
School of Information
University of Michigan

Unless otherwise noted, the content of this course material is
licensed under a Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/

Copyright 2008, Lada Adamic

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content,
used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with
any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the
use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects.
Users of content are responsible for their compliance with applicable law. Mention of specific products in this recording solely represents
the opinion of the speaker and does not represent an endorsement by the University of Michigan. For more information about how to cite
these materials visit http://michigan.educommons.net/about/terms-of-use.

School of Information
University of Michigan

Network basics & some tools

Lada Adamic

Outline

  What is a network?
  a bunch of nodes and edges

  How do you characterize it?
  with some basic network metrics

  How did network analysis get started
  it was the mathematicians

  How do you analyze networks today?
  with pajek or other software

What are networks?

  Networks are collections of
points joined by lines.

“Network” ≡ “Graph”

points lines
vertices edges, arcs math
nodes links computer science
sites bonds physics
actors ties, relations sociology

node

edge

Network elements: edges

  Directed (also called arcs)
  A -> B

  A likes B, A gave a gift to B, A is B’s child

  Undirected
  A <-> B or A – B

  A and B like each other
  A and B are siblings
  A and B are co-authors

  Edge attributes
  weight (e.g. frequency of communication)
  ranking (best friend, second best friend…)
  type (friend, relative, co-worker)
  properties depending on the structure of the rest of the graph:

e.g. betweenness

Directed networks

• 2 • 2

• 1
• 2

• 1

• 2

• 1

• 1

• 1

• 2

• 2
• 1

• 1

• 2

• 1
• 1

• 2 • 1

• 2

• 1

• 2 • 1

• Ada

• Cora

• Louise

• Jean

• Helen

• Martha

• Alice

• Robin

• Marion

• Maxine

• Lena

• Hazel • Hilda

• Frances
• Eva

• Ruth • Edna

• Adele

• Jane

• Anna
• Mary

• Betty

• Ella

• Ellen

• Laura

• Irene

  girls’ school dormitory dining-table partners (Moreno, The sociometry reader, 1960)

  first and second choices shown

Edge weights can have positive or negative values

  One gene activates/
inhibits another

  One person trusting/
distrusting another
  Research challenge:

How does one
‘propagate’ negative
feelings in a social
network? Is my
enemy’s enemy my
friend?

• Transcription regulatory
network in baker’s yeast

Source: undetermined

Adjacency matrices

  Representing edges (who is adjacent to whom) as a
matrix
  Aij = 1 if node i has an edge to node j

 = 0 if node i does not have an edge to j

  Aii = 0 unless the network has self-loops

  Aij = Aji if the network is undirected,
or if i and j share a reciprocated edge

i
j

i

i
j

1

2

3

4

• Example:

5

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 0 0 0 1
1 1 0 0 0

A =

Adjacency lists

  Edge list
  2 3
  2 4
  3 2
  3 4
  4 5
  5 2
  5 1

  Adjacency list
  is easier to work with if network is

  large
  sparse

  quickly retrieve all neighbors for a node
  1:
  2: 3 4
  3: 2 4
  4: 5
  5: 1 2

1

2

3

4
5

Outline

  What is a network?
  a bunch of nodes and edges

  How do you characterize it?
  with some basic network metrics

  How did network analysis get started
  it was the mathematicians

  How do you analyze networks today?
  with pajek or other software

Characterizing networks:
Who is most central?

?

?
?

Nodes

  Node network properties
  from immediate connections

  indegree
how many directed edges (arcs) are incident on a node

  outdegree
how many directed edges (arcs) originate at a node

  degree (in or out)
number of edges incident on a node

  from the entire graph
  centrality (betweenness, closeness)

outdegree=2

indegree=3

degree=5

Node degree from matrix values

  Outdegree =

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 0 0 0 1
1 1 0 0 0

• A =

• example: outdegree for node 3 is 2, which
we obtain by summing the number of non-
zero entries in the 3rd row

  Indegree =

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 0 0 0 1
1 1 0 0 0

• A =

• example: the indegree for node 3 is 1,
which we obtain by summing the number of
non-zero entries in the 3rd column

• 1

• 2

• 3

• 4
• 5

Network metrics: degree sequence and degree
distribution

  Degree sequence: An ordered list of the (in,out) degree of each node

  In-degree sequence:
  [2, 2, 2, 1, 1, 1, 1, 0]

  Out-degree sequence:
  [2, 2, 2, 2, 1, 1, 1, 0]

  (undirected) degree sequence:
  [3, 3, 3, 2, 2, 1, 1, 1]

  Degree distribution: A frequency count of the occurrence of each degree

  In-degree distribution:
  [(2,3) (1,4) (0,1)]

  Out-degree distribution:
  [(2,4) (1,3) (0,1)]

  (undirected) distribution:
  [(3,3) (2,2) (1,3)]

Characterizing networks:
Is everything connected?

Network metrics: connected components

  Strongly connected components
  Each node within the component can be reached from every other node

in the component by following directed links

  Strongly connected components
  B C D E
  A
  G H
  F

  Weakly connected components: every node can be reached from every
other node by following links in either direction

A

B

C

D
E

F
G

H

A

B

C

D
E

F
G

H

  Weakly connected components
  A B C D E
  G H F

  In undirected networks one talks simply about
‘connected components’

network metrics: size of giant component

  if the largest component encompasses a significant fraction of the graph,
it is called the giant component

network metrics: bowtie model of the web

  The Web is a directed graph:
  webpages link to other

webpages
  The connected components

tell us what set of pages can
be reached from any other just
by surfing (no ‘jumping’ around
by typing in a URL or using a
search engine)

  Broder et al. 1999 – crawl of
over 200 million pages and 1.5
billion links.

  SCC – 27.5%
  IN and OUT – 21.5%
  Tendrils and tubes – 21.5%
  Disconnected – 8%

Characterizing networks:
How far apart are things?

Network metrics: shortest paths

  Shortest path (also called a geodesic path)
  The shortest sequence of links connecting two nodes
  Not always unique

  A and C are connected by 2 shortest
paths

  A – E – B - C
  A – E – D - C

  Diameter: the largest geodesic distance in the graph

A

B

C

D
E

  The distance between A and C is the
maximum for the graph: 3

  Caution: some people use the term ‘diameter’ to be the average shortest
path distance, in this class we will use it only to refer to the maximal distance

1

2

2

3

3

Characterizing networks:
How dense are they?

network metrics: graph density

  Of the connections that may exist between n nodes
  directed graph

emax = n*(n-1)
 each of the n nodes can connect to (n-1) other nodes

  undirected graph
emax = n*(n-1)/2
since edges are undirected, count each one only once

  What fraction are present?
  density = e/ emax

  For example, out of 12
possible connections, this graph
has 7, giving it a density of
7/12 = 0.583

  Would this measure be useful for
comparing networks of different sizes
(different numbers of nodes)?

bipartite (two-mode) networks

  edges occur only between two groups of nodes, not
within those groups

  for example, we may have individuals and events
  directors and boards of directors
  customers and the items they purchase
  metabolites and the reactions they participate in

going from a bipartite to a one-mode graph

  One mode projection
  two nodes from the first

group are connected if
they link to the same
node in the second
group

  some loss of information
  naturally high

occurrence of cliques

  Two-mode network
• group 1

• group 2

Outline

  What is a network?
  a bunch of nodes and edges

  How do you characterize it?
  with some basic network metrics

  How did network analysis get started
  it was the mathematicians

  How do you analyze networks today?
  with pajek or other software

History: Graph theory

  Euler’s Seven Bridges of Königsberg – one of the first problems in
graph theory

  Is there a route that crosses each bridge only once and returns to
the starting point?

Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
Image 1 – GNU v1.2: Bogdan, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License
Image 2 – GNU v1.2: Booyabazooka, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License
Image 3 – GNU v1.2: Riojajar, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License

Eulerian paths

  If starting point and end point are the same:
  only possible if no nodes have an odd degree

  each path must visit and leave each shore

  If don’t need to return to starting point
  can have 0 or 2 nodes with an odd degree

• Eulerian path: traverse each
• edge exactly once

• Hamiltonian path: visit
• each vertex exactly once

Bi-cliques (cliques in bipartite graphs)

  Km,n is the complete bipartite graph with m and n vertices of the
two different types

  K3,3 maps to the utility graph
  Is there a way to connect three utilities, e.g. gas, water, electricity to

three houses without having any of the pipes cross?

• K3,3

• Utility graph

Planar graphs

  A graph is planar if it can be drawn on a plane without
any edges crossing

When graphs are not planar

  Two graphs are homeomorphic if you can make one
into the other by adding a vertex of degree 2

Cliques and complete graphs

  Kn is the complete graph (clique) with K vertices
  each vertex is connected to every other vertex
  there are n*(n-1)/2 undirected edges

• K5 • K8 • K3

Peterson graph

  Example of using edge contractions to show a graph is
not planar

Edge contractions defined

  A finite graph G is planar if and only if it has no subgraph that is
homeomorphic or edge-contractible to the complete graph in five vertices
(K5) or the complete bipartite graph K3, 3. (Kuratowski's Theorem)

#s of planar graphs of different sizes

• 1:1

• 2:2

• 3:4

• 4:11

• Every planar graph
• has a straight line
• embedding

Trees

  Trees are undirected graphs that contain no cycles

examples of trees

  In nature

  Man made

  Computer science

  Network analysis

Outline

  What is a network?
  a bunch of nodes and edges

  How do you characterize it?
  with some basic network metrics

  How did network analysis get started?
  it was the mathematicians

  How do you analyze networks today?
  with pajek or other software

overview of network analysis tools

Pajek network analysis and visualization,
menu driven, suitable for large networks

platforms: Windows (on linux
via Wine)
download

Netlogo agent based modeling
recently added network modeling capabilities

platforms: any (Java)
download

 GUESS network analysis and visualization,
extensible, script-driven (jython)

platforms: any (Java)
download

Other software tools that we will not be using but that you may find useful:
visualization and analysis:
UCInet - user friendly social network visualization and analysis software (suitable smaller networks)
iGraph - if you are familiar with R, you can use iGraph as a module to analyze or create large networks, or you can directly use the C functions
Jung - comprehensive Java library of network analysis, creation and visualization routines
Graph package for Matlab (untested?) - if Matlab is the environment you are most comfortable in, here are some basic routines
SIENA - for p* models and longitudinal analysis
SNA package for R - all sorts of analysis + heavy duty stats to boot
NetworkX - python based free package for analysis of large graphs
InfoVis Cyberinfrastructure - large agglomeration of network analysis tools/routines, partly menu driven
visualization only:
GraphViz - open source network visualization software (can handle large/specialized networks)
TouchGraph - need to quickly create an interactive visualization for the web?
yEd - free, graph visualization and editing software
specialized:
fast community finding algorithm
motif profiles
CLAIR library - NLP and IR library (Perl Based) includes network analysis routines

finally: INSNA long list of SNA packages

tools we’ll use

  Pajek: extensive menu-driven functionality, including
many, many network metrics and manipulations
  but… not extensible

  Guess: extensible, scriptable tool of exploratory data
analysis, but more limited selection of built-in methods
compared to Pajek

  NetLogo: general agent based simulation platform with
excellent network modeling support
  many of the demos in this course were built with NetLogo

  iGraph: used in PhD-level version of this course.
libraries can be accessed through R or python. Routines
scale to millions of nodes.

other tools: visualization tool: gephi

  http://gephi.org
  primarily for visualization, has some nice touches

visualization tool: GraphViz

  Takes descriptions of graphs in simple text languages
  Outputs images in useful formats
  Options for shapes and colors
  Standalone or use as a library

  dot: hierarchical or layered drawings of directed graphs,
by avoiding edge crossings and reducing edge length

  neato (Kamada-Kawai) and fdp (Fruchterman-Reinhold
with heuristics to handle larger graphs)

  twopi – radial layout
  circo – circular layout

http://www.graphviz.org/

GraphViz: dot language

digraph G {
 ranksep=4
 nodesep=0.1
 size="8,11"
ARCH531_20061 [label="ARCH531",style=bold,color=yellow,style=filled]
ARCH531_20071 [label="ARCH531",gstyle=bold,color=yellow,style=filled]
BIT512_20071 [label="BIT512",gstyle=bold,color=yellow,style=filled]
BIT513_20071 [label="BIT513",gstyle=bold,color=yellow,style=filled]
BIT646_20064 [label="BIT646",gstyle=bold,color=yellow,style=filled]
BIT648_20064 [label="BIT648",gstyle=bold,color=yellow,style=filled]
DESCI502_20071 [label="DESCI502",gstyle=bold,color=yellow,style=filled]
ECON500_20064 [label="ECON500",gstyle=bold,color=yellow,style=filled]
…
…
SI791_20064->SI549_20064[weight=2,color=slategray,style="setlinewidth(4)"]SI791_20064-

>SI596_20071[weight=5,color=slategray,style=bold,style="setlinewidth(10)"]SI791_20064-
>SI616_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064-
>SI702_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064-
>SI719_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]

Dot (GraphViz)

Lada’s school of information course
recommender (GraphViz)

A R C H 5 3 1 B I T 5 4 5 B I T 6 4 5 B I T 7 5 0 I O E 4 9 1 M O 5 0 1 S I 5 1 2 S I 5 1 4 S I 5 4 3 S I 5 5 1 S I 5 5 4 S I 5 5 7 S I 5 7 5 S I 6 0 5 S I 6 2 2 S I 6 4 6 S I 6 5 0 S I 6 5 4 S I 6 5 5 S I 6 6 3 S I 6 8 4 S I 6 8 8 S I 8 8 4

C O M M 8 1 0 E E C S 4 9 2 I O E 5 3 6 M K T 5 0 1 S I 5 0 4 S I 5 3 9 S I 5 5 3 S I 5 7 5 S I 5 9 9 S I 6 2 5 S I 6 2 7 S I 6 2 8 S I 6 4 4 S I 6 4 7 S I 6 4 9 S I 6 5 3 S I 6 5 8 S I 6 6 8 S I 6 8 1 S I 6 8 2 S I 6 8 9 S I 6 9 9 S I 7 0 2

E L I 3 2 1

S I 6 2 2 S I 6 9 0 R A C K H A M 9 9 8 S I 5 1 2

S I 5 3 9

S I 6 0 7

S I 5 4 0

S I 5 4 3 S I 6 0 5 S I 7 0 2 S I 6 1 5

S I 6 2 5

S I 6 5 4

S I 6 5 8

S I 6 7 0

S I 6 8 2

S I 6 8 8 S I 6 8 9

S I 7 0 2 S I 7 9 1

M H S 6 6 3 R A C K H A M 5 7 5 S I 5 0 2 I 5 1 2 S I 5 1 5 S I 5 8 1 S I 5 9 6 S I 6 1 5 S I 6 1 6 S I 6 2 0 S I 6 2 1 S I 6 2 6 S I 6 4 3 S I 6 4 6 S I 6 5 5 S I 6 6 3 S I 6 9 0 S I 6 9 2 S I 6 9 6 S I 7 0 2 S I 7 9 2

C O M M 8 1 0 E D C U R I N S 5 7 5 E D U C 6 0 1 E N G L I S H 5 1 6 H I S T O R Y 6 9 8 M H S 6 6 3 S I 5 4 0 S I 5 7 5 S I 5 7 9 S I 5 9 6 S I 6 2 4 S I 6 2 8 S I 6 2 9 S I 6 3 7 S I 6 6 5 S I 6 6 6 S I 6 9 0 S I 7 9 1 S I 9 0 1

S I 5 0 1

S I 5 0 2 S I 5 0 3

S I 5 0 4

S I 5 1 5 S I 5 5 7

S I 5 7 5

S I 7 0 2

S I 5 8 0

S I 5 8 1 S I 6 3 2 S I 6 5 5 S I 6 9 2

S I 5 9 6

S I 6 2 6 S I 6 4 3 S I 5 9 6 S I 6 0 1 S I 6 2 0

S I 6 2 4

S I 7 9 2

S I 6 4 0 S I 6 4 7

S I 6 7 4 S I 6 6 3

S I 6 6 5 S I 6 6 7 S I 6 9 0

Lada’s school of information course
recommender (GraphViz)

Neato (Graphviz)

Other visualization tools: Walrus

  developed at CAIDA available under the GNU GPL.
  “…best suited to visualizing moderately sized graphs that are

nearly trees. A graph with a few hundred thousand nodes
and only a slightly greater number of links is likely to be
comfortable to work with.”

  Java-based
  Implemented Features

  rendering at a guaranteed frame rate regardless of graph size
  coloring nodes and links with a fixed color, or by RGB values

stored in attributes
  labeling nodes
  picking nodes to examine attribute values
  displaying a subset of nodes or links based on a user-supplied

boolean attribute
  interactive pruning of the graph to temporarily reduce clutter and

occlusion
  zooming in and out

Source: CAIDA, http://www.caida.org/tools/visualization/walrus/

visualization tools: YEd - JavaTM Graph Editor
http://www.yworks.com/en/products_yed_about.htm

(good primarily for layouts, maybe free)

yEd and 26,000 nodes (takes a few seconds)

visualization tools: Prefuse

  (free) user interface toolkit for interactive information visualization
  built in Java using Java2D graphics library
  data structures and algorithms
  pipeline architecture featuring reusable, composable modules
  animation and rendering support
  architectural techniques for scalability

  requires knowledge of Java programming
  website: http://prefuse.sourceforge.net/

  CHI paper http://guir.berkeley.edu/pubs/chi2005/prefuse.pdf

Simple prefuse visualizations

Source: Prefuse, http://prefuse.sourceforge.net/

Examples of prefuse applications: flow maps

A flow map of migration from California from
1995-2000, generated automatically by our
system using edge routing but no layout
adjustment.

  http://graphics.stanford.edu/papers/flow_map_layout/

Examples of prefuse applications: vizster
  http://jheer.org/vizster/

Outline

  Network metrics can help us characterize networks
  This has is roots in graph theory
  Today there are many network analysis tools to choose

from
  though most of them are in beta!

  In lab: exploratory network analysis with Pajek

