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Exercise Set 1

Throughout this exercise set, k denotes a field.

1. Let C be a category which has all finite products and let G be an object of C. Suppose that for
each object T of C the set hg(T) = Home (T, G) is endowed with the structure of a group, and for
each morphism f: T — T’ the induced function f*: hg(T") — hg(T) is a group homomorphism.
Show that G naturally has the structure of a group object of C.

2. Let k* be the separable closure of k and let G = Gal(k®/k) be the absolute Galois group of k.
By a finite G-set we mean a finite set equipped with a continuous action of Gj. (Note: continuity
simply means the action factors through Gal(k’/k) for some finite Galois extension k’'/k.) For a
finite étale k-algebra A, let ®(A) be the set of k-algebra homomorphisms A — k*; equipped with
its natural action of G%. For a finite Gy-set I, let W(I) be the algebra of Gy-invariants of (k*)’,
where G} acts on (k*)! through its action on both k* and I. (Here we write R! for the product
of the ring R with itself I times; it can also be thought of as the ring of functions I — R.) Show
that ® and ¥ are quasi-inverse functors (between the categories of finite étale k-algebras and finite
Gp-sets).

3. We say that a k-algebra A is connected if it has no idempotents other than 0 and 1; this is
equivalent to Spec(A) being connected. We say that A is geometrically conntected if A @y k is
connected. (a) Suppose A is a connected k-algebra that admits a homomorphism A — k. Show
that A is geometrically connected. (b) Suppose A and B are k-algebras, A is connected, and B is
geometrically connected. Show that A ®j B is connected. (c) Let G = Spec(A) be a finite group
scheme over k. Define G° to be the connected component of G containing the identity. Show that
G° is a subgroup of G.

4. (a) Let R be an F,-algebra. Show that Aut((ap)r) = Gm(R). In other words, show that
Aut(ap,) = Gy, as functors. (b) Let G be the semi-direct product o, X G,,, considered as a (non-
commutative) group scheme over F,. Show that Gieq is a non-normal subgroup of G. (You can
take this to mean: Greq(R) is a subgroup of G(R) for all F-algebras R, and not a normal subgroup
for some F-algebra R.)

5. For an Fj-algebra R, let Wa(R) = R?, the set of ordered pairs in R. Define a group structure
on Wa(R) by
(z,9) + (2" ¢) = (@ + 2",y + o/ + f(2,2))

where f is the polynomial
(X +Y)P— XP—YP

, :
(a) Verify that A — W5(A) is a functor from Fp-algebras to commutative groups. (b) Describe the
group W5 (F,). (c) Show that W5 is an affine group scheme, i.e., construct a Hopf algebra A over
F, and a nautral isomorphism W5(R) = Hom(A, R). (d) Let W5[F] be the kernel of the Frobenius
map on Wy. Show that W5[F] is an extension of o, by c,. (e) Compute the Cartier dual of W[F.
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6. Suppose k has characteristic p. For two finite group schemes G and H over k, let Ext!(G, H)
be the group of isomorphism classes of extensions of G' by H. Compute Ext!(G, H) for G, H €
{Z/pZ, 11y, p}. (Start with the case where k is perfect and use Dieudonné modules, then try the
general case.)



