




Lecture 5: Group schemes 1

This is the first of three lectures on group schemes. I begin by introducing the idea of a group
object in a category. I then define what a group scheme is, and explain the connection to Hopf
algebras. This is followed by several important examples. For the rest of the lecture, I focus
on finite commutative group schemes over fields, and cover most of the basic facts (existence of
quotients, classification in the tale case, the connected–étale sequence, etc.).

A good reference for today is Tate’s article “Finite flat group schemes” in the book “Modular
forms and Fermat’s last theorem” (MR1638478).

1 Group objects in a category

1.1 Group objects

Let C be a category with all finite products; denote the final object by pt. A group object in C is
a tuple (G,m, i, e), where:

• G is an object of C;

• m is a map G⇥G ! G, the multiplication map;

• i is a map G ! G, the inversion map; and

• e is a map pt ! G, the identity section (or identity element),

such that the usual axioms of group theory hold:

• Associativity: the following diagram commutes:

G⇥G⇥G
m⇥id //

id⇥m
✏✏

G⇥G

m
✏✏

G⇥G
m // G

• Identity element: the following composition is equal to the identity:

G G⇥ pt
id⇥e // G⇥G

m //// G

And similarly if id⇥ e is changed to e⇥ id.

• Inverses: the following diagram commutes:

G
id⇥i//

✏✏

G⇥G

m

✏✏
pt e // G

And similarly if id⇥ i is changed to i⇥ id.
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We say that a group object G is commutative if the following diagram commutes:

G⇥G
⌧ //

m
✏✏

G⇥G

m
✏✏

G G

Here ⌧ is the switching-of-factors map.
Suppose G and H are group objects. A homomorphism from G to H is a morphism G ! H in

C such that all the relevant diagrams commute. In this way, there is a category of group objects in
C.

Example 1. An abelian variety is, by definition, a group object in the category of complete
varieties.

1.2 Functor of points

Let X be an object of C. For an object Y of C, let hX(Y ) = HomC(Y,X). Then hX defines a
contravariant functor from C to the category of sets. Yoneda’s lemma says that X is determined
from hX , in a precise sense.

Suppose G is a group object of C. One then verifies that hG(Y ) inherits the structure of a group;
for example, the multiplication map hG(Y )⇥ hG(Y ) ! hG(Y ) is induced from m. Furthermore, if
f : Y ! Y 0 is a morphism in C, then the induced map f⇤ : hG(Y 0) ! hG(Y ) is a group homomor-
phism. Conversely, if G is an object of C such that each hG(Y ) is endowed with the structure of a
group and each f⇤ is a group homomorphism then G naturally has the structure of a group object
of C. In other words, giving G a group structure is the same as lifting hG to a functor from C to
the category of groups. Said yet again, the Yoneda embedding is an equivalence between group
objects in C and group objects in the functor category Fun(C, Set) which are representable. This
point of view allows one to define group objects even if C doesn’t have finite products.

The group object G is commutative if and only if hG(Y ) is commutative for all Y .

1.3 Kernels and cokernels

The category of group objects in C has a zero object 1, namely the object pt endowed with its
unique group structure. One therefore has a definition for kernel and cokernel of a map of group
objects, namely fiber (co)product with the zero object (if it exists).

Let f : G ! H be a homomorphism of group objects. Since ker(f) is defined by what maps to
it look like, one has a good description of its functor of points: (ker f)(T ) is equal to the kernel of
the map f : G(T ) ! H(T ). In contrast, coker(f) is defined by what maps out of it look like, and
so its functor of points does not admit an easy description in general. In particular, it is not true
that (coker f)(T ) is the cokernel of f : G(T ) ! H(T ).

2 Group schemes

2.1 The connection with Hopf algebras

Fix a field k. The category of a�ne schemes over k is anti-equivalent to the category of k-algebras.
One therefore finds that an a�ne group scheme G over k correspond to a k-algebra A equipped
with all the structure of a group object, but with the arrows going in the opposite direction:
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• The multiplication map G⇥G ! G turns into a comultiplication map A ! A⌦A.

• The inversion map G ! G turns into the antipode map A ! A.

• The identity section pt ! G turns into the counit A ! k.

• One can furthermore translate the group axioms: for example, associativity of G means the
comultiplication on A is coassociative.

A (commutative) k-algebra A equipped with a comultiplication, counit, and antipode satisfy-
ing then necessary axioms is called a (commutative) Hopf algebra. It is revealing to think of a
Hopf algebra not as an algebra with comultiplication, counit, and antipode, but as a vector space
with multiplication, unit, comultiplication, counit, and antipode. In this way, the data becomes
completely symmetric with respecting to flipping all the arrows.

2.2 Examples

In what follows, we write T = Spec(R) for a test scheme.

• The additive group. Let Ga = Spec(k[t]). We have Hom(T,Ga) = R. Regarding R as
an additive group, this shows that Ga naturally has the structure of a commutative group
scheme. It is called the additive group. The comultiplication on k[t] is given by t 7! t⌦1+1⌦t.

• The multiplicative group. Let Gm = Spec(k[t, t�1]). We have Hom(T,Gm) = R⇥, the group
of units in R. Again, this shows that Gm naturally has the structure of a commutative group
scheme. The comultiplication is given by t 7! t⌦ t.

• The constant group. Let �0 be an ordinary group. Let � be the disjoint union of Spec(k)’s
indexed by �0. We have Hom(T,�) = Hom(⇡0(T ),�0), which is a group; therefore � is a
group scheme, which we call the constant group scheme on �0. In fact, � = Spec(A), where A
is the ring of functions �0 ! k. We can identify A⌦A with the ring of functions �0⇥�0 ! k,
and then comultiplication takes a function f to the function (x, y) 7! f(xy). In the future,
we do not notationally distinguish between � and �0.

• Roots of unity. Let µn = Spec(k[t]/(tn � 1)). We have that Hom(T, µn) is equal to the set of
elements x 2 R such that xn = 1. This is obviously a commutative group under multiplication,
and so µn is a commutative group scheme. It is the kernel of the multiplication-by-n map on
Gm.

• The group scheme ↵p. Assume k has characteristic p. Let ↵p = Spec(k[t]/(tp)). The set
Hom(T,↵p) is identified with the set of elements x 2 R which satisfy xp = 0. Since k has
characteristic p, this is a group under addition. It follows that ↵p is a commutative group
scheme. It is the kernel of the Frobenius map Fp on Ga.

Remark 2. The schemes ↵p and µp are isomorphic as schemes, but not as group schemes.

2.3 Quotients

We are chiefly interested in finite commutative group schemes over k. Note that finite schemes
are always a�ne, so such group schemes are described by finite dimensional commutative and
cocommutative Hopf algebras. Examples include the constant group scheme on a finite group, µn,
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and ↵p. We define the order of such a group scheme G, denoted #G, to be the dimension of its
Hopf algebra.

We state without proof the following theorem, first proved by Grothendieck.

Theorem 3. Let G be a finite commutative group scheme over k and let H be a closed subgroup.

• Then the quotient G/H exists, and is a finite group scheme over k.

• The functor hG/H is the quotient of hG by hH in the category of sheaves (on the big fppf site

over k). In other words, hG/H is the sheafification of the presheaf T 7! G(T )/H(T ).

• We have #(G/H) = #G/#H.

Proving part 1 is not di�cult: it simply amounts to showing that kernels exist in the category
of Hopf algebras, which can be checked explicitly. Parts 2 and 3 are more di�cult.

Corollary 4. The category of finite commutative group schemes over k is an abelian category.

2.4 The étale case

We now study the case where G is étale over k. Recall that a finite dimensional k-algebra is étale if
and only if it is a product of separable extensions of k; when k has characteristic 0, this is equivalent
to being reduced.

Let A be an étale k-algebra and let ks be the separable closure of k. Then A ⌦ ks is a finite
product of copies of ks indexed by some set I. The Galois group Gk naturally permutes the set I.
We have thus defined a functor

� : {finite étale k-algebra} ! {finite Gk-sets}.

We note that �(A) = X(ks), where X = Spec(A).
Now let I be a finite Gk-set. Let A =

Q
i2I k

s. Then Gk naturally acts on A, through its action
on both I and ks. Let A be the invariant subalgebra. One easily sees that A is a finite dimensional
algebra and étale over k. We thus have a functor

 : {finite Gk-sets} ! {finite étale k-algebras}.

We have the following basic result:

Theorem 5. The functors � and  are naturally quasi-inverse.

Translting from algebras to schemes, we obtain:

Corollary 6. The functor

{finite étale schemes over k} ! {finite Gk-sets}

given by X 7! X(ks) is an equivalence.

Taking the categories of commutative group objects on each side, we obtain:

Corollary 7. The functor

{finite étale commutative group schemes over k} ! {finite Gk-modules}

given by G 7! G(ks) is an equivalence.

We thus see that the study of étale group schemes is equivalent to the study of Galois repre-
sentations.
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2.5 The connected–étale sequence

Let G = Spec(A) be a finite commutative group scheme over k. Write A =
Q

Ai with each Ai

local. There is a unique index, denoted 0, such that the counit of A factors through A0. Let
G� = Spec(A0), a connected closed subscheme of G. Since G� has a k-point, it is geometrically
connected, and so G� ⇥G� is still connected; it follows that multiplication maps G� ⇥G� into G�,
from which one easily sees that G� is a subgroup of G. We call G� the identity component of G.

Let Aet be the maximal étale subalgebra of A. Concretely, Aet =
Q
(Ai)et, where (Ai)et is the

separable closure of k in Ai. Put Get = Spec(Aet). Formation of Aet respects tensor products, and
so if G is a group scheme then so is Get, and the natural map G ! Get is a homomorphism. The
universal property of Aet implies the following: a map from G to an étale group scheme factors
uniquely through Get. Note that the natural map G(k) ! Get(k) is an isomorphism.

The tensor product A ⌦Aet k (where the map Aet ! k is the counit) is the universal quotient
of A in which the idempotent defining A0 is identified with 1, and is therefore equal to A0. In
other words, G� is the fiber product of G with the trivial group over Get. We have thus proved the
sequence

0 ! G� ! G ! Get ! 0

is exact. This sequence is called the connected–étale sequence.
Suppose now that k is perfect, i.e., every finite extension of k is separable. Then the separable

closure of k in Ai coincides with the algebraic closure, and maps isomorphically onto the residue
field of Ai. It follows that the map Gred ! Get is an isomorphism of schemes. Since k is perfect,
a product of reduced schemes is still reduced, and so Gred is a closed subgroup of G. We have
thus shown that, in this case, the connected–étale sequence splits. Furthermore, since there are no
non-zero maps from an étale group scheme to a connected group scheme, the splitting is canonical.
In other words, we have a canonical decomposition G = G� ⇥Get.

Example 8. We now give an example where the connected–étale sequence does not split. This is
not the most elementary example, but it is a natural one. Let X be some moduli scheme of elliptic
curves over Fp (say X0(N)), and let E ! X be the universal family of elliptic curves. Let k be the
function field of X (which is not perfect), and let E/k be the generic fiber of E .

Then E is not defined over the Fp: indeed, the function j : X ! P

1 is not constant, and so
j 2 k, which is the j-invariant of E, is transcendental over Fp. In particular, E is ordinary.

Let Gn = E[pn], a finite commutative group scheme over k. Since E is ordinary, Gn(k) is
non-zero, and so Get

n is non-trivial. Since Gn is not étale, G�
n must also be non-trivial. We claim

that the connected–étale sequence for Gn is non-split, for n large enough. Indeed, suppose to the
contrary it split for all n. Then we have a decomposition G1 = Get

1 ⇥G�
1 of p-divisible groups. It

follows that End(G1) = Zp � Zp. Thus, by the Tate conjecture (a theorem in this case), End(E)
has rank two over Z, and thus E has CM. But this implies E is defined over Fp, a contradiction.

2.6 Order invertible implies étale

Let G = Spec(A) be a finite connected commutative group scheme, so A is a local ring. Let
I ⇢ A be the kernel of the counit map. Then A = k � I, where k is the span of the unit. We
let ⇡ : A ! I/I2 be the projection map, which is easily seen to be a derivation. Let x1, . . . , xn be
elements of I mapping to a basis for I/I2. Define Di : A ! A to be the composition

A ! A⌦A ! A⌦ I/I2 ! A

where the first map is comultiplication, the second is id⌦⇡, and the third is induced from the map
I/I2 ! k taking xi to 1 and xj to 0 for i 6= j. This is easily seen to be a derivation.
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Proposition 9. (a) Suppose k has characteristic 0. Then the natural map ' : k[xi] ! A is an

isomorphism. (b) Suppose k has characteristic p and xpi = 0 for all i. Then the natural map

' : k[xi]/(x
p
i ) ! A is an isomorphism.

Proof. Clearly, ' is surjective. In each case, one has ' @
@xi

= Di', since both derivations agree on

the xi. This implies ker(') is stable by @
@xi

, which, by induction on degree, implies that it is either
0 or the unit ideal. Since it is not the unit ideal, we conclude that ' is injective.

Corollary 10. If k has characteristic 0 then G is trivial.

Proof. The proposition shows that G is isomorphic to a�ne n-space for some n. By finiteness,
n = 0, which establishes the corollary.

Corollary 11. If k has characteristic p then #G is a power of p.

Proof. Let G1 be the kernel of the Frobenius map Fp : G ! G(p), which is a group homomorphism,
and let G2 = G/G1. The proposition shows that G1 has order pn, where n = dim(I/I2). The result
now follows from induction, since #G = (#G1)(#G2).

Corollary 12. Suppose G is a finite commutative group scheme such that #G is invertible in k.
Then G is étale.
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