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Networks over time 



Outline (networks over time) 

  dynamic appearance/disappearance of individual nodes 
and links 
  new links (university email network over time)  
  team assembly (coauthor & collaborator networks) 
  evolution of affiliation network related to social network (online 

groups, CS conferences) 

  evolution of aggregate metrics: 
  densification & shrinking diameters (internet, citation, authorship, 

patents) 
  models: 

  community structure 
  forest file model 



First some thought 

  What events can occur to change a network over time? 

  What properties do you expect to remain roughly 
constant? 

  What properties do you expect to change? 



Where do you expect new edges to form? 



Which edges do you expect to be dropped? 



on the software side 

  GUESS (range attribute, states, morphs) 
  SONIA http://www.stanford.edu/group/sonia/ (visualizing networks over 

time( 

  SIENA http://stat.gamma.rug.nl/siena.html (includes statistical 
analysis of factors contributing to tie formation) 



Empirical analysis of an evolving social network 

  Gueorgi Kossinets & Duncan J. Watts 
  Science, Jan. 6th, 2006 

  The data 
  university email logs  
  sender, recipient, timestamp 

  no content 
  43,553 undergraduate and graduate students, faculty, staff 
  filtered out messages with more than 4 recipients (5% of 

messages) 
  14,584,423 messages remaining sent over a period of 355 days 

(2003-2004 school year) 



How does one choose new  
acquaintances in a social network? 

  triadic closure: choose a friend of friend 
  homophily: choose someone with similar interests 
  proximity: choose someone who is close spatially and 

with whom you spend a lot of time 
  seek novel information and resources 

  connect outside of circle of acquaintances 
  span structural holes between people who don’t know each other 

  sometimes social ties also dissolve 
  avoid conflicting relationships 
  reason for tie is removed: common interest, activity 



weighted ties 

  wij = weight of the tie between individuals i and j 
  m  = # of messages from i to j in the time period between 

(t-τ) and t  
  “geometric rate” – because rates are multiplied together 

  high if email is reciprocated 
  low if mostly one-way 

  τ serves as a relevancy horizon (30 days, 60 days…) 
  60 days chosen as window in study because rate of tie 

formation stabilizes after 60 days 
  sliding window: compare networks day by day (but each 

day represents an overlapping 60 day window) 



cyclic closure & focal closure 

shortest path distance between i and j 

new ties that appeared 
on day t ties that were there 

in the past 60 days 

number of 
common foci, 
i.e. classes 



cyclic closure & focal closure 

distance between two people in the email graph 
pairs that attend one or more classes together 

do not attend classes together 


   Individuals who share at least one class are three times more likely to start 
emailing each other if they have an email contact in common 

   If there is no common contact, then the probability of a new tie forming is 
lower, but ~ 140 times more likely if the individuals share a class than if they 
don’t 

Source: Empirical Analysis of an Evolving Social Network; Gueorgi Kossinets and Duncan J. Watts (6 January 
2006) Science 311 (5757), 88. 



# triads vs. # foci 

  Having 1 tie or 1 class in common yield equal probability 
of a tie forming 

  probability increases significantly for additional 
acquaintances, but rises modestly for additional foci 

>=1 tie in common 
no ties in common 

>=1 class in common 
no classes in common 

Source: Empirical Analysis of an Evolving Social Network; Gueorgi Kossinets and Duncan J. Watts (6 January 
2006) Science 311 (5757), 88. 



Multivariate analysis 

Source: Empirical Analysis of an Evolving Social Network; Gueorgi Kossinets and Duncan J. Watts (6 January 
2006) Science 311 (5757), 88. 



the strength of ties 

  the stronger the ties, the greater the likelihood of triadic 
closure 

  bridges are on average weaker than other ties 
  but bridges are more unstable: 

  may get stronger, become part of triads, or disappear 



Issues in assembling teams 

  Why assemble a team? 
  different ideas 
  different skills 
  different resources 

  What spurs innovation? 
  applying proven innovations from one domain to another 

  Is diversity (working with new people) always good? 
  spurs creativity + fresh thinking 
  but  

  conflict 
 miscommunication 
  lack of sense of security of working with close collaborators 

Team Assembly Mechanisms:  
Determine Collaboration Network Structure 
and Team Performance 
Roger Guimera, Brian Uzzi, Jarrett Spiro, Luıs A. 
Nunes Amaral; Science, 2005 



Parameters in team assembly 

1.  m, # of team members 
2.  p, probability of selecting individuals who already belong 

to the network 
3.  q, propensity of incumbents to select past collaborators 

Two phases 
  giant component of interconnected collaborators 
  isolated clusters 



creation of a new team 

  incumbents (people who have already collaborated with 
someone) 

  newcomers (people available to participate in new teams) 
  pick incumbent with probability p 

  if incumbent, pick past collaborator with probability q 

Source:  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance; 
Roger Guimerà, Brian Uzzi, Jarrett Spiro, and Luís A. Nunes Amaral (29 April 2005) Science 308 (5722), 697. 



Time evolution of a collaboration network 

newcomer-newcomer collaborations 
newcomer-incumbent collaborations 
new incumbent-incumbent collaborations 
repeat collaborations 

after a time τ of inactivity, individuals are removed from the network 

Source:  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance; 
Roger Guimerà, Brian Uzzi, Jarrett Spiro, and Luís A. Nunes Amaral (29 April 2005) Science 308 (5722), 697. 



BMI data 

  Broadway musical industry 
  2258 productions 
  from 1877 to 1990 
  musical shows performed at least once on 

Broadway 
  team: composers, writers, 

choreographers, directors, producers but 
not actors 

  Team size increases from 1877-1929 
  the musical as an art form is still evolving 

  After 1929 team composition stabilizes to 
include 7 people: 
  choreographer, composer, director, 

librettist, lyricist, producer 

ldcross, Flickr; http://creativecommons.org/licenses/by-sa/2.0/deed.en 



Collaboration networks 

  4 fields (with the top journals in each field) 
  social psychology (7) 
  economics (9) 
  ecology (10) 
  astronomy (4) 

  impact factor of each journal 
  ratio between citations and recent citable items published 

 A= total cites in 1992  
 B= 1992 cites to articles published in 1990-91 (this is a subset of A) 
 C= number of articles published in 1990-91 
 D= B/C = 1992 impact factor 



size of teams grows over time 

Source:  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance; 
Roger Guimerà, Brian Uzzi, Jarrett Spiro, and Luís A. Nunes Amaral (29 April 2005) Science 308 (5722), 697. 



degree distributions data 

data generated 
from a model with 
the same p and q 
and sequence of 
team sizes formed 

Source:  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance; 
Roger Guimerà, Brian Uzzi, Jarrett Spiro, and Luís A. Nunes Amaral (29 April 2005) Science 308 (5722), 697. 



Predictions for the size of the giant component 

  higher p means already published individuals are co-
authoring – linking the network together and increasing 
the giant component 

S = fraction of network occupied by the giant component 

Source:  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance; 
Roger Guimerà, Brian Uzzi, Jarrett Spiro, and Luís A. Nunes Amaral (29 April 2005) Science 308 (5722), 697. 



Predictions for the size of the giant component 
(cont’d) 

  increasing q can slow the growth of the giant component 
– co-authoring with previous collaborators does not 
create new edges (fR = fraction of repeat incumbent-
incumbent links) 

Source:  Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance; 
Roger Guimerà, Brian Uzzi, Jarrett Spiro, and Luís A. Nunes Amaral (29 April 2005) Science 308 (5722), 697. 



network statistics 

Field teams individuals p q fR S (size of giant 
component) 

BMI 2258 4113 0.52 0.77 0.16 0.70 

social 
psychology 

16,526 23,029 0.56 0.78 0.22 0.67 

economics 14,870 23,236 0.57 0.73 0.22 0.54 

ecology 26,888 38,609 0.59 0.76 0.23 0.75 

astronomy 30,552 30,192 0.76 0.82 0.39 0.98 

what stands out? 
what is similar across the networks? 



main findings 

  all networks except astronomy close to the “tipping” point 
where giant component emerges 
  sparse and stringy networks 

  giant component takes up more than 50% of nodes in 
each network 

  impact factor (how good the journal is where the work 
was published) 
  p positively correlated  

  going with experienced members is good 
  q negatively correlated  

  new combinations more fruitful 
  S for individual journals positively correlated 

 more isolated clusters in lower-impact journals 

ecology, economics, 
social psychology 

ecology 
social psychology 



team assembly lab 

  In NetLogo demo library: 
  what happens as you increase the probability of choosing a 

newcomer? 
  what happens as you increase the probability of a repeat 

collaboration between same two nodes? 

http://ccl.northwestern.edu/netlogo/
models/TeamAssembly 



Group Formation in Large Social Networks: 
Membership, Growth, and Evolution 

  Backstrom, Huttenlocher, Kleinberg, Lan @ KDD 2006 

  data: 
  LiveJournal 
  DBLP 



the more friends you have in a group, the more 
likely you are to join 

Source: Backstrom, L., D. Huttenlocher, J. Kleinberg, and Et. Group formation in large social networks: Membership, 
growth, and evolution. 



if it’s a “group” of friends that have joined… 

Source: Backstrom, L., D. Huttenlocher, J. Kleinberg, and Et. Group formation in large social networks: Membership, 
growth, and evolution. 



but community growth is slower if entirely 
cliquish… 

Source: Backstrom, L., D. Huttenlocher, J. Kleinberg, and Et. Group formation in large social networks: Membership, 
growth, and evolution. 



group formation & social networks (summary) 

  if your friends join, so will you 
  if your friends who join know one another, you’re even 

more likely to join 
  cliquish communities grow more slowly 



evolution of aggregate network metrics 

  as individual nodes and edges come and go, 
how do aggregate features change? 
  degree distribution? 
  clustering coefficient? 
  average shortest path? 



university email network: 

  properties such as degree distribution, average shortest 
path, and size of giant component have seasonal 
variation (summer break, start of semester, etc.) 
  appropriate smoothing window (τ) needed 

  clustering coefficient, shape of degree distribution 
constant 
  but rank of individuals changes over time 

Source: Empirical Analysis of an Evolving Social Network; Gueorgi Kossinets and Duncan J. Watts (6 January 
2006) Science 311 (5757), 88. 



an empirical puzzle of network evolution: 
Graph Densification 

  Densification Power Law  

  Densification exponent: 1 ≤ a ≤ 2: 
  a=1: linear growth – constant out-degree (assumed in 

the literature so far) 
  a=2: quadratic growth – clique 

  Let’s see the real graphs! 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Densification – Physics Citations 

  Citations among 
physics papers  

  1992: 
  1,293 papers, 

 2,717 citations 
  2003: 

  29,555 papers, 
352,807 citations 

  For each month M, 
create a graph of all 
citations up to month 
M N(t) 

E(t) 

1.69 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Densification – Patent Citations 

  Citations among 
patents granted 

  1975 
  334,000 nodes 
  676,000 edges 

  1999 
  2.9 million nodes 
  16.5 million edges 

  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Densification – Autonomous Systems 

  Graph of Internet 
  1997 

  3,000 nodes 
  10,000 edges 

  2000 
  6,000 nodes 
  26,000 edges 

  One graph per day 

N(t) 

E(t) 

1.18 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Densification – Affiliation Network 

  Authors linked to 
their publications 

  1992 
  318 nodes 
  272 edges 

  2002 
  60,000 nodes 

  20,000 authors 
  38,000 papers 

  133,000 edges 

N(t) 

E(t) 

1.15 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Graph Densification – Summary 

  The traditional constant out-degree assumption does not 
hold 

  Instead: 

  the number of edges grows faster than the number of 
nodes – average degree is increasing 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Diameter – ArXiv citation graph 

  Citations among 
physics papers    

  1992 –2003 
  One graph per year 

time [years] 

diameter 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Diameter – “Autonomous Systems” 

  Graph of Internet 
  One graph per day  
  1997 – 2000 

number of nodes 

diameter 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Diameter – “Affiliation Network” 

  Graph of 
collaborations in 
physics – authors 
linked to papers 

  10 years of data 

time [years] 

diameter 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Diameter – “Patents” 

  Patent citation network 
  25 years of data 

time [years] 

diameter 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Densification – Possible Explanation 

  Existing graph generation models do not capture the 
Densification Power Law and Shrinking diameters 

  Can we find a simple model of local behavior, which 
naturally leads to observed phenomena? 

  Yes! We present 2 models: 
  Community Guided Attachment – obeys Densification 
  Forest Fire model – obeys Densification, Shrinking diameter 

(and Power Law degree distribution) 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Community structure 

  Let’s assume the 
community structure 

  One expects many 
within-group friendships 
and fewer cross-group 
ones  

  How hard is it to cross 
communities? 

Self-similar university  
community structure 

CS Math Drama Music 

Science Arts 

University 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



  If the cross-community linking probability of nodes at 
tree-distance h is scale-free 

  cross-community linking probability:  

    
   
  where: c ≥ 1 … the Difficulty constant 
           h … tree-distance 

Fundamental Assumption 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Densification Power Law (1) 

  Theorem: The Community Guided Attachment leads to 
Densification Power Law with exponent 

  a … densification exponent 
  b … community structure branching factor 
  c … difficulty constant 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



  Theorem: 

  Gives any non-integer Densification exponent 
  If c = 1: easy to cross communities 

  Then: a=2, quadratic growth of edges – near clique 

  If c = b: hard to cross communities 
  Then: a=1, linear growth of edges – constant out-degree 

Difficulty Constant 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Room for Improvement 

  Community Guided Attachment explains Densification 
Power Law 

  Issues: 
  Requires explicit Community structure 
  Does not obey Shrinking Diameters 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



“Forest Fire” model – Wish List 

  Want no explicit Community structure 
  Shrinking diameters 
  and: 

  “Rich get richer” attachment process, to get heavy-tailed in-
degrees 

  “Copying” model, to lead to communities 
  Community Guided Attachment, to produce Densification Power 

Law 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



“Forest Fire” model – Intuition (1) 

  How do authors identify references? 
1.  Find first paper and cite it 
2.  Follow a few citations, make citations 
3.  Continue recursively 
4.  From time to time use bibliographic tools (e.g. CiteSeer) and 

chase back-links 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



“Forest Fire” model – Intuition (2) 

  How do people make friends in a new environment? 
1.  Find first a person and make friends 
2.  Follow a of his friends 
3.  Continue recursively 
4.  From time to time get introduced to his friends 

  Forest Fire model imitates exactly this process 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



“Forest Fire” – the Model 

  A node arrives 
  Randomly chooses an “ambassador” 
  Starts burning nodes (with probability p) and adds 

links to burned nodes 
  “Fire” spreads recursively 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



56 

Forest Fire in Action (1) 

  Forest Fire generates graphs that Densify and have 
Shrinking Diameter 

densification diameter 

1.21 

N(t) 

E(t) 

N(t) 

di
am

et
er

 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Forest Fire in Action (2) 

  Forest Fire also generates graphs with heavy-tailed 
degree distribution 

in-degree out-degree 

count vs. in-degree count vs. out-degree 
 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Forest Fire model – Justification 

  Densification Power Law: 
  Similar to Community Guided Attachment 
  The probability of linking decays exponentially with the distance 

– Densification Power Law 

  Power law out-degrees: 
  From time to time we get large fires 

  Power law in-degrees: 
  The fire is more likely to burn hubs 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



Forest Fire model – Justification 

  Communities:  
  Newcomer copies neighbors’ links 

  Shrinking diameter 

 Source: Leskovec et al. KDD 2005   slide by Jure Leskovec 



wrap up 

  networks evolve 
  we can sometimes predict where new edges will form 

  e.g. social networks tend to display triadic closure (friends 
introduce friends to other friends) 

  network structure as a whole evolves 
  densification: edges are added at a greater rate than nodes 

  e.g. papers today have longer lists of references 


