Attribution Key
for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt
{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **PD-GOV** Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)
- **PD-EXP** Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
- **PD-SELF** Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
- **ZERO** Creative Commons – Zero Waiver
- **BY** Creative Commons – Attribution License
- **BY-SA** Creative Commons – Attribution Share Alike License
- **BY-NC** Creative Commons – Attribution Noncommercial License
- **BY-NC-SA** Creative Commons – Attribution Noncommercial Share Alike License
- **GNU-FDL** GNU – Free Documentation License

Make Your Own Assessment
{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **PD-INEL** Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan has used under a Fair Use determination. }

- **FAIR USE** Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ*

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Lecture 3: Abelian varieties (analytic theory)

This lecture covers two disjoint topics. First, I go over the theory of elliptic curves over finite fields (point counting and the notions of ordinary and supersingular). Then I talk about the abelian varieties over the complex numbers from the analytic point of view.

1 Elliptic curves over finite fields

A good reference for this section is Chapter V of Silverman's "The arithmetic of elliptic curves" (MR0817210).

1.1 Point counting

Let E be an elliptic curve over the finite field \mathbb{F}_q. Then $E^{(q)} = E$, and so the Frobenius map F_q maps E to itself. A point x of $E(\mathbb{F}_q)$ belongs to $E(\mathbb{F}_q)$ if and only if it is fixed by F_q (since this is equivalent to it being Galois invariant). Thus $E(\mathbb{F}_q)$ is the set of \mathbb{F}_q-points of the kernel of the endomorphism $1 - F_q$. This endomorphism is separable: indeed, if ω is a differential on E then $F_q^*(\omega) = 0$, and so $(1 - F_q)^* \omega = \omega$ is non-zero. We have thus proved the following proposition:

Proposition 1. $\# E(\mathbb{F}_q) = \deg(1 - F_q)$.

Recall that we have defined a positive definite bilinear pairing \langle , \rangle on $\text{End}(E)$, and that $\langle f, f \rangle = \deg(f)$. Appealing to the Cauchy–Schwartz inequality, we find $\langle 1, -F_q \rangle^2 \leq \deg(q) \deg(F_q) = q$, and so $\langle 1, -F_q \rangle \leq \sqrt{q}$. But, by definition,

$$2\langle 1, -F_q \rangle = \deg(1 - F_q) - \deg(1) - \deg(F_q),$$

and so we have the following theorem

Theorem 2 (Hasse bound). $|\# E(\mathbb{F}_q) - q - 1| \leq 2\sqrt{q}$.

In other words, we can write $\# E(\mathbb{F}_q)$ as $q + 1 - a$, where a is an error term of size at most $2\sqrt{q}$. We have $a = \langle 1, F_q \rangle$ by the above. We also have the following interpretation of a:

Proposition 3. We have $a = \text{tr}(F_q | T_1E)$.

Proof. This is formal: if A is any 2×2 matrix, then

$$\text{tr}(A) = 1 + \det(A) - \det(1 - A).$$

Applying this to the matrix of F_q on T_1E, the result follows. \qed

A Weil number (with respect to q) of weight w is an algebraic number with the property that any complex embedding of it has absolute value $q^{w/2}$.

Theorem 4 (Riemann hypothesis). The eigenvalues of F_q on T_1E are Weil numbers of weight 1.

Proof. The characteristic polynomial of F_q on T_1E is $T^2 - aT + q$. The eigenvalues are the roots of this polynomial, i.e., $(a \pm \sqrt{a^2 - 4q})/2$. The Hasse bound shows that $a^2 - 4q \leq 0$, and so the absolute value of this algebraic number (or its complex conjugate) is \sqrt{q}. This completes the proof. \qed

These are notes for Math 679, taught in the Fall 2013 semester at the University of Michigan by Andrew Snowden.
The zeta function of a variety X/F_q is defined by

$$Z_X(T) = \exp \left(\sum_{r=1}^{\infty} \#X(F_q) \frac{T^r}{r} \right).$$

Theorem 5 (Rationality of the zeta function). We have

$$Z_E(T) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}.$$

Proof. The above results show that

$$\#E(F_q) = q + 1 - \text{tr}(F_q | T_1 E).$$

Let α and β be the eigenvalues of F_q on $T_1 E$. Since F_q is just F_q^r, the eigenvalues of F_q^r on $T_1(E)$ are α^r and β^r. We thus see that

$$\#E(F_q^r) = q^r + 1 - \alpha^r - \beta^r.$$ We now have

$$\sum_{r=1}^{\infty} \#E(F_q^r) \frac{T^r}{r} = -\log(1 - T) - \log(1 - qT) + \log(1 - \alpha T) + \log(1 - \beta T),$$

and so

$$Z_E(T) = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)}.$$

from which the result easily follows. \qed

Corollary 6. $\#E(F_q^r)$ is determined, for any r, from $\#E(F_q)$.

Suppose that $f: E_1 \to E_2$ is an isogeny. Then f induces a map $T_1(E_1) \to T_1(E_2)$ which commutes with Frobenius. Since the kernel of f is finite, the map it induces on Tate modules has finite index image; in particular, it induces an isomorphism after tensoring with \mathbb{Q}_l. It follows that the eigenvalues of Frobenius on the two Tate modules agree, and so:

Theorem 7. If E_1 and E_2 are isogenous then $\#E_1(F_q) = \#E_2(F_q)$.

In fact, the converse to this theorem is also true, as shown by Tate.

1.2 Ordinary and supersingular curves

Let E be an elliptic curve over a field k of characteristic p. Then the map $[p]: E \to E$ is not separable and has degree p^2. It follows that the separable degree of $[p]$ is either p or 1. In the first case, E is called ordinary, and in the second case, supersingular. The following result follows immediately from the definitions, and earlier results:

Proposition 8. If E is ordinary then $E[p](\overline{k}) \cong \mathbb{Z}/p\mathbb{Z}$. If E is supersingular then $E[p](\overline{k}) = 0$.

We will revisit the ordinary/supersingular dichotomy after discussing group schemes. For now, we prove just one more result.

Proposition 9. If E is supersingular then $j(E) \in \mathbb{F}_{p^2}$.

2
Proof. Suppose E is supersingular. Then $[p]$ is completely inseparable, and thus factors as $E \to E^{(p^2)} \to E$, where the first map is the Frobenius F_{p^2} and the second map is an isomorphism (since it has degree 1). Since $j(E^{(p^2)})$ is equal to $F_{p^2}(j(E))$ and j is an isomorphism invariant, we see that $j(E) = F_{p^2}(j(E))$, from which the result follows.

Corollary 10. Assume k algebraically closed. Then there are only finitely many supersingular elliptic curves over k, and they can all be defined over \mathbf{F}_{p^2}.

Proof. An elliptic curve over an algebraically closed field descends to the field of its j-invariant, which gives the final statement. The finiteness statement follows immediately from this.

2 Abelian varieties

A good reference for this section is the first chapter of Mumford’s “Abelian varieties” (MR0282985).

2.1 Definition and relation to elliptic curves

Definition 11. An abelian variety is a complete connected group variety (over some field).

Example 12. An elliptic curve is a one-dimensional abelian variety.

Proposition 13. Every one-dimensional abelian variety is an elliptic curve.

Proof. Let A be a one-dimensional abelian variety. We must show that A has genus 1. Pick a non-zero cotangent vector to A at the identity. The group law on A allows us to translate this vector uniquely to any other point, and so we can find a nowhere vanishing holomorphic 1-form on A. This provides an isomorphism $\Omega^1_A \cong \mathcal{O}_A$, and so $H^0(A, \Omega^1_A)$ is one-dimensional.

For the rest of this lecture we work over the complex numbers.

2.2 Compact complex Lie groups

Let A be an abelian variety. Then $A(\mathbb{C})$ is a connected compact complex Lie group. We begin by investigating such groups. Thus let X be such a group. Define V to be the tangent space to X at the identity (the Lie algebra). Let $g = \dim(X)$. Recall that there is a holomorphic map $\exp: V \to X$. We have the following results:

- X is commutative. Reason: the map $\text{Ad}: X \to \text{End}(V)$ is holomorphic, and therefore constant, since X is compact and $\text{End}(V)$ is a vector space. Since Ad assumes the value 1, this is the only value it assumes. It follows that X acts trivially on $\text{End}(V)$, and so V is a commutative Lie algebra. The result follows.

- \exp is a homomorphism. Reason: this follows from commutativity.

- \exp is surjective. Reason: the image of \exp contains an open subset of X, since \exp is a local homeomorphism. The image of \exp is also a subgroup of X. Thus the image is an open subgroup U. The quotient X/U is discrete, since U is open, and connected, since X is, and is therefore a point. Thus $X = U$.

- $M = \ker(\exp)$ is a lattice in V, and thus isomorphic to \mathbb{Z}^g. Reason: since \exp is a local homeomorphism, M is discrete. Since $X = V/M$ is compact, M is cocompact.
• X is a torus, i.e., isomorphic to a product of circles. Reason: clear from $X = V/M$.

• The n-torsion $X[n]$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^2g$. Reason: $X[n]$ is isomorphic to $\frac{1}{n}M/M$ by the exponential map.

• $H^1(X, \mathbb{Z})$ is naturally isomorphic to Hom$(\wedge^1(M), \mathbb{Z})$. Reason: a simple application of the K"unneth formula shows that if T is any torus then cup product induces an isomorphism $\wedge^1(H^1(T, \mathbb{Z})) \to H^1(T, \mathbb{Z})$. For our torus X, we have $H_1(X, \mathbb{Z}) = M$, and the result follows.

2.3 Line bundles on complex tori

Let $X = V/M$, as above. Define Pic(X) (the Picard group of X) to be the set of isomorphism classes of line bundles on X. This is a group under tensor product. Define Pic$^0(X)$ to be the subgroup consisting of those bundles which are topologically trivial, and define NS(X) (the Néron–Severi group) to be the quotient $\text{Pic}(X)/\text{Pic}^0(X)$. We are now going to describe how to compute these groups in terms of V and M.

A Riemann form on V (with respect to M) is a Hermitian form H such that $E = \text{Im}H$ takes integer values when restricted to M. (Note: some people include positive definite in their definition of Riemann form; we do not.) Let \mathcal{R} be the set of Riemann forms, which forms a group under addition. Let \mathcal{P} be the set of pairs (H, α), where $H \in \mathcal{R}$ and $\alpha: M \to U(1)$ is a function satisfying $\alpha(x + y) = e^{i\pi E(x,y)}\alpha(x)\alpha(y)$. (Here $U(1)$ is the set of complex numbers of absolute value 1.) We give \mathcal{P} the structure of a group by $(H_1, \alpha_1)(H_2, \alpha_2) = (H_1 + H_2, \alpha_1\alpha_2)$. Let \mathcal{P}^0 be the group of homomorphisms $M \to U(1)$, regarded as the subgroup of \mathcal{P} with $H = 0$.

Theorem 14 (Appell–Humbert). We have an isomorphism $\text{Pic}(X) \cong \mathcal{P}$, which induces isomorphisms $\text{Pic}^0(X) \cong \mathcal{P}^0$ and $\text{NS}(X) \cong \mathcal{R}$.

Some remarks on the theorem:

• Let $\pi: V \to X$ be the quotient map. If L is a line bundle on X then $\pi^*(L)$ is the trivial line bundle on V, since all line bundles on V are trivial. Furthermore, $\pi^*(L)$ is M-equivariant, and L can be recovered as the quotient of $\pi^*(L)$ by M. Thus to prove the theorem, it suffices to understand the M-equivariant structures on the trivial line bundle over V.

• Let $(H, \alpha) \in \mathcal{P}$. Define an action of M on $V \times \mathbb{C}$ by

$$
\lambda \cdot (v, z) = (v + \lambda, \alpha(\lambda)e^{\pi H(v, \lambda) + \pi H(\lambda, \lambda)/2}z).
$$

This gives the trivial bundle on V an M-equivariance. We let $L(H, \alpha)$ be the quotient, a line bundle on X. The isomorphism $\mathcal{P} \to \text{Pic}(X)$ is $(H, \alpha) \mapsto L(H, \alpha)$. The main content of the theorem is to show that the equivariances we just constructed are all of them.

• Remark. There is a bijection between Hermitian forms H on V and alternating real forms E satisfying $E(ix, iy) = E(x, y)$. The correspondence takes H to $E = \text{Im}H$, and E to $H(x, y) = E(ix, y) + iE(x, y)$. Thus a Riemann form H is determined by the associated alternating pairing on M.

• Let $(H, \alpha) \in \mathcal{P}$, and let $E = \text{Im}H$. Then E defines an element of Hom$(\wedge^2(M), \mathbb{Z})$. But we have previously identified this group with $H^2(X, \mathbb{Z})$. In fact, E, regarded as an element of H^2, is the Chern class $c_1(L(H, \alpha))$. We thus see that $L(H, \alpha)$ is topologically trivial if and only if $E = 0$, which is the same as $H = 0$. This gives the isomorphic $\text{Pic}^0(X) \cong \mathcal{P}^0$.

4
Let \(x \in X \) and let \(t_x : X \to X \) be the translation-by-\(x \) map, i.e., \(t_x(y) = x + y \). Given a line bundle \(L \) on \(X \), we get a new line bundle \(t_x^*(L) \) on \(X \). We thus get an action of \(X \) on \(\text{Pic}(X) \), with \(x \) acting by \(t_x^* \). The following proposition describes this action in terms of the Appell–Humbert theorem.

Proposition 15. We have an isomorphism \(t_x^* L(H, \alpha) \cong L(H, \alpha \cdot e^{2\pi i E(x, -)}) \).

A few remarks:

- First, we note that \(\lambda \mapsto e^{2\pi i E(x, \lambda)} \) makes sense as a function on \(M \), since \(E \) takes integral values on \(M \).

- The line bundle \(L(H, \alpha) \) is translation invariant (i.e., isomorphic to its pullbacks by \(t_x^* \)) if and only if \(H = 0 \). Indeed, it is clear that if \(H = 0 \) then \(L(H, \alpha) \) is translation invariant. Conversely, if \(L(H, \alpha) \) is translation invariant then \(e^{2\pi i E(x, \lambda)} = 1 \) for all \(x \in V \) and all \(\lambda \in M \), from which it easily follows that \(E = 0 \), and so \(H = 0 \) as well. We can therefore characterize \(\text{Pic}^0(X) \) as the group of translation invariant line bundles on \(X \).

- Let \(L \) be a line bundle on \(X \). Then \(x \mapsto t_x^*(L) \otimes L^* \) defines a group homomorphism \(\phi_L : X \to \text{Pic}^0(X) \). Indeed, taking \(L = L(H, \alpha) \), we see that \(t_x^*(L) \otimes L^* \) is equal to \(L(0, e^{2\pi i E(x, -)}) \). It follows that, in fact, \(\phi_L \) depends only on \(c_1(L) \).

2.4 Sections of line bundles

A \(\theta \)-function on \(V \) with respect to \((H, \alpha) \in \mathcal{P} \) is a holomorphic function \(\theta : V \to \mathbb{C} \) satisfying the functional equation

\[
\theta(v + \lambda) = \alpha(\lambda)e^{\pi H(v, \lambda) + \pi H(\lambda, \lambda)/2}.
\]

Given a section \(s \) of \(L(H, \alpha) \) over \(X \), we obtain a section \(\pi^*(s) \) of \(\pi^*(L(H, \alpha)) \) over \(V \). Identifying \(\pi^*(L(H, \alpha)) \) with the trivial bundle, \(\pi^*(s) \) becomes a function on \(V \), and the equivariance condition is exactly the above functional equation. We therefore find:

Proposition 16. The space \(\Gamma(X, L(H, \alpha)) \) is canonically identified with the space of \(\theta \)-functions for \((H, \alpha) \).

Suppose that \(H \) is degenerate, and let \(V_0 \) be its kernel (i.e., \(x \in V_0 \) if \(H(x, -) = 0 \)). Then \(V_0 \) is also the kernel of \(E \), and since \(E \) takes integral values on \(M \), it follows that \(M_0 = V_0 \cap M \) is a lattice in \(V_0 \). Let \(\theta \) be a \(\theta \)-function, and \(u \) a large element of \(V_0 \). Write \(u = \lambda + \epsilon \) with \(\lambda \in M_0 \) and \(\epsilon \) in some fundamental domain. Then for any \(v \in V \) we have

\[
|\theta(v + u)| = |\theta(v + \epsilon)|
\]

since \(H(\lambda, -) = 0 \). It follows that \(u \mapsto \theta(v + u) \) is a bounded holomorphic function on \(V_0 \), and therefore constant. Thus \(\theta \) factors through \(V/V_0 \). In particular, \(L(H, \alpha) \) is not ample.

Now suppose that \(H(w, w) < 0 \) for some \(w \in V \). Let \(t \) be a large complex number and write \(tw = \lambda + \epsilon \), similar to the above. Then

\[
|\theta(v + tw)| = |\theta(v + \epsilon)|e^{\pi \text{Re}(H(v + \epsilon, \lambda)) + \pi H(\lambda, \lambda)/2}.
\]

The quantity \(H(\lambda, \lambda) \) is dominant, and very negative. We thus see that \(|\theta(v + tw)| \to 0 \) as \(|t| \to \infty \), which implies \(\theta(v + tw) \) is 0 as a function of \(t \). Thus \(\theta(v) = 0 \) for all \(v \), and so 0 is the only \(\theta \)-function.

We have thus shown that if \(H \) is not positive definite then \(L(H, \alpha) \) is not ample. The converse holds as well:
Theorem 17 (Lefschetz). The bundle $L(H, \alpha)$ is ample if and only if H is positive definite.

Some remarks:

- This theorem shows that X is a projective variety is and only if there exists a positive definite Riemann form on V.
- In fact, one can show that if X is algebraic then it is necessarily projective, and so X is algebraic if and only if it has a positive definite Riemann form. One can show that if H is positive definite then $L(H, \alpha)^{\otimes n}$ is very ample for all $n \geq 3$.
- Suppose E is the elliptic curve given by $C/(1, \tau)$. Then $H(x, y) = \frac{xy}{|\text{Im}(y)|}$ is a positive definite Riemann form on C. This recovers the fact that all one-dimensional complex tori are algebraic.
- Most complex tori of higher dimension do not possess even a non-zero Riemann form, and so most are not algebraic.

2.5 Maps of tori

A map of complex tori $X \to Y$ is a holomorphic group homomorphism. In fact, any holomorphic map taking 0 to 0 is a group homomorphism. We write $\text{Hom}(X, Y)$ for the group of maps. An isogeny is a map of tori which is surjective and has finite kernel. The degree of the isogeny is the cardinality of the kernel.

Example 18. Multiplication-by-n, denoted $[n]$, is an isogeny of degree n^{2g}. \qed

2.6 The dual torus

Let $X = V/M$ be a complex torus. Let \mathcal{V}^* be the vector space of conjugate-linear functions $V \to \mathbb{C}$, and let $M^\vee \subset \mathcal{V}^*$ be the set of such functions f for which $\text{Im} f(M) \subset \mathbb{Z}$. Then M^\vee is a lattice in \mathcal{V}^*, and we define $X^\vee = \mathcal{V}^*/M^\vee$. We call X^\vee the dual torus of X. Note that we have a natural isomorphism $(X^\vee)^\vee = X$.

Formation of the dual torus is clearly a functor: if $f: X \to Y$ is a map of tori then there is a natural map $f^\vee: Y^\vee \to X^\vee$. If f is an isogeny, then so is f^\vee, and they have the same degree. Even better:

Proposition 19. If f is an isogeny then $\ker(f)$ and $\ker(f^\vee)$ are canonically dual (in the sense of finite abelian groups).

Proof. Write $X = V_1/M_1$ and $Y = V_2/M_2$, and let $g: V_1 \to V_2$ be the linear map inducing. Then $\ker(f) = g^{-1}(M_2)/M_1$, while $\ker(f^\vee) = (g^*)^{-1}(M_1^\vee)/M_2^\vee$. If $x \in \ker(f)$ and $y \in \ker(f^\vee)$ then $\langle g(x), y \rangle$ is a rational number (since $g(x) \in M_2$ and y is in a lattice containing M_2^\vee with finite index), and is well-defined up to integers. We thus have a pairing $\ker(f) \times \ker(f^\vee) \to \mathbb{Q}/\mathbb{Z}$ with $n = \deg(f)$, which puts the two groups in duality. \qed

Applying this in the case where $X = Y$ and $f = [n]$, we see that $X[n]$ and $X^\vee[n]$ are in duality. This gives us a canonical pairing $X[n] \times X^\vee[n] \to \mathbb{Z}/n\mathbb{Z} \cong \mu_n$, which is called the Weil pairing.

Proposition 20. We have a natural isomorphism of groups $X^\vee = \text{Pic}^0(X)$.

Proof. The map $\mathcal{V}^* \to \mathcal{P}^0$ which takes $f \in \mathcal{V}^*$ to the map $\lambda \mapsto e^{2\pi i \text{Im}(f(\lambda))}$ is easily seen to be a surjective homomorphism with kernel M^\vee. It thus descends to an isomorphism $X^\vee \to \text{Pic}^0(X)$. \qed
Let H be a Riemann form on V. Then $v \mapsto H(V, -)$ defines an isomorphism of complex vector spaces $V \to V^*$, and carries M into M^\vee. It thus defines a map $\phi_H : X \to X^\vee$ of complex tori. This map is an isogeny if and only if H is non-degenerate. Identifying X^\vee with Pic$^0(X)$, ϕ_H coincides with ϕ_L, where $L = L(H, \alpha)$ for any α. A polarization of X is a map of the form ϕ_H (or ϕ_L) with H positive-definite (or L ample). A principal polarization is a polarization of degree 1. We thus see that X admits a polarization if and only if it is algebraic.