Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/

Copyright 2008, Lada Adamic

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law. Mention of specific products in this recording solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan. For more information about how to cite these materials visit http://michigan.educommons.net/about/terms-of-use.

Network basics \& some tools

Lada Adamic

Outline

What is a network?

- a bunch of nodes and edges
- How do you characterize it?

■ with some basic network metrics

- How did network analysis get started
- it was the mathematicians
- How do you analyze networks today?
- with pajek or other software

What are networks?

- Networks are collections of points joined by lines.
"Network" ミ "Graph"

points	lines	
vertices	edges, arcs	math
nodes	links	computer science
sites	bonds	physics
actors	ties, relations	sociology

Network elements: edges

- Directed (also called arcs)
- A -> B
- A likes B, A gave a gift to B, A is B 's child
- Undirected
- $A<->B$ or $A-B$
$\square A$ and B like each other
$\square A$ and B are siblings
- A and B are co-authors
- Edge attributes
- weight (e.g. frequency of communication)

■ ranking (best friend, second best friend...)

- type (friend, relative, co-worker)
- properties depending on the structure of the rest of the graph:
e.g. betweenness

Directed networks

- girls' school dormitory dining-table partners (Moreno, The sociometry reader, 1960)
- first and second choices shown

Edge weights can have positive or negative values

- One gene activates/ inhibits another
- One person trusting/ distrusting another
- Research challenge: How does one 'propagate' negative feelings in a social network? Is my enemy's enemy my friend?

[^0]
Adjacency matrices

- Representing edges (who is adjacent to whom) as a matrix
- $A_{i j}=1$ if node i has an edge to node j
$=0$ if node i does not have an edge to j
$\square A_{i i}=0$ unless the network has self-loops
- $A_{i j}=A_{j i}$ if the network is undirected, or if i and j share a reciprocated edge
-Example:

$$
A=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Adjacency lists

- Edge list
- 23
- 24
- 32
- 34
- 45
- 52
- 51

- Adjacency list
- is easier to work with if network is
- large
- sparse
- quickly retrieve all neighbors for a node
- 1:
- 2: 34
- 3: 24
- 4: 5
- 5: 12

Outline

- What is a network?

■ a bunch of nodes and edges

- How do you characterize it?
- with some basic network metrics
- How did network analysis get started

■ it was the mathematicians

- How do you analyze networks today?
- with pajek or other software

Characterizing networks: Who is most central?

Nodes

- Node network properties

■ from immediate connections

- indegree how many directed edges (arcs) are incident on a node

- outdegree
how many directed edges (arcs) originate at a node

- from the entire graph
- centrality (betweenness, closeness)

Node degree from matrix values

${ }^{-5}$ Outdegree $=\sum_{j=1}^{n} A_{i j}$
-example: outdegree for node 3 is 2 , which we obtain by summing the number of nonzero entries in the $3^{\text {rd }}$ row

$$
\sum_{j=1}^{n} A_{3 j}
$$

$$
\cdot A=\left(\begin{array}{ll:lll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

$$
\text { -A }=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
\hdashline 0 & 1 & 0 & 1 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\sum_{n}^{n} A_{B}
$$

Network metrics: degree sequence and degree distribution

- Degree sequence: An ordered list of the (in,out) degree of each node
- In-degree sequence:
- $[2,2,2,1,1,1,1,0]$
- Out-degree sequence:
- [2, 2, 2, 2, 1, 1, 1, 0]
- (undirected) degree sequence:
- [3, 3, 3, 2, 2, 1, 1, 1]

- Degree distribution: A frequency count of the occurrence of each degree
- In-degree distribution:
- [(2,3) $(1,4)(0,1)]$

■ Out-degree distribution:

- [(2,4) $(1,3)(0,1)]$
- (undirected) distribution:
- $[(3,3)(2,2)(1,3)]$

Characterizing networks:
 Is everything connected?

Network metrics: connected components

- Strongly connected components
- Each node within the component can be reached from every other node in the component by following directed links
- Strongly connected components
- BCDE
- A
- G H
- F

- Weakly connected components: every node can be reached from every other node by following links in either direction
- Weakly connected components
- ABCDE
- GHF
- In undirected networks one talks simply about

E 'connected components'

network metrics: size of giant component

- if the largest component encompasses a significant fraction of the graph, it is called the giant component

network metrics: bowtie model of the web

- The Web is a directed graph:
- webpages link to other webpages
- The connected components tell us what set of pages can be reached from any other just by surfing (no 'jumping' around by typing in a URL or using a search engine)
- Broder et al. 1999 - crawl of over 200 million pages and 1.5
 billion links.
- SCC - 27.5\%
- IN and OUT - 21.5\%
- Tendrils and tubes - 21.5\%
- Disconnected - 8\%

Characterizing networks: How far apart are things?

Network metrics: shortest paths

- Shortest path (also called a geodesic path)
- The shortest sequence of links connecting two nodes
- Not always unique

- Diameter: the largest geodesic distance in the graph
- The distance between A and C is the maximum for the graph: 3
- Caution: some people use the term 'diameter' to be the average shortest path distance, in this class we will use it only to refer to the maximal distance

Characterizing networks: How dense are they?

network metrics: graph density

- Of the connections that may exist between n nodes
- directed graph
$e_{\max }=n *(n-1)$
max each of the n nodes can connect to ($\mathrm{n}-1$) other nodes
- undirected graph
$e_{\max }=n^{*}(n-1) / 2$
since edges are undirected, count each one only once
- What fraction are present?
- density $=e / e_{\text {max }}$
- For example, out of 12 possible connections, this graph has 7 , giving it a density of $7 / 12=0.583$
- Would this measure be useful for comparing networks of different sizes
 (different numbers of nodes)?

bipartite (two-mode) networks

\square edges occur only between two groups of nodes, not within those groups

- for example, we may have individuals and events
- directors and boards of directors
- customers and the items they purchase
- metabolites and the reactions they participate in

going from a bipartite to a one-mode graph

- Two-mode network
- One mode projection

- two nodes from the first group are connected if they link to the same node in the second group
- some loss of information
- naturally high occurrence of cliques

Outline

- What is a network?

■ a bunch of nodes and edges
■ How do you characterize it?

- with some basic network metrics
- How did network analysis get started
- it was the mathematicians
- How do you analyze networks today?

■ with pajek or other software

History: Graph theory

- Euler's Seven Bridges of Königsberg - one of the first problems in graph theory
- Is there a route that crosses each bridge only once and returns to the starting point?

Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
Image 1 - GNU v1.2: Bogdan, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU Free Documentation License
Image 2 - GNU v1.2: Booyabazooka, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU Free Documentation License Image 3 - GNU v1.2: Riojajar, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU Free Documentation License

Eulerian paths

- If starting point and end point are the same:
- only possible if no nodes have an odd degree
- each path must visit and leave each shore
- If don't need to return to starting point
- can have 0 or 2 nodes with an odd degree

-Eulerian path: traverse each -edge exactly once

-Hamiltonian path: visit -each vertex exactly once

Bi-cliques (cliques in bipartite graphs)

- $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is the complete bipartite graph with \mathbf{m} and \mathbf{n} vertices of the two different types
- $\mathrm{K}_{3,3}$ maps to the utility graph
- Is there a way to connect three utilities, e.g. gas, water, electricity to three houses without having any of the pipes cross?

Planar graphs

A graph is planar if it can be drawn on a plane without any edges crossing

When graphs are not planar

Two graphs are homeomorphic if you can make one into the other by adding a vertex of degree 2

Cliques and complete graphs

- K_{n} is the complete graph (clique) with K vertices
- each vertex is connected to every other vertex
- there are $\mathrm{n}^{*}(\mathrm{n}-1) / 2$ undirected edges

- K_{3}

$\cdot \mathrm{K}_{5}$

${ }^{-} \mathrm{K}_{8}$

Peterson graph

- Example of using edge contractions to show a graph is not planar

The PetersenGraph.

Complete Graph on 5 Vertices.

Edge contractions defined

- A finite graph G is planar if and only if it has no subgraph that is homeomorphic or edge-contractible to the complete graph in five vertices $\left(K_{5}\right)$ or the complete bipartite graph $K_{3,3}$. (Kuratowski's Theorem)

\#s of planar graphs of different sizes

Trees

Trees are undirected graphs that contain no cycles

examples of trees

- In nature
- Man made
- Computer science

- Network analysis

Outline

- What is a network?

■ a bunch of nodes and edges

- How do you characterize it?

■ with some basic network metrics

- How did network analysis get started?

■ it was the mathematicians
How do you analyze networks today?

- with pajek or other software
overview of network analysis tools

Pajek

Netlogo
agent based modeling recently added network modeling capabilities
network analysis and visualization, extensible, script-driven (jython)
platforms: Windows (on linux via Wine)
download
platforms: any (Java)
download
platforms: any (Java)
download

Other software tools that we will not be using but that you may find useful:

visualization and analysis:

UCInet - user friendly social network visualization and analysis software (suitable smaller networks)
iGraph - if you are familiar with R, you can use iGraph as a module to analyze or create large networks, or you can directly use the C functions
Jung - comprehensive Java library of network analysis, creation and visualization routines
Graph package for Matlab (untested?) - if Matlab is the environment you are most comfortable in, here are some basic routines
SIENA - for p^{*} models and longitudinal analysis
SNA package for R - all sorts of analysis + heavy duty stats to boot

NetworkX - python based free package for analysis of large graphs

InfoVis Cyberinfrastructure - large agglomeration of network analysis tools/routines, partly menu driven

visualization only:

GraphViz - open source network visualization software (can handle large/specialized networks)
TouchGraph - need to quickly create an interactive visualization for the web?
yEd - free, graph visualization and editing software
specialized:
fast community finding algorithm
motif profiles
CLAIR library - NLP and IR library (Perl Based) includes network analysis routines

tools we'll use

- Pajek: extensive menu-driven functionality, including many, many network metrics and manipulations
- but... not extensible
- Guess: extensible, scriptable tool of exploratory data analysis, but more limited selection of built-in methods compared to Pajek
- NetLogo: general agent based simulation platform with excellent network modeling support
- many of the demos in this course were built with NetLogo
- iGraph: used in PhD-level version of this course. libraries can be accessed through R or python. Routines scale to millions of nodes.

other tools: visualization tool: gephi

http:/Kgephi.org
primarily for visualization, has some nice touches

visualization tool: GraphViz

- Takes descriptions of graphs in simple text languages
- Outputs images in useful formats
- Options for shapes and colors
- Standalone or use as a library
- dot: hierarchical or layered drawings of directed graphs, by avoiding edge crossings and reducing edge length
- neato (Kamada-Kawai) and fdp (Fruchterman-Reinhold with heuristics to handle larger graphs)
- twopi - radial layout
- circo - circular layout
http://www.graphviz.org/

GraphViz: dot language

```
digraph G {
ranksep=4
nodesep=0.1
size="8,11"
ARCH531_20061 [label="ARCH531",style=bold,color=yellow,style=filled]
ARCH531_20071 [label="ARCH531",gstyle=bold,color=yellow,style=filled]
BIT512_20071 [label="BIT512",gstyle=bold,color=yellow,style=filled]
BIT513_20071 [label="BIT513",gstyle=bold,color=yellow,style=filled]
BIT646_20064 [label="BIT646",gstyle=bold,color=yellow,style=filled]
BIT648_20064 [label="BIT648",gstyle=bold,color=yellow,style=filled]
DESCI502_20071 [label="DESCI502",gstyle=bold,color=yellow,style=filled]
ECON500_20064 [label="ECON500",gstyle=bold,color=yellow,style=filled]
```

```
SI791_20064->SI549_20064[weight=2,color=slategray,style="setlinewidth(4)"]SI791_20064-
```

SI791_20064->SI549_20064[weight=2,color=slategray,style="setlinewidth(4)"]SI791_20064-
>SI596_20071[weight=5,color=slategray,style=bold,style="setlinewidth(10)"]SI791_20064-
>SI596_20071[weight=5,color=slategray,style=bold,style="setlinewidth(10)"]SI791_20064-
>SI616_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064-
>SI616_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064-
>SI702_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064-
>SI702_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]SI791_20064-
>SI719_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]

```
    >SI719_20071[weight=2,color=slategray,style=bold,style="setlinewidth(4)"]
```


Dot (GraphViz)

Lada's school of information course recommender (GraphViz)

Lada's school of information course recommender (GraphViz)

Neato (Graphviz)

Other visualization tools: Walrus

- developed at CAIDA available under the GNU GPL.
- "...best suited to visualizing moderately sized graphs that are nearly trees. A graph with a few hundred thousand nodes
 and only a slightly greater number of links is likely to be comfortable to work with."
- Java-based
- Implemented Features
- rendering at a guaranteed frame rate regardless of graph size
- coloring nodes and links with a fixed color, or by RGB values stored in attributes
- labeling nodes
- picking nodes to examine attribute values
- displaying a subset of nodes or links based on a user-supplied boolean attribute
- interactive pruning of the graph to temporarily reduce clutter and occlusion
- zooming in and out

visualization tools: YEd - JavaTM Graph Editor

http://www.yworks.com/en/products yed about.htm

(good primarily for layouts, maybe free)

yEd and 26,000 nodes (takes a few seconds)

visualization tools: Prefuse

- (free) user interface toolkit for interactive information visualization
- built in Java using Java2D graphics library
- data structures and algorithms
- pipeline architecture featuring reusable, composable modules
- animation and rendering support
- architectural techniques for scalability
- requires knowledge of Java programming

■ website: http://prefuse.sourceforge.net/
■ CHI paper http://guir.berkeley.edu/pubs/chi2005/prefuse.pdf

Simple prefuse visualizations

Source: Prefuse, http://prefuse.sourceforge.net/

Examples of prefuse applications: flow maps

Examples of prefuse applications: vizster

Outline

- Network metrics can help us characterize networks
- This has is roots in graph theory
- Today there are many network analysis tools to choose from
- though most of them are in beta!
- In lab: exploratory network analysis with Pajek

[^0]: -Transcription regulatory
 network in baker's yeast

