Emergency Department
Special Considerations in Pediatrics

Hannah Smith, MD
Washington University in St. Louis School of Medicine
Objectives

• Background
• Pathophysiology
• Definition
• Approach
 – General
 – 0 to 3 months
 – 3 to 36 months
 – Other
Background

• Most frequent chief complaint in children < 3 years
• 10-20% of pediatric visits to emergency department in US
• 20% of these will have no localizing source
• Infants < 3 months of age highest rates of serious bacterial infection (SBI)
Background

- Abnormal elevation of body temperature
- Recognized for centuries as a “sign of disease”
- Problem commonly encountered in pediatrics
Objectives

• Background

• **Pathophysiology**

• Definition

• Approach
 – General
 – 0 to 3 months
 – Greater than 3 months
 – Other
Pathophysiology

• **Complex process**
 – Autonomic
 – Neuroendocrine
 – Behavioral responses

• **Caused by a production of signaling proteins**
 – Or endogenous pyrogens which enter circulation and interact with specialized receptor neurons

• **Results in physiologic changes**
 – Peripheral vasoconstriction minimizing skin heat loss
 – Decreased sweating as vasopressin secretion falls
 – Lowered extracellular fluid volume
 – Shivering, seeking warmer environment
Pathophysicsology

• Benefits of fever:
 – Impaired replication of microbes, enhanced phagocytic bactericidal activity
 – Glucose metabolism decreases in favor of that based on lipolysis and proteolysis (depriving bacteria of favorite food)
 – Hepatic production of acute-phase reactant proteins bind divalent cations which are growth factors for microorganisms
Objectives

• Background
• Pathophysiology
• **Definition**
• Approach
 – General
 – 0 to 3 months
 – 3 to 36 months
 – Other
Definition

• Difficult to pinpoint lowest temperature elevation considered to be definitely abnormal for all children in all circumstances

• Natural diurnal variations in temperature, peak between 17:00 and 19:00
 – Variation less pronounced in infants
Definition

• **Rectal temperature of 38°C (or 100.4°F)**
 – Appropriately dressed child
 – Child at rest for 30 minutes
 – Optimal technique includes appropriate positioning, 2 to 3cm depth, not in fecal mass
 • Glass probes take 2 to 3 min to equilibrate
• **Oral temperatures are usually about 0.6°C (1°F) lower than rectal temperature**
• **Axillary temperatures are usually about 1.1°C (2°F) lower than rectal temperature**
• **Tympanic membrane are accurate**
• **Pacifiers and forehead strips are not reliable**
Objectives

- Background
- Pathophysiology
- Definition
- **Approach**
 - General
 - 0 to 3 months
 - 3 to 36 months
 - Common things being common
 - Other
Approach

• Major challenge
• Many principal causes of fever
• Systematic approach
Approach

• Magnitude of fever reduction in response to antipyretics does not distinguish children with serious bacterial infection (SBI) from those with viral diseases
 – SBI includes:
 • Meningitis
 • Sepsis
 • Bone and joint infections
 • UTI
 • Pneumonia
 • Enteritis
Approach

• Age-based
• Duration-based
• Accounts for underlying illness
• Varies with vaccine status
• Differs with endemic diseases or travel history
Approach

• All febrile children who are toxic-appearing should be hospitalized for evaluation and treatment of possible sepsis or meningitis

• Toxic-appearing:
 – Lethargy
 • (Level of consciousness characterized by poor or absent eye contact or as the failure of a child to recognize parents or interact with persons or objects in the environment)
 – Signs of poor perfusion or marked hypoventilation
 – Hyperventilation
 – Cyanosis
Evaluation

• 0-3 months
 – Risk of SBI is higher
 – Higher suspicion for possible bacterial etiology
 – Strong consideration of empiric antibiotics is indicated

• Goal:
 – Strategically separate patients into high and low risk groups for SBI based on readily obtained clinical and laboratory data
Why Are Infants at Risk?

• Immature immune system
 – Deficiencies in specific antibody, complement, opsonins, phagocyte number and function \(\{GBS\} \)
 – Reduced attraction of macrophages to site of infection \(\{intracellular\ organ\} \)
 – Lack of passively acquired antibodies and decreased activity of nonimmune and immune cellular cytotoxic mechanisms \(\{HSV\} \)

• Neurologic and behavioral immaturity

• Variable presentation

Slide courtesy of and adapted from David Jaffe
Sepsis Presentation

• Varies from toxic-appearing to well-appearing
• Neurologic and behavioral immaturity may confound
• History should focus on changes in infant’s behavior
 – Increased or decreased sleeping
 – Decreased feeding
 – Irritability
 – Respiratory distress
 – Agitation
 – Lethargy
Non-Toxic Appearing Febrile Infants (0-3 Months)

- Incidence of SBI: 8 – 10%
- Bacteremia < 3%
- Meningitis ≤ 1%
- UTI ≈ 7%
- Some multiple site infections
- Large majority presumed or confirmed viral
- Risk stratification important

Serious Bacterial Infection (0-3 Months)

• Growth of bacterial pathogen from body fluid:
 – Blood
 – Urine
 – CSF
 – (Joint fluid)
 – (Bone)

• 0 to 3 months:
 – E. coli
 – GBS
 – L. monocytogenes
 – S. pneumoniae
 – Salmonella
 – N. meningitidis
 – H. influenzae
 – S. aureus
 – Klebsiella
Rates of Bacteremia and Bacterial Meningitis (0-3 Months)

Slide courtesy of and adapted from David Jaffe
The Need for Risk Stratification

• Variation in evaluation and management
• Many infants have self-limited viral infections
• Problems with routine hospitalization:
 – Costly
 – Increasing antibiotic resistance
 – Iatrogenic complications
 • IV infiltrates
 • Fluid or drug overload
 • Fever due to isolette temperature
 • Distraught mother
 • Thrush/candidiasis
 • Diarrhea
 • Stolen infant

Classic Studies 0-3 months from US

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-3 months</td>
<td>1-2 months</td>
<td>0-2 months</td>
</tr>
</tbody>
</table>

Key Idea
- All get ceftriaxone; more difficult to be high risk
- Low risk go home, no antibiotics; more difficult to be low risk
- To identify criteria

Physical Exam
- Nontoxic, no focal infection
- Infant observation score <10, no focal infection
- Appears well, no focal infection

Labs
- WBC <20,000
- UA <10 WBC/hpf or negative LE
- CSF <10 WBC/mm³
- CXR (if obtained) - no focal infiltrate
- WBC <15,000
- BNR <0.2
- Spun UA <10 WBC/hpf, no bacteria
- Spun urine <10 WBC/hpf
- CSF <8 WBC/mm³, negative gram stain
- CXR – no focal infiltrate
- Stool (diarrhea) <5 WBC/hpf

Slide courtesy of and adapted from David Jaffe
Prevalence of UTI in Childhood: A Meta-Analysis

<table>
<thead>
<tr>
<th></th>
<th>Prevalence</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>7.0%</td>
<td>5.5-8.4</td>
</tr>
<tr>
<td>Females (0-3 months)</td>
<td>7.5%</td>
<td>5.1-10.0</td>
</tr>
<tr>
<td>Circumcised Males</td>
<td>2.4%</td>
<td>1.4-3.5</td>
</tr>
<tr>
<td>Uncircumcised Males</td>
<td>20.1%</td>
<td>16.8-23.4</td>
</tr>
<tr>
<td>White Infants* (0-3 months)</td>
<td>8.0%</td>
<td>5.1-11.0</td>
</tr>
<tr>
<td>Black Infants* (0-3 months)</td>
<td>4.7%</td>
<td>2.1-7.3</td>
</tr>
</tbody>
</table>

*only 4 studies contributed to ethnicity data

Shaik N et al, PIDJ 2008;27:302-308

Slide courtesy of and adapted from David Jaffe
Current Approach: Infant < 28 Days

• Full septic evaluation for all:
 – Culture blood, urine, CSF
 – CBC, urinalysis, CSF studies (gram stain and differential, glucose/protein)
 – Viral testing per season: Enterovirus, Influenza, RSV, HSV
 – CXR, stool studies as clinically indicated

• Hospitalization

• Parenteral antibiotics
 – Ampicillin
 – Gentamicin or Cefotaxime
 – Acyclovir, if signs of HSV, elevated transaminases, (expectant use for < 21 days sometimes recommended, but controversial)
Current Approach Infant 1 to 2 Months

Screen for risk:
- CBC, blood culture, UA and urine culture
- Viral testing per season

If **LOW RISK***, especially if virus positive
- No antibiotics
- Re-evaluate at 24 hours

If **HIGH RISK**
- Admit
- Complete sepsis work-up, including LP
- Parenteral antibiotics

*LOW RISK MEETS ALL CRITERIA:
- Non-toxic appearance
- No focus of infection on exam (except otitis media)
- No known immunodeficiency
- WBC <15,000/mm³
- Band to neutrophil ratio (BNR) < 0.2
- Normal UA
- CSF < 8 WBC/, negative gram stain, normal glucose/protein (LP may be deferred based on physician experience)
- Normal chest radiograph (if performed)
- Born at EGA >37 weeks
Infants 2 to 3 months

- Some treat the same as > 3 months
- Not a well-studied subgroup
- UA, urine culture
- Viral testing per season
- Further work-up depends on quality of follow-up
- If follow-up not assured, screen as in younger age
 - High risk: complete sepsis work-up, admit
 - Other options: IV antibiotic or observe
 - Low risk: home, no antibiotics
- Follow-up important
Approach to Febrile Infant 0-3 Months in St. Louis, Missouri

Evaluation and Management of Infants 0 to 3 months with T >38°C

<table>
<thead>
<tr>
<th>AGE</th>
<th>EVALUATION</th>
<th>MANAGEMENT</th>
</tr>
</thead>
</table>
| 0-28 d | 1. Detailed history and complete physical exam
2. Laboratory evaluation for sepsis:
 - Blood: CBC w/diff and culture
 - Urine: cath urinalysis and culture
 - CSF: cell ct, protein, glucose, g stain, culture
 - Chest radiograph (if indicated)
 - Stool for heme test and culture (if indicated)
 - Consider HSV and enteroviral PCR for CSF | 1. Admit for IV/IM abx until culture results available:
 - Ampicillin:
 - <1 wk, 100 mg/kg/dose, Q 12 h
 - >1 wk, 50 mg/kg/dose, Q 6 h
 - Plus cefotaxime:
 - <1 wk, 50 mg/kg/dose, Q 8 h
 - 1-4 wk, 50 mg/kg/dose, Q 6 h
 - Or plus gentamicin: 5 mg/kg/day, Q 24 h
 - If herpes suspected, acyclovir: 20 mg/kg/dose, Q 8 h |
| 29-60 d | 1. Detailed history and complete physical exam
2. Laboratory eval for sepsis: as for 0-28 d
3. Determine if patient is low-risk for SBI by meeting ALL criteria listed here:
 - Non-toxic appearance
 - No focus of infection on exam (except OM)
 - No known immunodeficiency
 - WBC <15,000/mm³
 - Band to neutrophil ratio (BNR) <0.2
 - Normal urinalysis
 - CSF: <8 WBC/mm³, - gram stain, nl gluc/prot (Consult with attending if plan to defer LP)
 - Normal chest radiograph (if done) | 1. If toxic-appearing, hosp. for IV/IM abx until ex results available:
 - Ampicillin: 50 mg/kg/dose, Q 6 h
 - Plus cefotaxime: 50 mg/kg/dose, Q 6 h (meningitic dose)
 (Or plus gentamicin 2.5 mg/kg/dose, Q 8 h if meningitis not suspected)
 - If herpes suspected, acyclovir: 20 mg/kg/dose, Q 8 h
2. If high-risk, hospitalize for IV/IM abx until ex results available:
 - Ampicillin: 50 mg/kg/dose, Q 6 h
 - Plus cefotaxime: 50 mg/kg/dose, Q 6 h (meningitic dose)
 (Or plus gentamicin 2.5 mg/kg/dose, Q 8 h if meningitis not suspected)
3. If low-risk, choose option after discussion w/attending and PMD:
 - A. 50 mg/kg ceftriaxone IM and reexam at 24 & 48 h (Must have LP)
 - B. No abx and reexam at 24 & 48 h |
| 61-90 d | 1. Detailed history and complete physical exam
2. Limited laboratory evaluation for sepsis:
 - Blood: CBC w/diff and culture
 - Urine: cath urinalysis and culture
 - LP if clinical concern for meningitis
 - Chest radiograph (if indicated)
 - Stool for heme test and culture (if indicated) | 1. If toxic-appearing, perform LP and hospitalize for IV/IM abx until culture results available:
 - Ceftriaxone: 50 mg/kg/dose, Q 12 h
2. If non-toxic appearing:
 - No antibiotics and reexamination at 24 and 48 h |

Note: The evaluation and management of febrile infants 29-60 days of age is particularly challenging due to behavioral immaturity and lack of clear and convincing medical literature.
Approach to Febrile Infant 0-3 Months in St. Louis, Missouri

Summary: Evaluation and Management of Well-appearing Febrile Infant

<table>
<thead>
<tr>
<th>AGE</th>
<th>INFECTION FOCUS</th>
<th>EVALUATION</th>
<th>ABX</th>
<th>*ADMIT?</th>
</tr>
</thead>
<tbody>
<tr>
<td><28 d</td>
<td>None</td>
<td>**B, U, C</td>
<td>IV/IM</td>
<td>Yes</td>
</tr>
<tr>
<td><28 d</td>
<td>OM</td>
<td>B, U, C</td>
<td>IV/IM</td>
<td>Yes</td>
</tr>
<tr>
<td><28 d</td>
<td>Bronchiolitis, Influenza</td>
<td>B, U, C</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>1-2 m</td>
<td>None</td>
<td>(a) B, U, C</td>
<td>IV/IM</td>
<td>+/-</td>
</tr>
<tr>
<td>1-2 m</td>
<td>(b) B, U, ± C</td>
<td>No</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>1-2 m</td>
<td>OM (unequivocal)</td>
<td>B, U</td>
<td>Oral</td>
<td>No</td>
</tr>
<tr>
<td>1-2 m</td>
<td>Bronchiolitis, Influenza</td>
<td>U</td>
<td>If UTI</td>
<td>No</td>
</tr>
<tr>
<td>2-3 m</td>
<td>None</td>
<td>B, U, ± C</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2-3 m</td>
<td>OM (unequivocal)</td>
<td>Not necessary</td>
<td>Oral</td>
<td>No</td>
</tr>
<tr>
<td>2-3 m</td>
<td>Bronchiolitis, Influenza</td>
<td>U</td>
<td>If UTI</td>
<td>No</td>
</tr>
</tbody>
</table>

*Discuss disposition/treatment plans with EU attending and available PMDs

**B=cbc and blood culture U=cath UA and culture C=CSF

NOTE: LP indicated for all toxic-appearing pts or those in whom meningitis is suspected
Utah Algorithm (0-2 months)

- History, PE, FBC, UA, blood and urine culture for all
- Use modified Rochester criteria to classify low vs. high risk
 - Age < 28 days or preterm (< 37 weeks)
 - Chronic medical conditions
 - Abnormal CBC (WBC < 5,000 or > 15,000)
 - Abnormal UA (> 10 WBC /HPF)
- **If low risk**, no antibiotics, no admission to hospital

Slide courtesy of and adapted from David Jaffe*
Utah Algorithm (0-2 months)

If high risk:

• Admit and begin antibiotics
• Viral diagnostic testing
 – Respiratory viruses by NP (DFA or PCR)
 – Enterovirus by PCR, June-November or if CSF pleocytosis
• Duration of antibiotics and length of stay (LOS) based on results of testing at 24 hours
• If culture negative and viral positive, discharge at 24 hours and stop antibiotics
• If culture negative and viral negative, discharge at 36 hours **(as long as patient is well appearing, able to eat and follow-up arranged)**
• If culture positive, treat for appropriate infection

Slide courtesy of and adapted from David Jaffe
Utah Algorithm (0-2 months)

• Outcomes
 – More infants had definitive diagnosis of UTI or viral infection
 – More admitted infants positive for SBI
 – No missed SBI
 – Low risk infants more often managed without antibiotics
 – Hospital admissions shortened by 27%
 – Mean cost per admitted infant decreased from $7,178 to $5,979 (-17%)

Slide courtesy of and adapted from David Jaffe
Approach to 3 to 36 months

• History and physical give important clues
 – Learn length of febrile illness, pattern of fever
• General impression obtained in a few moments key
 – Decide if child toxic or nontoxic in appearance as you observe them
• Immunizations make a difference!
Approach to 3 to 36 months

• Concentration on:
 – Discovering cause of fever
 – Treat underlying illness

• Any fever may signify serious infection, but hyperpyrexia (temperature of 41.1°C (106°F) or higher) is more often associated with diagnoses of pneumonia, bacteremia or meningitis
Approach to 3 to 36 months

• Risk of occult bacteremia with fever without a source 3-11% with mean probability 4.3% in children 3 to 36 months with temp >39ºC

Evaluation

• Blood film for malaria parasites
• FBC – examine a thin film for morphology
• HIV test
• UA including micro
• Mantoux
• Chest radiograph
• Blood culture
• Lumbar Puncture
Evaluation

• CBC
 – White blood count (WBC) has been recommended as a screening tool since 1970s
 – WBC remains a useful screening tool
 • Rapid to perform
 • Widely available
 – Total WBC count, absolute neutrophil count and absolute band counts have all been shown to be associated with SBI
Values for WBC

- **WBC counts > 15,000 are associated with SBI**
 - Sensitivity 40 - 52%, Specificity 76 - 84%
 - Likelihood ratio 2.11 - 2.5 in infants < 2 months
 - Area under ROC 0.70 in infants < 2 months
- **Elevated absolute band counts and absolute neutrophils counts are also associated with SBI, in infants < 12 months**
- **Elevated ANC slightly better than WBC**

Slide courtesy of and adapted from David Jaffe
Evaluation and Treatment Strategy
3 - 36 months

• Routine testing (FBC and blood culture) not indicated for well-appearing children age 3 - 36 months with fever without focal source

• Universal antibiotic administration for possible occult bacteremia not indicated

• Pneumococcus pneumonae and Haemophilis influenzae vaccines reduce risk

Evaluation and Treatment Strategy
3 - 36 months

• Empiric IV antibiotics (ceftriaxone) may be given when patient has close follow up, BUT blood cultures must be obtained pre-treatment
 – Blood cultures means of differentiating between viral from bacterial meningitis and partial treatment from occult bacteremia from viral syndrome in event child deteriorates

• Empiric IV antibiotics without LP
 – Must consider consequences of partially treated meningitis and delayed diagnosis
 – May be used in non-toxic appearing children with fever without a source, particularly in those with *H. influenzae* type B vaccine

Evaluation and Treatment Strategy
3 - 36 months

• In the event of a positive blood culture result, child should be recalled for re-evaluation

• Repeat blood culture and LP, admit and continue IV antibiotics for:
 – Children who are still febrile
 – Children who appear ill
 – Children with blood cultures positive for Neisseria meningitidis or H. influenzae

• May consider repeat IV/IM Ceftriaxone and PO course penicillin for pneumococcus positive blood cultures

• Patients with positive urine cultures who are afebrile and tolerating PO may do course of oral antibiotics

Common Things Being Common
UTI

• Consider UA and culture for boys < 6 months and girls < 2 years, risk stratify per AAP guidelines
 – Common in boys during young infancy due to posterior urethral valves

AAP = American Academy of Pediatrics
AAP UTI Guidelines

• In febrile infant, obtain UA and culture if antimicrobial therapy being given for pressing reason

• Assess likelihood of UTI
 – If low, follow-up without testing
 – If not low, obtain UA and culture
 • Catheter or suprapubic aspirate (SPA)
 • Bag for UA and obtain catheterized specimen or SPA if UA suggests UTI

• Diagnosis based on pyuria and at least 50,000 CFU per mL of a single uropathogen

AAP Subcommittee on Urinary Tract Infection, Pediatrics 2011;128:595

Slide courtesy of and adapted from David Jaffe
AAP UTI Guidelines

Individual Risk Factors: Girls
- White race
- Age < 12 mo
- Temperature $\geq 39^\circ\text{C}$
- Fever ≥ 2 d
- Absence of another source of infection

<table>
<thead>
<tr>
<th>Probability of UTI</th>
<th>No. of Factors Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq 1%$</td>
<td>No more than 1</td>
</tr>
<tr>
<td>$\leq 2%$</td>
<td>No more than 2</td>
</tr>
</tbody>
</table>

Individual Risk Factors: Boys
- Nonblack race
- Temperature $\geq 39^\circ\text{C}$
- Fever > 24 h
- Absence of another source of infection

<table>
<thead>
<tr>
<th>Probability of UTI</th>
<th>Uncircumcised</th>
<th>Circumcised</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq 1%$</td>
<td>a</td>
<td>No more than 2</td>
</tr>
<tr>
<td>$\leq 2%$</td>
<td>None</td>
<td>No more than 3</td>
</tr>
</tbody>
</table>

FIGURE 2
Probability of UTI Among Febrile Infant Girls and Infant Boys According to Number of Findings Present. aProbability of UTI exceeds 1% even with no risk factors other than being uncircumcised.
Child with Fever and Rash

• Febrile, toxic-looking child with poor perfusion and hemorrhagic or petechial rash
 – Concern for SBI
 • Rickettsial
 • Spirochetal disease

• Carefully obtain blood culture, WBC and start antibiotics – do not delay!

• Gram stain exam ofuffy coat and fluid from pustular or petechial skin lesions
Meningitis

Early diagnosis and treatment is essential!

<table>
<thead>
<tr>
<th>In the history</th>
<th>In the exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>Stiff neck</td>
</tr>
<tr>
<td>Vomiting</td>
<td>Irritability</td>
</tr>
<tr>
<td>Irritability</td>
<td>Convulsions</td>
</tr>
<tr>
<td>Headache</td>
<td>Lethargy</td>
</tr>
<tr>
<td>Neck ache or back pain</td>
<td>Bulging fontanelle</td>
</tr>
<tr>
<td>Convulsions</td>
<td>Skin rash - petechiae</td>
</tr>
<tr>
<td>Recent head injury</td>
<td>Ear discharge</td>
</tr>
<tr>
<td>Recent infection</td>
<td>Kernig's & Brudzinski signs</td>
</tr>
<tr>
<td></td>
<td>Signs of raised ICP</td>
</tr>
<tr>
<td></td>
<td>Irregular breathing</td>
</tr>
<tr>
<td></td>
<td>Posturing</td>
</tr>
<tr>
<td></td>
<td>Unequal pupils</td>
</tr>
<tr>
<td></td>
<td>Focal neuro signs</td>
</tr>
</tbody>
</table>

Slide courtesy of and adapted from Malawi College of Medicine
Bacterial Meningitis in Africa in Children > 2 months

• Most prevalent to least:
 – *Streptococcus pneumoniae*
 – *Haemophilus influenzae*
 – *Salmonella typhi and enteritidis*

• Less common:
 – *Staph aureus, Neisseria meningitidis, E. coli*

• Consider also:
 – TB meningitis (prolonged fever)
 – Cryptococcal meningitis (headache without neck stiffness, HIV positive, Dx: India ink stain)
Septic Arthritis or Osteomyelitis

- Child refusing to bear weight or move affected extremity
 - Children <3 years
 - *Haemophilus influenzae* type B
 - *Strep pneumoniae*
 - *S. pyogenes* group A
 - *Salmonella*
 - *Klebsiella kingae*
 - Children >3 years
 - Staph aureus
- If suspected, use sterile needle to obtain culture
- Treat with appropriate antibiotics until extremity regains mobility, patient can bear weight and fever resolved
 - {Clinical pearl: Do not discharge someone who cannot walk}
Other

{Clinical Pearls}
Child With Fever

• Is the child seriously ill?
• If yes, is there an obvious source of infection?

• Past History: HIV (pneumocystis, TB), sickle cell (pneumococcus), nephrotic syndrome (pneumococcus), rheumatic fever (SBE)

• Current Illness: Duration and type of fever, recent tick or louse bites (relapsing fever, rickettsia), water source (typhoid), living conditions – rats, fleas (plague, leptospirosis), infectious contacts (TB, influenza)
Diagnostic Clues

• Fever pattern
 – Relapsing fever
 – Remittent fever
• Fever with anemia
• Fever with jaundice
• Fever with an obvious rash
• Fever with lymphadenopathy
• Fever with white blood cell abnormalities
 – Eosinophilia
 – Neutrophilia
 – Neutropenia
Fever Pattern

- Relapsing Fever
 - Malaria
 - Visceral leishmaniasis (protozoan parasite)
 - African trypanosomiasis (parasitic protozoan trypanosomes)
 - Brucellosis
 - Filariasis (roundworm)
 - Lyme disease

- Remitting Fever
 - Tuberculosis
 - Infectious mononucleosis
 - Typhoid
 - Visceral larva migrans (roundworm)
 - HIV infection
 - Bacterial endocarditis
 - Amebiasis
 - Trichinosis (roundworm)
Malaria

• Uncomplicated vs Complicated
• You know more about this than I do!

{Clinical pearl: Always check blood sugar in someone that is obtunded}
Fever with Anemia

• Malaria
• Incidental pre-existing anemia
• Bartonellosis
• Babesiosis
Fever with Jaundice

- Viral hepatitis
- Epstein-Barr virus (infectious mononucleosis)
- Malaria
- Typhoid
- Leptospirosis
- Cytomegalovirus
Fever with an Obvious Rash

- Meningococcemia
- Rickettsial spotted fevers
- Viral hemorrhagic fevers
- Dengue and similar arboviruses
- Leptospirosis
- Secondary syphilis
- Collagen-vascular disease and drug reactions
Fever with Lymphadenopathy

• Fever and Cervical Lymphadenopathy
 – Primary toxoplasmosis
 – Bartonella (cat scratch disease)
 – Atypical TB

• Fever and Generalized Lymphadenopathy
 – Epstein-Barr virus (infectious mononucleosis)
 – Trypanosomiasis (parasitic protozoan trypanosomes)
 – Toxoplasmosis
 – HIV infection
 – Filariasis
 – Leptospirosis
 – Leukemia/lymphoma
 – Juvenile rheumatoid arthritis
 – Drug reactions
 – Secondary syphilis
Fever with White Blood Cell Abnormalities

- **Eosinophilia**
 - Fasciola hepatica (liver fluke)
 - Filariasis (roundworm)
 - Visceral larva migrans (roundworm)
 - Trichinosis (roundworm)
 - Severe strongyloidiasis (roundworm)
 - Drug reactions

- **Neutrophilia**
 - Pyogenic abscess
 - Leptospirosis (a spirochaete bacterium)
 - Relapsing fever (louse-born bacteria *Rickettsia* and *Borrelia*)
 - Amebic liver abscess
 - Collagen-vascular disease

- **Neutropenia**
 - Viral infections
 - Rickettsial infections
 - Typhoid
Collagen-vascular diseases

- Rheumatic Fever
- Juvenile Rheumatoid Arthritis (JRA)
- Kawasaki’s disease
Other Fevers

• Drug reactions
• Tumors
• Familial fevers
Child With Fever

- Fever With Localizing Signs
 - Meningitis – bulging fontanel, stiff neck, irritable
 - Otitis Media – ear pain or discharge
 - Mastoiditis – tender swelling behind the ear
 - Osteomyelitis – refusal to bear weight, tender area over bone
 - Septic Arthritis - hot swollen, tender joint
 - Infectious Endocarditis - heart murmur, enlarged spleen, petechiae, anemia, weight loss, splinter hemorrhages (under nail), microscopic hematuria
 - Miliary TB – enlarged spleen ± liver, anorexia, night sweats, weight loss, family history of TB, fine infiltrates on chest radiograph {Note: Mantoux test often negative with Miliary TB, severe malnutrition or HIV}
 - Acute Rheumatic Fever – heart murmur, heart failure, arthritis/arthralgia, tachycardia, pericardial friction rub, migrating rash, chorea, history of sore throat
 - Skin and Soft Tissue Infection - erythema, tenderness, warmth, swelling, pus drainage
 - Pneumonia – fast breathing, grunting, crackles, retractions, nasal flaring
 - Viral URI – cough and rhinorrhea, no systemic symptoms
 - Retropharyngeal Abscess – refusal to move neck, pharyngitis, refusal to drink
 - Sinusitis – tenderness and pain over affected sinus
 - Hepatitis – jaundice
 - Rash - petechiae, purpura, maculopapular; cellulitis, pustules
Child With Fever

- **Fever Without Localizing Signs**
 - Malaria
 - Septicemia
 - Primary bacteremia, plague
 - Malignancy
 - Typhoid
 - Particularly consider if fever persists >7 days and malaria has been excluded
 - Complications: acute abdomen, coma, convulsions, cardiac failure, shock
 - Urinary Tract Infection
 - Infection Associated with HIV
 - Other protozoa
 - Babesiosis (parasitic disease via ticks)
 - Toxoplasmosis (parasitic disease from protozoan)
 - **Bartonella species**
 - Carrion’s disease (Peruvian warts via sandflies); Cat scratch disease
 - Arboviral fevers
 - Dengue fever
 - Hemorrhagic fevers
 - Lassa fever, Marburg virus disease, Ebola virus disease, Dengue hemorrhagic fever group, Congo-Crimean fever
Fever Follow Up

• Advise patient to come back if fever persists, overall worsening, unable to drink or to take medications due to persistent vomiting
Sources

• Hospital Care for Children. 2nd Ed. World Health Organization. 2013.