Rotational Path Concepts

Used with permission from Krol, et al.
Disclaimer:

Mentions of specific products in these slides represent the opinion of the speaker only and do not represent endorsement by the University of Michigan.
General Considerations with Rotational Path RPDs

1. All rests do not seat simultaneously.
2. It is not a straight path of placement.
3. Eliminates unesthetic clasps.
4. Clasps replaced by rigid retainers.
5. Rigid retainers engage undercuts.
6. Little tolerance for error.

Krol 5th ed.
Linear Path of Insertion

Undercuts must exist perpendicular to the plane of occlusion
Linear Path of Insertion

Fig. 9-1A. Straight path of placement. Rests will seat simultaneously.

Used with permission from Krol, et al.

Curvilinear Path of Insertion

Fig. 9-2A. Rotational path of placement. The terminus of the molar rest (A) is seated first followed by rotation of the premolar clasp along arc (A') into its final position.

Used with permission from Krol, et al.

Krol 5th ed.
In Linear placement, all rest seat simultaneously.

Fig. 9-1A. Straight path of placement. Rests will seat simultaneously.

Fig. 9-1B. Partial denture completely seated.

Krol 5th ed.
In a curvilinear path, the rests that determine the rotational axis are placed first then the RPD is rotated to final seating.
Types of Rotational Path RPDs

1. Anteroposterior - Front to back
2. Posteroanterior - Back to front
3. Lateral - Sideways

Krol 5th ed.
Anteroposterior

Class IV

Class III

Krol 5th ed.

Used with permission from Krol, et al.
Posteroanterior

Class III

Krol 5th ed.
Lateral

Fig. 9-34A. Master cast of patient with lateral incisor and canine missing.
Fig. 9-34B. Lateral path of placement.

Used with permission from Krol, et al.

Class III

Krol 5th ed.
Categories of Rotational Path RPDs

Category I - The rotational centers (reasts) are seated first then the prosthesis is rotated into place.

Category II - (Dual Path) The rotational centers are located at the gingival extension of the rigid retainers

Krol 5th ed.
Category I

Fig. 9-23C. Partial dentures using a PA path of placement being seated. The minor connector on the molar engages its mesial surface while the clasps on the premolar is being seated.

Used with permission from Krol, et al.

Fig. 9-23D. The partial denture completely seated.

Used with permission from Krol, et al.

Krol 5th ed.
Category II

Fig. 9-24A. The anterior rigid retainer is placed first along a straight path to gain access to the rotational center (A) located on the mesial surface of the canine. The clasp on the molar is then completely seated along arc (A').

Used with permission from Krol, et al.

Fig. 9-24B. (B) represents the retentive area for the molar clasp and (B') the arc along which the rigid retainer on the canine would have to move to be displaced.

Used with permission from Krol, et al.

Fig. 9-24C. Arrow (A) indicates a slight space between the minor connector and the mesial surface of the canine which may result from improper waxing, casting, finishing or adjusting of the framework. Such a space reduces the effectiveness of the indirect retainer.

Used with permission from Krol, et al.

Slight space created

Krol 5th ed.
Cast Analysis

1. Plane of occlusion
2. Length of the edentulous span
3. Rotational axis
4. Shape of the dental arch
5. Depth of undercut
Plane of Occlusion affects the depth of undercut

Fig. 9-22A. All abutments are surveyed on a horizontal plane with the analyzing rod perpendicular to the plane. No undercut is present on the distal surface of the first premolar as in Fig. 9-21C.

Fig. 9-22B. A slight undercut is present as in Fig. 9-12C. The undercut may be increased to ensure adequate retention.

Used with permission from Krol, et al.
Length of the edentulous span

The closer the edentulous area is to the rotational axis, the greater the blockout

Krol 5th ed.
Position of the rotational axis will effect the placement of the prosthesis.
The shape of the arch

Fig. 9-37A. Category 1 design. Blockout of interferences to framework placement are determined by an arc with a radius formed by extending a line from the blockout areas (D) & (D') perpendicular to the rotational axis. (C D) and (C'D') are the radii. Note that in square arches an arc with a similar radius is obtained by a line connecting the blockout area to the rotational center located at the terminus of the rest.

Fig. 9-37B. The same technique for determining the radius of the arc used to define blockout is used to identify (CD) and (C'D'). Note that these radii are significantly shorter than those that would be obtained using lines extending from the rotational centers.

Fig. 9-37C. Section of a tapering arch with framework in position. Line (CD) is shorter than line (ED). Line (CD) is used to determine the blockout on the distal surface of the premolar. If line (ED) were used insufficient blockout would be provided.

Used with permission from Krol, et al.

Will effect the amount of blockout

Krol 5th ed.
Depth of undercut

Fig. 9-25. Diagnostic cast being surveyed at a zero degree tilt. Analyzing rod indicates an adequate undercut on the mesial surface of the canine.

Fig. 9-26. Analyzing rod indicates an acceptable undercut on the distobuccal surface of the molar. The amount of undercut utilized will depend on the type of clasp selected.

Figs. 9-27A & B. (A) The cast is tilted upward anteriorly until the undercuts on the mesial surfaces of the anterior abutments are eliminated. This tilt defines the initial straight path of placement. In this photo, a slight space exists between the analyzing rod and the mesial surface of the canine which can best be eliminated by reduction of the tooth. (B) Analyzing rod now indicates absence of undercut.

Used with permission from Krol, et al.
Surveying

Fig. 9-31A. Cast is tripodized for each position by first placing three widely spaced vertical lines are drawn on the sides of the cast at the zero degree tilt.

Used with permission from Krol, et al.

0 degree tilt

Fig. 9-31B. Three additional lines are drawn on the sides of the cast at the tilt which will permit the initial seating (straight path of placement) without interferences.

Used with permission from Krol, et al.

Anterior tilt

Krol 5th ed.
Rest preparations

Fig. 9-16. The floor of the cingulum rest seat preparation should be in the enamel if possible. The restoration should serve primarily to prevent migration of the tooth.

Fig. 9-17A. Maxillary cingulum rest seat preparation, when viewed from the lingual should have a "V" or "U" shaped configuration.

Fig. 9-17B. When viewed from the proximal, it should have the shape of an inverted "V" or "U".

Used with permission from Krol, et al.

Fig. 9-13A & B. (A) A straight channel rest preparation extends more than one half the mesiodistal dimension of the tooth.
(B) Facial and lingual walls are nearly parallel.

Used with permission from Krol, et al.

Anterior Posterior

Krol 5th ed.
Rest preparations

Anterior

![Anterior View](image)

Fig. 9-28B. Double analyzing rod shows that the rest seat and the mesial surface of the canine will be accessible utilizing the initial straight path of placement.

Used with permission from Krol, et al.

Posterior

![Posterior View](image)

Figs. 9-15A, B & C. (A) Illustration of a mandibular arch with molars tipped mesially and lingually. (B) Occlusal rest seat preparations across the arch would not permit seating of the rests. (C) The facial walls of the rest seat preparations across the arch must be parallel or slightly divergent to permit placement of the rests.

Used with permission from Krol, et al.

Krol 5th ed.
Guide plane preparations

Guide planes are curvilinear

Krol 5th ed.
Patient presentations

1. Posteroanterior (Category I)
2. Anteroposterior (Category II)
3. Anteroposterior (Category I)
4. Lateral (Category II)
5. Lateral (Category I)
Posteroanterior

Category I

Fig. 9-23E. Master cast. Note dovetail rest preparation on the molar abutments.
Used with permission from Krol, et al.

Fig. 9-23F. Partial denture completely seated.
Used with permission from Krol, et al.

Krol 5th ed.
Posteroanterior Category I

Axis of Rotation
Posteroanterior

Category I

The shorter the span the greater the blockout
Posteroanterior Category I
Anteroposterior

Category II

Krol 5th ed.
Anteroposterior
Category II

Maxillary

Mandibular
Anteroposterior
Category II

Radiographic Evaluation
Anteroposterior Category II

Crown Fabrication

Try-in
Anteroposterior
Category II

Final Result
Anteroposterior
Category I

Used with permission from Krol, et al.

Krol 5th ed.
Anteroposterior

Category I
Anteroposterior

Category I
Lateral Category II

Fig. 9-34A. Master cast of patient with lateral incisor and canine missing.
Fig. 9-34B. Lateral path of placement.

Used with permission from Krol, et al.

Krol 5th ed.
Lateral

Category II
Lateral
Category II
Framework Design
Lateral

Category II
Lateral

Category II

Try-in
Lateral

Category II
Lateral
Category II

Final Result
Lateral
Category I

Rotational Axis
Lateral

Category I
Lateral
Category I
Lateral
Category I
Lateral

Category I

Final Result
Swinglock Removable Partial Denture Treatment
Looking at the intraoral view at the right, could other options have been used? Six anterior teeth with slight to moderate crowding.

Though less expensive than implants, this type of framework is significantly more expensive from the dental laboratory. Typically the cost will be $200-$250 more than a conventional framework.
This is another example of a patient situation that may be suited for a swinglock RPD. Here again, are there other designs which would work?
This acrylic cast was duplicated from an actual patient treatment model to demonstrate the fabrication of a swinglock RPD framework.
The block out of the master cast (normally done on an improved stone cast)

24 gauge wax over the posterior edentulous areas and left with a sharp demarcation at the anterior aspect of the block out.

Block out between the lower anterior teeth to prevent tearing and distortion of the duplicating material used to duplicate the master cast in an investment material.
The blocked out cast ready for duplication. Remember, this would usually be done on a cast poured in improved stone (Jade Stone or another Die Stone). These examples provide a better example for the sake of this presentation.
The framework design is drawn on a study cast to guide the laboratory with the fabrication of the framework.
The wax up of the framework seen here is performed on a cast made of \textit{refractory material} not dental stone. This is a \textit{duplicate} of the \textit{blocked out} master cast.
Once the wax up is completed, it is surrounded by more refractory material, placed in a burn out oven and cast in a Cr-Co alloy. After finishing, you have the polished framework seen at the right.
Framework on master cast ready for the addition of temporary bases, try in with the patient and securing an interocclusal bite registration.
This view shows why lack of vestibular depth is a problem with this type of appliance. Also, you want to see if the patient is right or left handed when determining which side to put the hinge on. Why?
A clinical example. Note how the hinge and gate are held back from the anterior teeth to allow room for the components. Why not place them immediately adjacent to the anterior teeth?
Hinge Side

Gate Side

Completed Treatment
Further Examples Of Class I Swinglock RPD’s
In this patient, the remaining anterior teeth are both labially tilted and #22 and #27 are rotated. If these teeth were to be recontoured to make a conventional clasp partial possible, there would need to be extensive reshaping of #22. Due to the labial tilt and the rotation of the potential abutment teeth, a swing lock partial may be desirable here.
As you can see, the swing lock gate has “fingers” which contact the labial surfaces of the anterior teeth. Most are in the configuration of an I bar and the finger on #27 is in the shape of a modified T bar clasp.
Upper complete denture for the patient. Note the plane of occlusion of the upper appliance. Fairly level and oriented from the anterior teeth to the approximate center of the retromolar pad in an A-P direction.
Note that the fingers on the gate have similar shapes to the previous appliance reviewed. The side of the RPD which has the hinge should be reviewed with the patient depending on their ability to reach and manipulate the gate side of the appliance.
As you can see, the patient in full smile does not display the labial aspect of the lower removable partial denture.
Anterior Modification Space with the Swinglock RPD

Kennedy IA
Alternate design thoughts? As viewed from above and from the labial, could this appliance have been a conventional clasp design?
The same question as the previous image, could this patient have been treated with a conventional clasp RPD? Thoughts either way. Is there a “right” or “wrong” answer?
Treating this case may be more challenging. Could we design a clasp type RPD for this patient?

Kennedy class II
The actual wax up of the framework on the refractory model.
The image at the left shows the framework at the wax try in stage and below is the finished RPD.
Another example showing a posterior modification space with a class II lower RPD. Here again, could other designs have been utilized?
Kennedy IV
Questions ????????