




Lecture 8: Elliptic curves over DVRs

This lecture is devoted to the behavior of elliptic curves over DVRs. The various types of
reduction (good, multiplicative, additive) are defined, and their behavior under extension is studied.
Then the behavior of torsion points under reduction is discussed. Finally, I prove the Néron–Ogg–
Shafarevich theorem.

A good reference for this lecture is Chapter VII of Silvermans “The arithmetic of elliptic curves”
(MR0817210).

Let R be a complete DVR, p its maximal ideal, K its field of fractions, k its residue field, and
v the valuation with v(⇡) = 1, for ⇡ a uniformizer. We are going to study elliptic curves over K,
and their reduction modulo p. We assume throughout that k does not have characteristic 2 or 3.

1 Minimal Weierstrass equations

Let E/K be an elliptic curve given by a Weierstrass equation y

2 = x

3 + ax + b. Recall that the
discriminant � = �16(4a3 + 27b2) is non-zero. A Weierstrass equation for E is not unique: one
can replaces y with u

3
y and x with u

2
x, for u 2 K

⇥, which has the e↵ect of changing a to u

�4
a

and b to u

�6
b. We say that a Weierstrass equation is minimal if a and b belong to R and v(a) < 4

or v(b) < 6 (this is equivalent to asking that v(�) be minimal). A minimal Weierstrass equation is
unique up to a change of variables as above with u a unit. We let E be the projective scheme over
R defined by a minimal Weierstrass equation. We call this the minimal Weierstrass model for E.
It is independent of the choice of minimal Weierstrass equation, up to isomorphism (since u must
be a unit in any change of variables).

We can now introduce most of the objects we will be interested in:

• We let E be Ek, the special fiber of E . We call this the reduction of E modulo p. This is an
irreducible projective curve over k, though possibly singular.

• We let Esm be the smooth locus of E. A basic fact is that Esm is a group variety: the group
law can be defined using the secant line construction, as on an elliptic curve.

• Since E is projective, E(R) = E(K) = E(K). We therefore have a well-defined map E(K) !
E(k), which we call the reduction map.

• We let E0(K) be the subset of E(K) which reduces into Esm(k). Then E0(K) is a subgroup
of E(K), and the reduction map E0(K) ! Esm(k) is a group homomorphism. In fact, it is
surjective by Hensel’s lemma.

• We let E1(K) be the kernel of the reduction map E0(K) ! Esm(k).

2 Types of reduction

The curve E is defined by the equation y

2 = x

3 + ax+ b, where a and b are the images of a and b

in k. This curve is an elliptic curve if and only if � 6= 0, which is equivalent to asking that � be a
unit of R. If E is an elliptic curve, we say that E has good reduction. In this case, E is a smooth
scheme over R and is naturally a group object in the category of schemes over R.
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Now suppose E is singular, i.e., � = 0. We then say that E has bad reduction. There are
two possibilities. If a = b = 0 then E has a single singularity, at (0, 0), and it is a cusp. The
smooth locus Esm is isomorphic to Ga, as a group variety. We therefore say that E has additive
reduction. If a or b is non-zero then both are non-zero (since � = 0), and E has a single singularity,
at (�3b/2a, 0), and it is a node. The smooth locus Esm is isomorphic (over k) to Gm, as a group
variety. We therefore say that E has multiplicative reduction.

We say that E has semi-stable reduction if it has either good or multiplicative reduction.
To summarize:

• E has good reduction if and only if � is a unit of R.

• E has multiplicative reduction if and only if � 2 p but a and b are units of R.

• E has additive reduction if and only if a and b are both in p.

• E has semi-stable reduction if and only if one of a or b is a unit of R.

3 Behavior of reduction type under extensions

Proposition 1. Let K

0
/K be a finite extension. Suppose that either K

0
/K is unramified or E has

semi-stable reduction over K. Then a minimal Weierstrass equation for E over K is still minimal

over K

0
. It follows that the reduction type of E over K is the same as that over K

0
.

Proof. Let v0 be the valuation on K

0. First suppose that K 0
/K is unramified. Then for x 2 K we

have v(x) = v

0(x). Thus if v(a) < 4 or v(b) < 6 then v

0(a) < 4 or v0(b) < 6. Now suppose that E
has semi-stable reduction. Then either v(a) = 0 or v(b) = 0, and so v

0(a) = 0 or v0(b) = 0, which
shows that the equation is minimal over K 0.

Theorem 2 (Semi-stable reduction theorem). There exists a finite extension K

0
/K such that E

has semi-stable reduction over K

0
.

Proof. Recall that we can make a change of variables to replace (a, b) with (a0, b0) = (u�4
a, u

�6
b).

First suppose that 3v(a)  2v(b). Taking u = a

1/4, we find that a0 = 1 is a unit and b

0 is integral,
so the new equation is minimal and has semi-stable reduction. Thus E has semi-stable reduction
over K

0 = K(u). Now suppose that 3v(a) � 2v(b). Taking u = b

1/6, we find that a

0 is integral
and b

0 = 1 is a unit, so the new equation is minimal and has semi-stable reduction. Thus E has
semi-stable reduction over K 0 = K(u).

Remark 3. The proof shows that the extension K

0
/K can always be taken to have degree at most

6.

Combining the above two results, we see that for all su�ciently large extensionsK 0
/K, the curve

EK0 has either good or multiplicative reduction (independent of K 0). We say that E has potentially
good or potentially multiplicative reduction accordingly. There is a simple test to determine which,
in terms of the equation for E:

Proposition 4. E has potentially good reduction if and only if j(E) = �1728(4a)3/� is integral.

Proof. Since the j-invariant is independent of the model, we may as well assume that we have
passed to an extension where E is semi-stable and we are working with the minimal model. If E
has good reduction then � is a unit, and j(E) is integral. If E has multiplicative reduction then
� is not a unit but a is, and so j(E) is not integral.
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Example 5. Suppose E is the curve over Qp given by y

2 = x

3+p. Then E has additive reduction.
We have a = 0 and b = p, so j = 0 is integral, and so E has potentially good reduction. Indeed,
changing y to p

1/2
y and x to p

1/3
x, we find that E is isomorphic to y

2 = x

3 + 1 over Qp(p1/6),
which is still an elliptic curve mod p (since p � 5).

4 Reduction of torsion points

We assume in this section that E has good reduction. Since E is a proper smooth group over R, its
n-torsion E [n] is a finite flat group scheme over R, for any n. We can therefore apply our knowledge
of group schemes to its study.

Proposition 6. Let G be a finite flat group scheme over R whose order is prime to the residue

characteristic. Then the reduction map G(K) ! G(k) is an isomorphism of Galois modules. In

particular, G(K) is an unramified Galois module.

Proof. The reduction map is obviously Galois equivariant, so it su�ces to show it’s a bijection.
To do this, we can assume k is algebraically closed. Since the order of G is invertible on the
base, G is étale. Thus, if G = Spec(A), then A is a product of copies of R. Clearly then,
G(K) = G(K) = G(k).

Corollary 7. Suppose E has good reduction and n is prime to the residue characteristic. Then the

reduction map E[n](K) ! E[n](k) is an isomorphism of Galois modules. In particular, E[n](K) is
an unramified Galois module.

Using Raynaud’s theorem, we can say something about the p-torsion when the residue charac-
teristic is p.

Proposition 8. Suppose K is an extension of Qp with e < p � 1. Let G be a finite flat group

scheme over R. Then the map G(R) ! G(k) is injective.

Proof. Let � be the group G(R), regarded as a constant group scheme over R. There is a natural
map � ! G of group schemes over R, inducing the identity on R-points. Let � be the scheme-
theoretic image of this map in G, which is a closed subgroup of G. (One can also describe �
as the scheme-theoretic closure of G(K) in G.) Since the map � ! � is an isomorphism on the
generic fibers, Raynaud’s theorem implies that it is an isomorphism. It follows that �k ! Gk is
injective; since �(R) ! �(k) is bijective (as � is constant), the composite G(R) = �(R) ! G(k) is
injective.

Remark 9. In the above situation, the reduction map need not be surjective. For example, let G
be the Kummer extension of Z/pZ by µp corresponding to a 2 R. If A is a connected R-algebra,
then G(A) is the set of pairs (i, z), where i 2 Z/pZ and z 2 A satisfies z

p = a

i. If R does not
contain a primitive pth root of unity or a pth root of a then G(R) = 0. But if k is perfect then Gk

is the trivial extension (since a has a pth root), so G(k) = Z/pZ.

Remark 10. Without the assumption on e, the reduction map need not be injective. For example,
take G = µp and suppose K contains the pth roots of unity. Then G(R) = µp(K) has order p but
G(k) is the trivial group.

Corollary 11. Suppose E has good reduction and maintain the same assumptions on K. Then

the reduction map E[n](K) ! E[n](k) is injective.
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5 The kernel of reduction

We now study the group E1(K), the kernel of the homomorphism E0(K) ! Esm(k). Since points on
E1(k) are p-adically close to the identity, the point at infinity, it makes sense to switch coordinates
so that the identity is at (0, 0). The projective equation for E is

ZY

2 = X

3 + aZ

2
X + bZ

3

We usually put x = X/Z and y = Y/Z. We now put u = X/Y and v = Z/Y to obtain the equation

v = u

3 + auv

2 + bv

3
.

The point at infinity in projective coordinates is [0 : 1 : 0], and thus corresponds to (u, v) = (0, 0).
The set E1(K) is given by the set of solutions to the above equation with u and v in p.

Let F (u, v) be the right side of the above equation, so that the equation reads v = F (u, v).
We can then plug this expression for v into the right side to find v = F (u, F (u, v)). Continuing in
this way, we find v = �(u), where �(u) is the iterate F (u, F (u, F (u, . . .))). It is not di�cult to see
that �(u) is a power series in u with coe�cients in R. Note that, because R is complete, if u is an
element of p then �(u) is a well-defined element of R, and in fact p since �(0) = 0. It is now an
easy exercise to show:

Proposition 12. The map p ! E1(K) sending u to (u,�(u)) is a bijection of sets taking 0 to the

identity element of E1(K).

Using this bijection, we can transfer the group structure on E1(K) to a group structure on p,
which we denote by �. It is not hard to show that � is given by a power series over R, i.e., there
exists a power series G 2 R[[s, t]] such that s� t = G(s, t). Since 0 is the identity element, we have
G(s, 0) = G(0, s) = s, and so G(s, t) = s+ t+ · · · , where · · · are higher order terms. It follows that
pn is a subgroup of p under �. Let En(K) be the corresponding subgroup of E1(K). Clearly then,
we have an isomorphism

En(K)/En+1(K) = pn/pn+1 = k.

We have thus proved:

Proposition 13. The group E1(K) has a decreasing filtration {En(K)}n�1 such thatEn(K)/En+1(K)
is isomorphic to k.

Corollary 14. Suppose n is prime to the residue characteristic. Then the map E0(K)[n] !
Esm(k)[n] is injective.

Proof. The kernel is a subgroup of E1(K) killed by n, and therefore 0.

Corollary 15. Suppose k is finite of characteristic p. Then E1(K) is a pro-p group.

6 The group E(K)/E0(K)

We have the following important result:

Theorem 16. (a) The group E(K)/E0(K) is finite. (b) If E has split multiplicative reduction

(i.e., Esm is isomorphic to Gm over k) then this group is cyclic of order �v(j). (c) If E does not

have split multiplicative reduction, the group has cardinality at most 4.
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We will not prove this theorem. Some remarks:

• Part (a) follows immediately from the existence of Néron models. Parts (b) and (c) follow
from the classficaiton of Néron models. We will discuss these topics in the next lecture.

• If k is finite then part (a), for E(K) is then a compact group and E0(K) is an open subgroup;
thus E(K)/E0(K) is both discrete and compact, and thus finite.

• One can prove the enitre theorem without Néron models through a case-by-case analysis. For
instance, suppose v(a) = 1 and v(b) � 2. If P = (x, y) is a point of E(K) then

x(2P ) =
x

4 � 2ax2 � 8bx+ a

2

4(x3 + ax+ b)
.

Thus if (x, y) reduces to the singular point (0, 0), i.e., v(x) � 1, then the valuation of the
numerator is equal to 2, while the valuation of the denominator is at least 2; thus v(x(2P )) 
0, and so 2p does not reduce to the singular point. This shows that E(K)/E0(K) is killed by
2. In fact, one can show that the sum of any two points reducing to the singular point does
not reduce to the singular point, and so E(K)/E0(K) = Z/2Z.

7 The Néron–Ogg–Shafarevich criterion

Let GK be the absolute Galois group of K and IK the inertia subgroup.

Theorem 17. Let ` be a prime di↵erent from the residue characteristic. Then:

• E has good reduction if and only if IK acts trivially on T`(E).

• E has semi-stable reduction if and only if IK acts unipotently on T`(E).

Proof. First, note that IK acts trivially on T`(E) if and only if it does so on E[`n](K) for all
n. Thus, if E has good reduction then IK acts trivially on T`(E) by what we’ve already shown.
Conversely, suppose IK acts trivially on T`(E). Thus all `n torsion points belong to E(Kun). Let
d be the order of E(Kun)/E0(Kun), which is finite. Then E0(Kun)[`n] is the kernel of the map
E(Kun)[`n] ! E(Kun)/E0(Kun), and thus has cardinality at least `2n/d. Since the reduction map
E0(Kun) ! Esm(k) is injective on `-power torsion, it follows that Esm(k)[`n] has cardinality at
least `2n/d. But this is not true for Gm (where the cardinality is `n) or Ga (where the cardinality
is 1), and so E cannot have multiplicative or additive reduction. Thus E has good reduction.

Now suppose that IK acts unipotently on T`(E). It thus fixes some vector in T`(E), which
implies that E(Kun)[`n] has cardinality at least `n. Arguing as in the previous paragraph, we see
that Esm cannot be Ga, and so E has semi-stable reduction.

Finally, suppose that E has semi-stable reduction. The multiplication-by-`n map on the smooth
locus Esm of E is flat, and so Esm[`n] is a flat group scheme over R. Let G be the scheme-theoretic
closure in Esm[`n] of the set of K-points which extend to R-points. Then G is finite and flat, and
Gk = Esm[`n]. Since G has `-power order, it is étale, and so G(Kun) = Esm[`n](k), which contains
Z/`

n
Z (since E is semi-stable). Thus E[`n](Kun) contains Z/`

n
Z for all n, which shows that IK

fixes a vector in T`(E). Since the determinant of T`(E) is the `-cyclotomic character, which is
trivial on IK , the result follows.

Corollary 18. If IK acts trivially (or unipotently) on one T`(E) then it does so on all of them.
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Corollary 19. E has potentially good reduction if and only if IK acts through a finite quotient on

T`(E).

Corollary 20. Isogenous curves have the same reduction type.

Proof. If E and E

0 are isogenous then T`(E)[1/`] and T`(E)[1/`] are isomorphic Q` representations
of IK .
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