Author(s): Rahul Sami, 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.
Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Lecture 11:
Explanations and Interface Variations
SI583: Recommender Systems
Recap: Evaluation Metrics

- Thresholds
 - precision, recall, …

- Ranked lists
 - precision-recall, scores, ..

- Numeric predictions
 - MAE, RMSE
Are we evaluating the right thing?

- How “good” is this recommender? What factors will you consider?
Recommended for You

These recommendations are based on items you own and more.

view: All | New Releases | Coming Soon

1. Auction Theory
 by Vijay Krishna
 Average Customer Review: ★★★★★
 In Stock
 Publication Date: March 1, 2002
 Our Price: $52.46 Used & new from $52.46
 Add to cart
 Add to Wish List

I Own It Not interested ★★★★★ Rate it
Recommended because you purchased Putting Auction Theory to Work and more (edit)

2. Canon Matte Photo Paper (8.5x11, 50 Sheets)
 by Canon
 Average Customer Review: ★★★★★
 Signed by Verisign, I
Why the MAE/RMSE might mislead

- Predictive accuracy doesn’t help if it recommends seen items
 - recommenders can get stuck recommending just one small category/cluster
- Users like *diversity* and *serendipity*
- Interface can influence ratings (and thus, measured MSE)
- Trust, confidence important
- Users experience a dialogue/process, not just a *single, one-way, recommendation*
Rest of this class

- Impact of interface features on ratings
- Human-Recommender Interaction conceptual model
- Incorporating explanations: why and how
Effect of the interface on ratings

- Studies choices in MovieLens interface:
 - Does the rating scale matter?
 - How consistent are ratings over time? Can recommender prompts affect this?
 - Does the displayed prediction affect the submitted rating?

- Controlled experiments and survey
Effect of interfaces: Cosley et al findings

Rating scales:
- slightly better predictive accuracy with more stars.
- binary (Like/Dislike) scale results in a positive bias

Rating consistency
- Fairly high consistency on rerated movies (60%)
- Increases when users are prompted with accurate “predicted” value
Effect of interfaces: Cosley et al findings

- Effect of displayed predictions:
 - Predictions were randomly perturbed: raised/lowered/left alone
 - Actual ratings were correlated with the perturbation

- Implication: Displayed prediction influences users’ rating
 - also: manipulation can be (somewhat) self-sustaining
User-centered view

- Consider recommender design within the context of the users’ goals

- Human-Recommender Interaction model [McNee, Riedl, Konstan]
 - describe/categorize attributes of the context
 - describe attributes/features that influence user satisfaction
 - suggest a design process around these
HRI Model [from McNee et al]

Recommendation Dialogue
- Correctness
- Transparency
- Saliency
- Serendipity
- Quantity
- Usefulness
- Spread
- Usability

Recommender Personality
- Personalization
- Boldness
- Adaptability
- Trust / First Impressions
- Risk Taking / Aversion
- Affirmation
- Pigeonholing
- Freshness

End User’s Information Seeking Task
- Concreteness of Task
- Task Compromising
- Recommender Appropriateness
- Expectations of Recommender Usefulness
- Recommender Importance in Meeting Need

Users & Tasks
- Analyze
- Create Mapping
- Metrics
- Benchmark

HRI
- Recommender Algorithms

McNee et al.
HRI model

- Factors describing context
 - concreteness of task
 - expectation of usefulness, etc.

- Different contexts may lead to different evaluation criteria

- Examples?
HRI model

Factors influencing satisfaction:

– In one interaction
 • Correctness, usefulness, serendipity (maybe), transparency, diversity of recommended list..

– Over time
 • Personalization, trust, adaptability, freshness..
Implications

- In studies, users sometime prefer rec. lists that are worse on standard metrics
- Different algorithms better for different goals => recommenders may need multiple CF algorithms
- Interface should provide a way to express context information
- Explaining recommendations can help generate trust, adaptability
Explanations in recommender systems

- Moving away from the black-box oracle model

- *justify* why a certain item is recommended

- maybe also *converse* to reach a recommendation
Why have explanations? [Tintarev & Masthoff]

- Transparency
- “Scrutability”: correct errors in learnt preference model
- Trust/Confidence in system
- Effectiveness & efficiency (speed)
- Satisfaction/enjoyment
Example: explanations for transparency and confidence

- “Movie X was recommended to you because it is similar to movie Y, Z that you recently watched”

- “Movie X was recommended to you because you liked other comedies”

- “Other users who bought book X also bought book Y”
Generating explanations

- Essentially, explain the steps of the CF algorithm, picking the most prominent “neighbors”
 - User-user
 - Item-item

- Harder to do for SVD and other abstract model-fitting recommender algorithms
Conversational recommenders

Example transcript: (from [McSherry, “Explanation in Recommender Systems, AI Review 2005]):

- **Top case**: please enter your query
- **User**: Type = wandering, month = aug
- **Top Case**: the target case is “aug, tyrol, ...”
 other competing cases include “....”
- **Top case**: What is the preferred location?
- **User**: why?
- **Top case**: It will help eliminate ... alternatives
- **User**: alps..
Conversational recommenders

- One view: CF using some navigational data as well as ratings

- More structured approach: incremental collaborative filtering
 - similarity metric changes as the query is refined

- e.g., incremental Nearest-Neighbor algorithm [McSherry, AI Review 2005]