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Explanations in recommender systems

 Moving away from the black-box oracle model

 justify why a certain item is recommended

 maybe also converse to reach a 
recommendation
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Amazon.com
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Amazon.com
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Why have explanations? [Tintarev & 
Masthoff]

 Transparency
 “Scrutability”: correct errors in learnt 

preference model
 Trust/Confidence in system
 Effectiveness & efficiency(speed)
 Satisfaction/enjoyment
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Example: explanations for 
transparency and confidence

 “Movie X was recommended to you because 
it is similar to movie Y, Z that you recently 
watched”

 “Movie X was recommended to you because 
you liked other comedies”

 “Other users who bought book X also bought 
book Y”
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Generating explanations

 Essentially, explain the steps of the CF 
algorithm, picking the most prominent 
“neighbors”
– User-user
– Item-item

 Harder to do for SVD and other abstract 
model-fitting recommender algorithms
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Conversational recommenders
Example transcript: (from [McSherry,“Explanation in 

Recommender Systems, AI Review 2005]):

 Top case: please enter your query
 User: Type = wandering, month = aug
 Top Case: the target case is “aug, tyrol, ...”
     other competing cases include “....”
 Top case: What is the preferred location?
 User: why?
 Top case: It will help eliminate ... alternatives
 User: alps..
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Conversational recommenders

 One view: CF using some navigational data 
as well as ratings

 More structured approach: incremental 
collaborative filtering
– similarity metric changes as the query is refined

 e.g., incremental Nearest-Neighbor algorithm 
[McSherry, AI Review 2005]
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Scalable Implementations

 Learning objective: 
– see some techniques that are used for 

large-scale recommenders
– Know where to start looking for more 

information

12
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Google News Personalization

[Das et al, WWW’07] describe algo. and arch.

 Specific challenges: News
– relevant items are frequently changing
– users long-lived, but often new users
– Very fast response times needed

 Specific challenges: Google
– scale! many items, many many users
– need to parallelize complex computations
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Algorithms

 Input data: clicks 
– eg, “user J clicked on article X”

 Use a combination of three reco algos:
– user-user (with a simple similarity 

measure)
– SVD (“PLSI”)
– Item-item (mainly for new users; simple 

covisitation similarity measure)
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Tricks/approximations for scalable 
computing
 User-user: calculate weighted avg. over only a cluster 

of users
– J and K in same cluster if they have a high fraction of 

overlapped clicks
– clustering is precomputed offline (using a fast MinHash 

algorithm)

 SVD : Precompute user-side weights; update only 
item-side weights in real time
– gives an approximate SVD

 Tweak offline algorithms for parallel computing on 
Google’s map-reduce infrastructure
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Architecture (from Das et al)

Das et al.
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Experiences with the Netflix prize 
challenge
 Difference: static dataset

 My “architecture” (such as it was):
– A clustered user-user

• randomly chosen clusters (not optimal)
• cluster size to fit user-user calc in 1GB memory

– Preprocess, create indices (perl scripts)
– Calculate similarities (in C) {memory bottleneck}
– Generate predictions (perl)
– Evaluate accuracy on test set (perl)
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Manipulation..
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Why manipulate a recommender?

 Examples?
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Why manipulate a recommender?

 Examples?
– Digg/Slashdot: get an article read
– PageRank: get your site high on results 

page
– Books: Author wants his book 

recommended
– Spam

 How?
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 Example: User-User Algorithm

 

• i’s informativeness score = correlation coefficient of i’s past 
ratings with Joe’s past ratings

• Prediction for item X = average of ratings of X, weighted by the 
rater’s scores

user it
em

A B C X. . .

Joe

Sue

John

7

7

4 4 2 ?5

55 6 86

7 22 3
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Cloning Attack: Strategic copying 

 Attacker may copy past ratings to look 
informative, gain influence.

 Even if ratings are not directly visible, attacker 
may be able to infer something about ratings 
from her own recommendations, publicly 
available statistics

 Worse if many accounts can be created (sybil 
attack)

Joe 7 4 4 2 ?5

FreeMeds 7 4 4 2 105
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One approach: profile analysis

 This problem of “shilling attacks” has been 
noted earlier [Lam and Riedl] [O’Mahoney et 
al]

 Many papers on empirical measurements and 
statistical detection of attack profiles

 Problem: attackers may get better at 
disguising their profiles.
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Results we cannot achieve

 Prevent any person J from manipulating the 
prediction on a single item X.
– Cannot distinguish deliberate manipulation from 

different tastes on item X

 “Fairness”, ie., two raters with identical 
information get exactly the same influence, 
regardless of rating order.
– Cannot distinguish second rater with identical 

information from an informationless clone.
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The influence limiter: Key Ideas

[Resnick and Sami, Proceedings of RecSys ‘07 
conference]

 Limit influence until rater demonstrates 
informativeness

 Informative only if you’re the first to provide 
the information
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Predictions on an Item: A Dynamic 
View

0 1

Recommender algorithm

predicted 
probability 

of HIGH

ratings
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Predictions on an Item: A Dynamic 
View
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Predictions on an Item: A Dynamic 
View
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Predictions on an Item: A Dynamic 
View
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Predictions on an Item: A Dynamic 
View
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Our approach
 Information-theoretic measure of contribution 

and damage
 Limit influence a rater can have had based on 

past contribution
 This limits net damage an attacker can cause

0 1

Recommender algorithm

predicted 
probability

ratings

eventu
al

label
contribution



   SCHOOL OF INFORMATION  
UNIVERSITY OF MICHIGANsi.umich.edu

32

Our Model

 Binary rating system (HIGH/LOW)
 Recommendations for a single target person
 Any recommender algorithm
 Powerful attackers:

– Can create up to n sybil identities
– Can “clone” existing rating profiles

 No assumptions on non-attackers:
– Attacker’s sybils may form majority

– Do not depend on honest raters countering 
attacks
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Overview of  Results

“Influence-limiter” algorithm can be overlaid on  
any recommender algorithm to satisfy (with 
caveats):

 Limited damage: An attacker with up to n sybils 
can never cause net total damage greater than 
O(1) units of prediction error

 Bounded information loss: In expectation,  
O(log n) units of  information discarded from 
each genuine rater in total.
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Influence Limiter: Architecture

 

Recommender algo

Influence Limiter

q0 q1 qn

q0

Scoring

reputation
s Rj

~ ~~q1 qn

target
rating

ratings

to
target
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Influence Limiter Algorithm: 
Illustration

0 1

Recommender algorithm

raw 
predictions 

ratings

0 1

Influence Limiter

limited 
prediction

qj-1

qj-1
~
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Influence Limiter Algorithm: 
Illustration

A rater with R=0.25 puts in a rating

0 1

Recommender algorithm

raw 
predictions

ratings

0 1

Influence Limiter

limited 
prediction

qj-1

~qj-1
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Influence Limiter Algorithm: 
Illustration

A rater with R=0.25 puts in a rating
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