




Lecture 2: Elliptic curves

This lecture covers the basics of elliptic curves. I begin with a brief review of algebraic curves. I
then define elliptic curves, and talk about their group structure and defining equations. Following
this is the theory of isogenies, including the important fact that degree is quadratic. Next is the
complex theory: elliptic curves are one-dimensional tori. Finally, I talk about the Tate module and
Weil pairing.

A good reference for this lecture is Silverman’s “The arithmetic of elliptic curves” (MR0817210),
especially chapters II, III, and VI.

1 Review of curves

1.1 Divisors

Let k be a field. Let C/k be an algebraic curve (smooth, projective, and connected). A divisor on
C is a formal sum

P
x2C n

x

[x], where n

x

is an integer and all but finitely many of the n

x

are 0.
The set of divisors forms a group, Div(C).

We define the degree of x 2 C to be the the degree of the extension k(x)/k, where k(x) is the
residue field at x. The degree of a divisor D =

P
n

x

[x], denoted deg(D), is
P

n

x

deg(x). We thus
have a homomorphism deg : Div(X) ! Z. We let Div0(X) be its kernel.

We write D � 0 if n
x

� 0 for all x; such divisors are said to be e↵ective. We write D � D

0 to
mean D �D

0 � 0.
Let f be a non-constant function on C. We define the divisor of f , denoted div(f), as

P
v

x

(f)[x],
where v

x

(f) denotes the valuation of f at x, i.e., the order of zero or pole of f at x. An important
theorem states that div(f) has degree 0; in other words, the number of zeros of f is equal to the
number of poles of f , when multiplicities are taken into account. A divisor of the form div(f) is
called principal. The set of principal divisors forms a group PDiv(X).

The divisor class group of X, denoted Cl(X), is the quotient Div(X)/PDiv(X). Since principal
divisors have degree 0, it makes sense to speak of the degree of a divisor class, and we have a
subgroup Cl0(X).

Let f : X ! Y be a map of curves. Given a divisor D =
P

n

x

[x] on X, we let f⇤(D) be
the divisor

P
n

x

[f(x)] on Y . Given a divisor D =
P

n

y

[y] on Y , we let f

⇤(D) be the divisorP
y2Y

P
f(x)=y

e(x|y)n
y

[x] on X, where e(x|y) is the ramification index. Both f⇤ and f

⇤ are homo-
morphisms and preserve principal divisors. Furthermore, we have f⇤(f⇤(D)) = deg(f)D.

1.2 Riemann–Roch

Let D be a divisor on X. Define L(D) to be the set of functions f on X with div(f) � �D. (This
includes the zero function.) For example, if D = [x] then L(D) consists of functions which have
at worst a simple pole at x and are holomorphic everywhere else. It’s easy to see that L(D) is a
k-vector space. Note that if deg(D) < 0 then L(D) = 0, since the divisor of a function has degree
0. We let `(D) be the dimension of L(D).

Theorem 1 (Riemann–Roch). We have `(D)� `(K �D) = deg(D)� g + 1, where g is the genus

of C and K is the so-called canonical divisor, which has degree 2g � 2.

Corollary 2. If deg(D) > 2g � 2 then `(D) = deg(D)� g + 1.
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Proof. With this hypothesis, deg(K �D) < 0, and so `(K �D) = 0.

Special case: if C has genus 1 then `(D) = deg(D) for deg(D) > 0.

1.3 Separability

Let f : X ! Y be a non-constant map of curves. We then have an extension of function fields
k(X)/k(Y ). Field theory implies that there is a maximal intermeidate field K such that k(X)/K
is purely inseparable and K/k(Y ) is separable. Going back to geometry, this means that we can

factor f as X
g! X

0 h! Y , where g is purely inseparable and h is separable. We define the separable
degree of f to be the degree of h, and the inseparable degree of f to be the degree of g.

Suppose k has characteristic p and X is given by the equation f(x, y) = 0. Let f

(p)(x, y) be
the polynomial obtained by raising all the coe�cients of f to the pth power, and let X

(p) be the
curve defined by f

(p)(x, y) = 0. If f(x, y) = 0 then f(x, y)p = 0. But since we’re in characteristic
p, raising to the pth power is a ring homomorphism, and so f(x, y)p = f

(p)(xp, yp). It follows that
(x, y) 7! (xp, yp) defines a map of curves F

p

: X ! X

(p). This map is called the Frobenius map,
and is purely inseparable. We can similarly define a Frobenius map for powers of p.

The Frobenius map is essentially the only example of a purely inseparable map: a map X ! Y

factors as X ! X

(q) ! Y , where the first map is F
q

and the second map is separable. Of course,
q is in the inseparable degree of f .

In characteristic 0, all maps are separable.

2 Elliptic curves

Definition 3. An elliptic curve is a pair (E, 0) where E is a genus 1 curve over k and 0 is a k-point
of E.

2.1 Group law

Proposition 4. The map E(k) ! Cl0(E) given by x 7! [x]� [0] is an isomorphism.

Proof. Suppose D is a degree 0 divisors on E. Then `(D + [0]) = 1 by Riemann–Roch. Let
f 2 L(D+[0]) be non-constant. Then necessarily div(f) = �D� [0]+ [x] for some x 2 E of degree
1, i.e., x 2 E(k). Thus D = [x] � [0] in Cl(E). This proves surjectivity. Injectivity is left to the
reader.

Since Cl0(E) is a group, the above isomorphism allows us to define a group structure on E(k).
In fact, E itself is a group variety, that is, the group law on E(k) is induced from a map of varieties
E ⇥ E ! E.

2.2 Equations

The space L([0]) obviously contains the constant functions. By Riemann–Roch, `([0]) = 1, and so
L([0]) consists exactly of the constant functions.

We have `(2[0]) = 2, and so L(2[0]) contains a non-constant function; call it x.
We have `(3[0]) = 3, and so L(3[0]) contains a function which does not belong to the span of 1

and x; call it y.
We have `(4[0]) = 4, but we know what the new function is: it’s just x2.
Similarly, we have `(5[0]) = 5, but we know what the new function is: it’s xy.

2



Finally, we have `(6[0]) = 6. But we know two new functions: x3 and y

2. We therefore have 7
functions in L(6[0]), namely, 1, x, y, x2, xy, x3, and y

2. It follows that there is a linear dependence:

a1y
2 + a2x

3 + a3xy + a4x
2 + a5y + a6x+ a7 = 0

This equation defines a plane curve E

0, and we have a natural map E ! E

0 taking a point p 2 E

to (x(p), y(p)). One can show that this map is an isomorphism of projective curves. Thus every
elliptic curve is given by an equation of the above form.

Assume now that k is not of characteristic 2 or 3. Then using a simple change of variables we
can eliminate many of the above terms and reach an equation of the form

y

2 = x

3 + ax+ b

Let us call this equation (or the curve it defines) E

a,b

. By putting y = u

�3
y1 and x = u

�2
x1,

for some non-zero u 2 k, we see that E

a,b

is isomorphic to E

u

4
a,u

6
b

. In fact, these are the only
isomorphisms between these curves.

2.3 Discriminant and j-invariant

We have shown that every elliptic curve is of the form E

a,b

, but are all E
a,b

elliptic curves? The
answer is no: some of them are singular. In fact, E

a,b

is singular if and only if the discriminant
� = �16(4a3 + 27b2) vanishes. If � is non-zero then E

a,b

is an elliptic curve.
We have therefore shown that the set of isomorphism classes of elliptic curves over k is naturally

in bijection with the set of pairs (a, b) 2 k

2 with � 6= 0, modulo the equivalence (a, b) ⇠ (u4a, u6b)
for u 2 k

⇥.
Define j = �1728(4a)3/�. The constants here are not so important. It’s clear that j is invariant

under the equivalence relation. Thus j is an invariant of elliptic curves: it is called the j-invariant.
Using what we have stated above, it is easy to see that if k is algebraically closed then two elliptic
curves are isomorphic if and only if they have the same j-invariant. This is not true, in general, if
k is not closed.

3 Isogenies

3.1 Definition and examples

Definition 5. An isogeny f : E1 ! E2 is a non-constant map of curves with f(0) = 0.

One can show that any isogeny is a group homomorphism. We let Hom(E1, E2) denote the set
of isogenies, together with the zero morphism. This is a group, via the group law on either E2.
In fact, it is a free abelian group of finite rank. We write End(E) for Hom(E,E). This is a ring,
where multiplication is composition.

Example 6. The multiplication-by-n map, denote [n] : E ! E, is an isogeny. We regard Z as a
subring of End(E) by n 7! [n].

Example 7. If k has characteristic p, then the Frobenius map F

q

: E ! E

(q) is an isogeny.
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3.2 Basic results

Proposition 8. Let f : E1 ! E2 be an isogeny of separable degree n and inseparable degree m.

• For any y 2 E2(k), the set f

�1(y) ⇢ E1(k) has n elements.

• For any y 2 E2 and any x 2 E1 lying over y, the ramification index e(x|y) is equal to m.

• The map f is everywhere unramified if and only if m = 0; this is automatic in characteristic

0.

Proposition 9. Let E1 and E2 be elliptic curves and let !1 and !2 be non-zero global di↵erentials

on them.

• An isogeny f is separable if and only if f

⇤(!2) is non-zero.

• For an isogeny f define ↵(f) 2 k by f

⇤(!2) = ↵(f)!1. Then ↵ : Hom(E1, E2) ! k is a group

homomorphism.

• If E1 = E2 and !1 = !2 then ↵ is a ring homomorphism.

Corollary 10. The isogeny [n] : E ! E is separable if and only if n is prime to the characteristic

of k.

3.3 Dual isogeny

Proposition 11. Let f : E1 ! E2 be an isogeny. Then there exists an isogeny f

_ : E2 ! E1, called

the dual isogeny, such that the following diagram commutes.

E2(k)

f

_

✏✏

Cl0(E2)

f

⇤

✏✏

E1(k) Cl0(E1)

In fact, this diagram continues to commute if we pass to extensions of k, and this uniquely
specifies f_. With a little more sophistication, one can construct f_ using this diagram.

We have the following two important facts: (1) f

_
f = [deg f ]; and (2) (f + g)_ = f

_ + g

_.
These can be deduced easily from the above characterization of f_ and properties of f⇤.

3.4 The quadratic nature of degree

Let E1 and E2 be elliptic curves and let ⇤ = Hom(E1, E2), a finite free Z-module. For f, g 2 ⇤,
define an element hf, gi of 1

2Z by

2hf, gi = deg(f + g)� deg(f)� deg(g).

Using the identity deg(f) = f

_
f , we find

2hf, gi = f

_
g + g

_
f.

It follows that h, i is bilinear. The above expression shows that hf, fi = deg(f), which shows that
h, i is positive definite. It also shows that deg is a quadratic function.

An important corollary of this discussion is that deg([n]) = n

2. This follows from the quadratic
nature of deg and the obvious fact that deg([1]) = 1.
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4 Elliptic curves over the complex numbers

4.1 Uniformization

Let E be an elliptic curve over C, and identify E with its complex points. Then E is a genus
1 surface. Its universal cover is therefore the complex numbers, and, in fact, the covering map
⇡ : C ! E is a group homomorphism. The kernel of ⇡ is a lattice ⇤, i.e., a subgroup of C such
that the map ⇤ ⌦ R ! C is an isomorphism. We note that ⇤ is naturally identified with the
homology H1(E,Z). Note that if f is a meromorphic function on E then f � ⇡ is a doubly-periodic
meromorphic function on C, that is, it is invariant by translation by any element of ⇤.

Now suppose that ⇤ is a lattice in C, and let E = C/⇤ (and 0 = ⇡(0)). Then E is a genus 1
Riemann surface. Riemann’s theory implies that E is an algebraic curve. To prove this, one must
construct meromorphic functions on E, which amounts to constructing meromorphic functions on
C with period lattice ⇤. The basic example of such a function is the Weierstrass } function, defined
by

}(z) =
1

z

2
+

X

�2⇤⇤

1

(z � �)2
� 1

�

2
,

where here ⇤⇤ = ⇤ \ {0}. The derivative }

0(z) is also doubly periodic, and satisfies an equation of
the form

}

0(z)2 = 4}(z)3 + a}(z) + b.

Thus z 7! (}(z),}0(z)) defines an isomorphism of E with a plane algebraic curve.

4.2 Isogenies

Suppose E1 = C/⇤1 and E2 = C/⇤2. Then one can show that Hom(E1, E2) is naturally in bijection
with the set of complex numbers ↵ 2 C such that ↵⇤1 ⇢ ⇤2. The map corresponding to ↵ is an
isogeny if and only if ↵ 6= 0, and an isomorphism if and only if ↵⇤1 = ⇤2. We can thus say that the
set of isomorphism classes of elliptic curves over C is naturally in bijection with the set of lattices
in C modulo scaling (aka, homothety).

4.3 Complex multiplication

Let ⇤ be a lattice. Scaling ⇤, we can assume it is generated by 1 and some complex number ⌧ .
Let’s example End(E). Suppose ↵⇤ ⇢ ⇤. Then ↵ · 1 2 ⇤, and so ↵ = a+ b⌧ for integers a and b.
Similarly, ↵⌧ 2 ⇤, and so ↵⌧ = c + d⌧ for integers c and d. If b = 0 then ↵ 2 Z, which is not so
interesting. But if b 6= 0 then, combining the equations, we find

b⌧

2 + (a� d)⌧ � c = 0,

which shows that ⌧ , and thus ↵ as well, belongs to a quadratic subfield K (necessarily imaginary)
of C. In fact, ↵ must belong to an order of K, which shows that End(E) is an order in a quadratic
imaginary field. We thus find that End(E) is either Z or an order in a quadratic imaginary field.
In the latter case, we say that E has complex multiplication (CM).

As an example, suppose ⇤ is generated by 1 and i. Then multiplication by i induces an
endomorphism [i] of E. In fact, E is given by the equation y

2 = x

3 + x, and the map [i] is given
by (x, y) 7! (�x, iy).
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5 The Tate module and Weil pairing

5.1 The Tate module of an elliptic curve

Let E/k be an elliptic curve and let n be an integer coprime to the characteristic of k. From
what we have said above, it follows that [n] is a separable map of degree n

2. Thus all fibers of
the map n : E(k) ! E(k) have cardinality n

2; in other words, E[n](k) has cardinality n

2, where
E[n] is the kernel of the isogeny [n] (regarded as a subscheme of E). If n is prime then this implies
that E[n](k) = (Z/nZ)2. The same conclusion holds for composite n using an inductive argument
involving all divisors of n.

Let ` be a prime number di↵erent from the characteristic. The `-adic Tate module of E, denoted
T

`

(E), is the inverse limit of the groups E[ln](k), where the transition maps are multiplication by
`. Explicitly, an element of T

`

(E) is a sequence (x0, x1, . . .) of k-points of E, where x0 = 0 and
`x

i

= x

i�1 for i > 0. The results of the previous paragraph imply that T
`

(E) is isomorphic to Z

2
`

.
If k = C and E = C/⇤ then the n-torsion of E is 1

n

⇤/⇤. It follows that T

`

(E) is naturally
isomorphic to ⇤ ⌦ Z

`

. Thus T

`

(E) is very close to just being ⇤. Over a general field, one should
think of T

`

(E) as the best possible replacement for the lattice ⇤.
An extremely important property of the Tate module which cannot be seen in the complex

picture is its Galois action. If k is not algebraically closed then the n-torsion of E will typically not
be defined over k, and so the absolute Galois group G

k

= Gal(k/k) will move the n-torsion points
around. This carries through the inverse limit, and so there is an action of G

k

on T

`

(E). Picking a
basis for T

`

(E), this action can be thought of as a homomorphism ⇢ : G
k

! GL2(Z
`

), i.e., an `-adic
representation of the Galois group. This perspective has proved to be very useful.

5.2 The Tate module of the multiplicative group

The multiplicative group, denoted G

m

is the algebraic group which represents the functor R 7! R

⇥

(where R is a k-algebra). As a scheme, it is simply A

1 \ {0}, i.e., Spec(k[t, t�1]).
The construction of the Tate module in the previous section can be applied equally well to G

m

.
If n is prime to the characteristic then the n-torsion G

m

[n] is just the group of nth roots of unity; its
k-points is isomorphic to Z/nZ. It follows that T

`

(G
m

) is isomorphic to Z

`

as a group. Of course,
it also carries a Galois action, which can be recorded as a homomorphism � : G

k

! GL1(Z
`

) = Z

⇥
`

.
This homomorphism is called the cyclotomic character, and describes how the Galois group acts
on roots of unity.

A common notation, which we will use, is to write Z

`

(1) for T

`

(G
m

). The idea is that the
underlying group is Z

`

and the (1) records that the Galois group is acting through the first power
of the cyclotomic character.

5.3 The Weil pairing

In what follows, I’ll abbreviate E[n](k) to E[n] and write µ

n

for the nth roots of unity in k.

Proposition 12. Let E/k be an elliptic curve and let n be prime to the characteristic. Then there

exists a pairing e

n

: E[n]⇥ E[n] ! µ

n

satisfying the following:

• Bilinear: e

n

(x + y, z) = e

n

(x, z)e
n

(y, z). (Note: the group law on E[n] is typically written

additively, while that on µ

n

is written multiplicatively.)

• Alternating: e

n

(x, x) = 1. This implies e

n

(x, y) = �e

n

(y, x), but is stronger if n is even.

• Non-degenerate: if e

n

(x, y) = 1 for all y 2 E[n] then x = 0.
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• Galois equivariant: e

n

(�x,�y) = �e

n

(x, y) for � 2 G

k

.

• Compatibility: if x 2 E[nm] and y 2 E[n] then e

nm

(x, y) = e

n

(mx, y).

The compatibility condition allows us to take the inverse limit of the e

`

n to obtain a pairing on
the Tate module

h, i : T
`

(E)⇥ T

`

(E) ! Z

`

(1).

The properties of the Weil pairing imply that the above pairing induces an isomorphism
V2(T

`

E) ⇠=
Z

`

(1). In other words, if one regards the Tate module as a two dimensional Galois representation
⇢, the Weil pairing implies that det(⇢) = �, the cyclotomic character.

The Weil pairing has another important compatibility property:

Proposition 13. Let f : E1 ! E2 be an isogeny, let x 2 E1[n], and let y 2 E2[n]. Then

e

n

(f(x), y) = e

n

(x, f_(y)), where f

_
is the dual isogeny.

From this, we can deduce the following useful result:

Proposition 14. Let f : E ! E be an isogeny. Then deg(f) = det(f | T
`

E).

Proof. Suppose x, y 2 T

`

(E). Then hf(x), f(y)i = det(f)hx, yi. This is essentially the definition
of the determinant! On the other hand, we have hf(x), f(y)i = hf_(f(x)), yi, and f

_
f = [deg f ].

This completes the proof.
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