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Recap: Evaluation Metrics

® Thresholds

— precision, recall, ...

¥ Ranked lists
— precision-recall, scores, ..

® Numeric predictions
— MAE, RMSE

SCHOOL OF INFORMATION

si.umich.edu UNIVERSITY OF MICHIGAN



Are we evaluating the right thing?

® How “good” is this recommender? What
factors will you consider?

GO L_jgle Irecummender sysems Search I

Web Fesultz 1 - 10 of about 73,700 1

Recommender system - Wikipedia. the free encyclopedia

Recommender systems form a specific type of infarmation fikering {IF) technique that
attempts to present information tems {mowvies, music, books, news, ...

en. wikipedia.orgiwiki’Recommendation_system - 33k - Cached - Similar pages

Recommender systems

Alkindi, a now defunct company that did mowvie ,ecommendations, as put their
commeancial strength recommender system sottware in the public domain. ...
wawnw . Cis upeann.edu/—ungarCH - Tk - Cached - Similar pages

Recommender Systems
A recommender system works by asking you a senes of guestions aboul things wou
liked ordidnt like. It compams your answers to others, and finds people ...

waawew.iota . ongAWinter@ 8/ e commend . html - 30k - Cached - Similar pages

Recommender Systems

Analysis of Music Recommender Systems: In this study we analyzed the intedace ot
frve NMusic Recommender Systems (Amazon, MediaUnbound, MoodLogic, COMOwWw, ...
weanw. rashmisinha.comfrecommendears. html - 18k - Cached - Similar pages

SVD Recommendation System in Huby - igvita.com

In fact, recommendaticon systems are a billion-dollar industry, and growing. In
academic jargon this problem is known as Collaborative Fitering, ...

weaeww. igvita . .comf2007 5011 5fsvwd-recomme ndation-system-in-rubwyf - B3k -

Cached - Similar pages mm Google
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Rahul's Amazon.com™ * Recommended for You

[If you're not Rahul, click here.)

Recommendations
by Category

Your Favorites | Edit |

Books

More Categories
Apparel & Accessories
Baby

Beauty
Camera & Photo

Computer & Video Games
Computers & PC Hardware
ovD

Electronics

Gourmet Food

Health & Personal Care
Ingustrial & Scientific
Jewelry B Watches

si.umich.edu

These recommendations are based on [tems you own and more.

view: All | New Releases | Coming Socn | More results b‘-’

Auction Theory

by Vilay Krishna

Average Customer Review: RO
In Stock

Publication Date: March 1, 2002

ﬁ Add to cart |
| Add to Wish List |

Dur Price: 552,46 Used & new from 552 48

| |1ownlt | | Notinterested x|¥ryreryrir Rate it
Recommended because you purchased Putting Auction Theory to Work and more [egit)

- Canon Matte Photo Paper (B.5x11, 50 Sheets)
Canon YLD by Canon
fuprane Custnmer Beulpw: T

- Signed by Verisign, |

Amazon.com
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Why the MAE /RMSE might mislead

® Predictive accuracy doesn'’t help if it
recommends seen items

— recommenders can get stuck recommending just
one small category/cluster

® Users like diversity and serendipity

® |nterface can influence ratings (and thus,
measured MSE)

® Trust, confidence important

® Users experience a dialogue/process, not just
a single, one-way, recommendation

SCHOOL OF INFORMATION

si.umich.edu UNIVERSITY OF MICHIGAN



Rest of this class

® Impact of interface features on ratings

® Human-Recommender Interaction
conceptual model

¥ |ncorporating explanations: why and
how
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Effect of the interface on ratings

® [Cosley et al, Proceedings of CHI 2003, “Is
seeing believing? How recommender
nterfaces Affect User Opinions”™

B Studies choices in Movielens interface:
— Does the rating scale matter?

— How consistent are ratings over time? Can
recommender prompts affect this?

— Does the displayed prediction affect the submitted
rating?

® Controlled experiments and survey
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Effect of interfaces: Cosley et al
findings

® Rating scales:
— slightly better predictive accuracy with more stars..
— binary (Like/Dislike) scale results in a positive bias

® Rating consistency
— Fairly high consistency on rerated movies (60%)

— Increases when users are prompted with accurate
“predicted” value
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Effect of interfaces: Cosley et al
findings

¥ Effect of displayed predictions:

— Predictions were randomly perturbed:
raised/lowered/left alone

— Actual ratings were correlated with the
perturbation

® |mplication: Displayed prediction influences
users’ rating

— also: manipulation can be (somewhat) self-
sustaining
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User-centered view

® Consider recommender design within the
context of the users’ goals

¥ Human-Recommender Interaction model
[McNee, Ried|, Konstan]
— describe/categorize attributes of the context

— describe attributes/features that influence user
satisfaction

— suggest a design process around these
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HRI Model [from McNee et al]

Recommendation Dialogue
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McNee et al.
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HRI model

® Factors describing context
— concreteness of task
— expectation of usefulness,etc.

B Different contexts may lead to different
evaluation criteria

® Examples?
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HRI model

® Factors influencing satisfaction:

— In one interaction

* Correctness, usefulness, serendipity (maybe),
transparency, diversity of recommended list..

— Over time
* Personalization, trust, adaptability, freshness..
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Implications

® |n studies, users sometime prefer rec. lists that are
worse on standard metrics

® Different algorithms better for different goals =>
recommenders may need multiple CF algorithms

B |nterface should provide a way to express context
information

¥ Explaining recommendations can help generate trust,
adaptability
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Explanations in recommender systems
® Moving away from the black-box oracle model
® justify why a certain item is recommended

® maybe also converse to reach a
recommendation
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Why have explanations? [Tintarev &
Masthoff]

¥ Transparency

B “Scrutability”: correct errors in learnt
preference model

® Trust/Confidence in system
B Effectiveness & efficiency(speed)
B Satisfaction/enjoyment
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Example: explanations for
transparency and confidence

® "Movie X was recommended to you because
it is similar to movie Y, Z that you recently
watched”

® "Movie X was recommended to you because
you liked other comedies”

® “Other users who bought book X also bought
book Y”
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Generating explanations

® Essentially, explain the steps of the CF
algorithm, picking the most prominent
“neighbors”
— User-user
— ltem-item

® Harder to do for SVD and other abstract
model-fitting recommender algorithms
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Conversational recommenders

Example transcript: (from [McSherry,“"Explanation in

Recommender Systems, Al Review 2005]):

Top case: please enter your query

User. Type = wandering, month = aug

Top Case: the target case is “aug, tyrol, ..."
other competing cases include “....”

Top case: What is the preferred location?
User. why?

Top case: It will help eliminate ... alternatives
User: alps..
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Conversational recommenders

® One view: CF using some navigational data
as well as ratings

® More structured approach: incremental
collaborative filtering

— similarity metric changes as the query is refined

¥ e.g., incremental Nearest-Neighbor algorithm
[McSherry, Al Review 20035]
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