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Lecture 11: Criterion for rank 0

In this lecture, we establish Theorem B from Lecture 1, which is a criterion for an abelian
variety to have rank 0. The idea of the proof is similar to that of the weak Mordell-Weil theorem,
but here we control the ramification of the cohomology classes much more carefully. Most of the
work goes into understanding a certain class of group schemes (the admissible ones) very precisely.

1 Overview

1.1 Statement of criterion

The purpose of today’s lecture is to establish the following criterion for an abelian variety to have
rank 0 (Theorem B from Lecture 1):

Theorem 1. Let A/Q be an abelian variety, and let N and p be distinct prime numbers, with N
odd. Suppose the following conditions hold:

e A has good reduction away from N.

o A has completely toric reduction at N.

e The Jordan—Hoélder constituents of A[p](Q) are 1-dimensional and either trivial or cyclotomic.
Then A(Q) has rank 0.

Remark 2. The proof uses many special properties of Q, but can be generalized slightly, as follows.
Let K be an imaginary quadratic number field, let p be a rational prime, and let 91 be a prime
of K. Assume that p does not divide the class number of K and if p < 3 then p is unramified in
K. Then the obvious generalization holds: if A/K be an abelian variety with good reduction away
from M, completely toric reduction at M, and such that the Jordan-Hélder constituents of A[p](K)
are either trivial or cyclotomic then A(K') has rank 0. O

Remark 3. This theorem, and the proof presented here, comes from II1.3 of Mazur’s paper “Mod-
ular curves and the Eisenstein ideal” (MR488287). It is not stated there explicitly, however. U

1.2 Idea of proof

Recall the proof of the weak Mordell-Weil theorem. Kummer theory gives an injection of A(Q)/nA(Q)
into H'(Gq, A[n]), so it suffices to prove the H! is finite. However, it’s not, because we have not
restricted ramificiation. One can show that there is a finite set of places S such that the image of
A(Q)/nA(Q) lands in HY(Gq.s, A[n]). This H! is finite, and this proves the weak Mordell-Weil
theorem.

As one shrinks S, the H gets smaller and smaller, so it makes sense for us to take S as small
as possible. In general, one can take S to be the set of places of bad reduction together with the
divisors of n. So if work with p-power torsion, we can take S = {N,p}. However, this is still too
big for us!

We can improve the situation using the following idea. Let A be the Néron model of A over Z,
and let G,, = A[p"]. Then H'(Gq,s, A[p"]) is the étale cohomology group H(, (Spec(Z[1/Np]), G,)
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— restricting ramification to S corresponds to taking étale cohomology over the ring of integers
with the primes in S removed. It is not true that A(Q)/p"A(Q) injects into HZ, (Spec(Z), G,,): this
group is often zero. However, A(Q)/p"A(Q) does inject into Hflppf(Spec(Z),Gn), and this is the
group we will use. (This is a slight lie that we will correct below.)

The idea is to show that this H' is bounded independent of n, which will establish that A(Q)
has rank 0. To do this, we need to understand the flat cohomology of G,, very well, so we begin by

studying groups like GG,, and their flat cohomology.

2 Admissible groups

2.1 Definition

Two initial definitions:

e A group scheme G over Z[1/N] is pre-admissible if it is finite, flat, commutative, and killed
by a power of p.

e A group scheme G over Z is pre-admissible if it is commutative, separated, of finite presenta-
tion, quasi-finite, flat, killed by a power of p, and its restriction to Z[1/N] is finite (and thus
pre-admissible).

Example 4. Let A be an abelian variety with good reduction away from N and let A be its Néron
model over Z. Then A[p"] is a pre-admissible group scheme over Z. O

Let G be an pre-admissible group over Z[1/N]. An admissible filtration on G is a filtration
0=F'GCF'Gc---CF'G=G

by closed subgroups such that F""'G/F"G is isomorphic to Z/pZ or u, for each n. We say that
G is admissible if it has an admissible filtration. We say that a pre-admissible group over Z is
admissible if its restriction to Z[1/N] is.

We make a similar definition for Galois representations. Precisely, let V' be a I'q-module. We
say that V' is admissible if it possess a filtration F**V by I'q-submodules such that F nHy  FrV
is a one-dimensional F,, vector space on which I'q acts either trivially or through the cyclotomic
character.

2.2 Detecting admissible filtrations

Proposition 5. Let G be a pre-admissible group over Z[1/N]. Then G is admissible if and only if
G(Q) is.

Proof. Let V. C G(Q) be the first piece of an admissible filtration, let Hy C Gq be the subgroup
it corresponds to, and let H be the closure of Hy in G. Over Z[1/Np], the group H is finite étale,
and therefore isomorphic to either u, or Z/pZ, depending on the Galois action on H(Q). Over
Z,, the group H is a finite flat commutative group which is generically isomorphic to p, or Z/pZ.
If p # 2, Raynaud’s theorem implies that the isomorphism extends over Z,; the same is true for
p = 2 by a theorem of Fontaine. (Note: it is important here that we’re over Q,, so that there is no
ramification.) Thus H is isomorphic, over Z[1/N], to p, or Z/pZ. Applying the same reasoning to

G/H, the result follows by induction. O



2.3 Invariants

Let G be an admissible group over Z. Following Mazur, we define several invariants:
e Let {(G) = log,(#Gq). This coincides with the length of an admissible filtration on G.

o Let 0(G) = log,(#Gq) — log,(#Gr, ).

e Define a(G) to be the number of Z/pZ’s appearing in an admissible filtration of G (over
Z[1/N]).

e Let h'(G) be logp(#Hﬁppf(Spec(Z), G)), for i =0, 1.

Note that everything we’re applying log, to is a pth power.

Remark 6. Let G be a group scheme over a base scheme S. The group H%ppf(S, G) admits a fairly
concrete description, as follows. A torsor for G is a scheme 7'/S equipped with an action of G that
is simply transitive, in the following sense: for any scheme S’/S and any section z € T'(S’), the
map G(S') — T(S’) given by g — gz is a bijection. An fppf (or étale) torsor is a torsor T'/S for
which there exists an fppf (or étale) cover S’ — S such that T'(S’) is non-empty. Then Hflppf(S, G)
is naturally in bijection with the set of isomorphism classes of fppf torsors; similarly, H., (S, G) is in
bijection with the set of isomorphism classes of étale torsors. Of course, H?ppf(S, G) =HY%(S,G) =
G(S) is even easier to describe. O

2.4 Elementary admissible groups

We say that an admissible group G is elementary if £(G) = 1. Over Z[1/N], there are two elementary
admissible groups: Z/pZ and p,. Recall the following result:

Proposition 7. Let H be a pre-admissible group over Qpy. Then extensions of H to a pre-
admissible group over Zy correspond to unramified Galois submodules of H(Qy). In particular,
if H(Qy) is unramified and one-dimensional, it admits exactly two such extensions: a finite one
(corresponding to the full module) and the extension by zero H® (correspond to the zero submodule).

This applies to both Z/pZ and p, over Z[1/N] (even though we only stated the above result
locally). We thus see that there are four elementary admissible groups over Z, namely: Z/pZ,

(Z/pZ)", pp, and pid,.

Proposition 8. The invariants of the elementary admissible groups are given as follows:

Z/pZ (Z/pZ)  pp i

1) 0 1 0 1

1 1 0 0

hO 1 0 0 if p odd 0
1ifp=2

hl 0 0 0 if p odd ¢
1ifp=2

Here € is 0 if p is odd and N # 1 mod p, or if p is even and N =3 (mod 4), and 1 otherwise.



Proof. The first three lines are obvious. We explain the fourth. For this proof, let S = Spec(Z).
Since Z/pZ is étale, H%ppf(S, Z/pZ) = HL (S,Z/pZ): if T is an fppf torsor for Z/pZ over S then
there is an fppf cover S — S such that T is isomorphic to (Z/pZ)s/, and thus étale; this implies
that T is étale since this is an fppf local property. Since Z/pZ is a constant scheme, we have
H. (S,Z/pZ) = Hom(n$*(S),Z/pZ). However, 7$4(S) is trivial: it is the Galois group of the
maximal everywhere unramified extension of Q, which is just Q. Thus h'(Z/pZ) = 0.

Let G be the quotient of Z/pZ by (Z/pZ)’; this is the push-forward of Z/pZ along the inclusion
Spec(Fy) — Spec(Z). By what we already have shown, there is a short exact sequence

0— H(prpf(Sv Z/pZ) - H?ppf(sv G) - H%ppf(sv (Z/pz)b) —0

Both the H"’s are Z/pZ, which shows h'((Z/pZ)’) = 0.
We have the following short exact sequence on the fppf site of S:

O—>up—>Gm£>Gm—>O.
Taking cohomology, we obtain an exact sequence
0— ZX/(ZX)p — H%ppf(*g? :U“P) - H%ppf(S’ Gm)[p] — 0.

The group on the left is 0 if p is odd, and Z/pZ if p = 2. By the theory of fppf descent,
H%ppf(S, Gn) = H}, (S, G.,) = Pic(9), which is just the ideal class group of Q, which is triv-
ial. Thus h'(u,) is 1if p =2 and 0 otherwise.

Let G be the quotient of j,, by ,u;: this is the push-forward of y, along the inclusion Spec(Fy) —

Spec(Z). We have an exact sequence
0— H?ppf(s’ :u’P) - H?ppf(s’ G) - H%ppf(s’ :u’1b7) — H%ppf(‘s” Mp) - H%ppf(Sv G)

If p # 2, then Héppf(S, pp) = 0 for ¢ = 0,1, and so the map H(f)ppf(S, G) — Hflppf(S, /f}’)) is an
isomorphism. The source is just j,(Fx), which has order p if p | N — 1, and vanishes otherwise.
Now suppose that p is even. Then the map H?ppf(S  p) = H?ppf(S , G) is an isomorphism. Kummer
theory shows that the unique non-trivial element of Hflppf(S, w2) is represented by the po torsor

Spec(Z[v/—1]). This torsor splits over Fy if and only if —1 is a square mod N. Thus the kernel
of H%ppf(S, fp) — H%ppf(S, G) is Z/2Z if N is 1 mod 4, and 0 if N is 3 mod 4. This completes the
proof. O

Proposition 9. Let G be an admissible group over Z. Then h'(G) — h°(G) < §(G) — a(G).

Proof. Let
0—>GL -Gy —>G3—0

be a short exact sequence of admissible groups. From the first few terms of the long exact sequence
in cohomology, we find

h'(Ga) = h%(Ga) < (R'(G1) = B°(Gh)) + (R (G3) — h°(G3)),
that is, h! — kO is sub-additive. It is clear that
6(G2) — a(G2) = (6(G1) — a(G1)) + (6(Gs) — a(G3)),

ie., 6 — « is additive (in fact, both 0 and « are additive separately). Thus if the result is true
for G and G3 then it is true for Gs. It thus suffices to prove the result for elementary admissible
groups, which follows easily from the computation of the invariants. O



3 Proof of criterion

We now prove the main theorem. Let A be the Néron model of A over Z and let A° be its identity
component (i.e., throw out the non-identity components in each fiber). Let G,, = A°[p"]. Since A
has good reduction away from N, it is clear that G,, is pre-admissible. The condition on A[p](Q)
exactly says that it is admissible, and so A[p"](Q) is as well, since it is an iterated self-extension
of A[p](Q). It follows that G, is admissible.

We now compute the invariants « and § for G,,. We begin with 6. We have ¢((G,,) = 2gn, where
g = dim(A). Now, (Gn)ry = Ag, [p"]. By hypothesis, Ap_ is a torus of dimension g, and so its
p™ torsion has cardinality p"9. Thus (Gy)r, has cardinality p9". We thus find §(G,) = gn.

We now compute a. Since « is additive and only depends on the group over Z[1/N], we see
that a(G,,) = na(Gy), so it suffices to treat the n = 1 case. Note that «(Gy) is the number of
Z/pZ’s appearing in (G1)r,; thus it is log, of the order of the étale part of A, [p]. Since Gy is
admissible, A, [p] has only Z/pZ’s and p,’s in it, and so Ap, is ordinary. This implies that its
étale part has order p?, and so a(G1) = g. Thus a(G,) = gn.

We thus have §(G,) = gn and a(G,,) = gn. It follows that h'(G,) — h(G,) < 0. However,
hY(G,,) is the p" torsion in A°(Z) C A(Z) = A(Q), which is bounded independent of n by the
Mordell-Weil theorem. It follows that h'(G),) is bounded independent of n.

Consider now the short exact sequence of sheaves on the fppf site of Spec(Z):

O—>Gn—>A°p—n>A°—>O.
A few remarks:

e The map [p"]: A — Ais not a surjection of fppf sheaves in general since the component group
of Ag, might have p-torsion. This is why we use A° instead of A.

e The map [p"]: A° — A° is not a surjection of étale sheaves in general, since give a section
x € A°(S), one cannot in general find an étale extension S’/S a section y € A°(S’) such that
p™y = x. This is why we must use fppf cohomology.

e The map [p"]: A° — A° is faithfully flat: the key point is that A° is p-divisible, and so [p"]
is surjective on points. This implies that [p"]: A° — A° is a surjection of fppf sheaves.

Taking cohomology, we obtain an injection
H?ppf(spec(z)a 'AO) ® Z/an - H%ppf(spec(z)a Gn)

It follows that the cardinality of A°(Z) ® Z/p"Z is bounded as n — co.
Let C be the F y-points of the component group of Ag, . Then there is an exact sequence

0— A°(Z) = A(Z) —» C

It follows that A°(Z) is a finite index subgroup of A(Z) = A(Q). In particular, A°(Z) is finitely
generated. Since the cardinality of A°(Z) ® Z/p"Z is bounded, it follows that .4°(Z) has rank 0.
Thus A(Q) has rank zero, as it contains A°(Z) with finite index.



