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Lecture 11: 
Explanations and Interface Variations

 SI583: Recommender Systems



   SCHOOL OF INFORMATION  
UNIVERSITY OF MICHIGANsi.umich.edu

Recap: Evaluation Metrics

 Thresholds
– precision, recall, …

 Ranked lists
– precision-recall, scores, ..

 Numeric predictions
– MAE, RMSE

4



   SCHOOL OF INFORMATION  
UNIVERSITY OF MICHIGANsi.umich.edu

5

Are we evaluating the right thing?

 How “good” is this recommender? What 
factors will you consider?

Google
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Amazon.com
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Why the MAE/RMSE might mislead

 Predictive accuracy doesn’t help if it 
recommends seen items
– recommenders can get stuck recommending just 

one small category/cluster
 Users like diversity and serendipity
 Interface can influence ratings (and thus, 

measured MSE)
 Trust, confidence important
 Users experience a dialogue/process, not just 

a single, one-way, recommendation
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Rest of  this class

 Impact of interface features on ratings
 Human-Recommender Interaction 

conceptual model
 Incorporating explanations: why and 

how
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Effect of  the interface on ratings

 [Cosley et al, Proceedings of CHI 2003, “Is 
seeing believing? How recommender 
Interfaces Affect User Opinions”]

 Studies choices in MovieLens interface:
– Does the rating scale matter?
– How consistent are ratings over time? Can 

recommender prompts affect this?
– Does the displayed prediction affect the submitted 

rating?

 Controlled experiments and survey
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Effect of  interfaces: Cosley et al 
findings

 Rating scales:
– slightly better predictive accuracy with more stars..
– binary (Like/Dislike) scale results in a positive bias

 Rating consistency
– Fairly high consistency on rerated movies (60%)
– Increases when users are prompted with accurate 

“predicted” value
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Effect of  interfaces: Cosley et al 
findings
 Effect of displayed predictions:

– Predictions were randomly perturbed: 
raised/lowered/left alone

– Actual ratings were correlated with the 
perturbation

 Implication: Displayed prediction influences 
users’ rating
– also: manipulation can be (somewhat) self-

sustaining
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User-centered view

 Consider recommender design within the 
context of the users’ goals

 Human-Recommender Interaction model 
[McNee, Riedl, Konstan]
– describe/categorize attributes of the context
– describe attributes/features that influence user 

satisfaction
– suggest a design process around these
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HRI Model [from McNee et al] 13

McNee et al.
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HRI model

 Factors describing context
– concreteness of task
– expectation of usefulness,etc.

 Different contexts may lead to different 
evaluation criteria

 Examples?
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HRI model

 Factors influencing satisfaction:
– In one interaction

• Correctness, usefulness, serendipity (maybe), 
transparency, diversity of recommended list..

– Over time
• Personalization, trust, adaptability, freshness..
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Implications

 In studies, users sometime prefer rec. lists that are 
worse on standard metrics

 Different algorithms better for different goals => 
recommenders may need multiple CF algorithms

 Interface should provide a way to express context 
information

 Explaining recommendations can help generate trust, 
adaptability
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Explanations in recommender systems

 Moving away from the black-box oracle model

 justify why a certain item is recommended

 maybe also converse to reach a 
recommendation
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Why have explanations? [Tintarev & 
Masthoff]

 Transparency
 “Scrutability”: correct errors in learnt 

preference model
 Trust/Confidence in system
 Effectiveness & efficiency(speed)
 Satisfaction/enjoyment
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Example: explanations for 
transparency and confidence

 “Movie X was recommended to you because 
it is similar to movie Y, Z that you recently 
watched”

 “Movie X was recommended to you because 
you liked other comedies”

 “Other users who bought book X also bought 
book Y”
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Generating explanations

 Essentially, explain the steps of the CF 
algorithm, picking the most prominent 
“neighbors”
– User-user
– Item-item

 Harder to do for SVD and other abstract 
model-fitting recommender algorithms
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Conversational recommenders
Example transcript: (from [McSherry,“Explanation in 

Recommender Systems, AI Review 2005]):

 Top case: please enter your query
 User: Type = wandering, month = aug
 Top Case: the target case is “aug, tyrol, ...”
     other competing cases include “....”
 Top case: What is the preferred location?
 User: why?
 Top case: It will help eliminate ... alternatives
 User: alps..
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Conversational recommenders

 One view: CF using some navigational data 
as well as ratings

 More structured approach: incremental 
collaborative filtering
– similarity metric changes as the query is refined

 e.g., incremental Nearest-Neighbor algorithm 
[McSherry, AI Review 2005]
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