Author(s): Rahul Sami, 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.
Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Lecture 12: Explanations; Scalable Implementation; Manipulation
SI583: Recommender Systems
Explanations in recommender systems

- Moving away from the black-box oracle model
- *justify* why a certain item is recommended
- maybe also *converse* to reach a recommendation
These recommendations are based on items you own and more.

view: All | New Releases | Coming Soon

1. Auction Theory
by Vijay Krishna
Average Customer Review: ★★★★★
In Stock
Publication Date: March 1, 2002

Our Price: $52.46 Used & new from $52.46

☐ I Own It ☐ Not interested Rate it

Recommended because you purchased Putting Auction Theory to Work and more (edit)
Amazon explanations (contd.)

Recommended for You

Algorithmic Game Theory
by Noam Nisan (Editor), et al.
Our Price: $33.75
Used & new from $24.49

Because you purchased...

Prediction, Learning, and Games (Hardcover)
by Nicolo Cesa-Bianchi (Author), Gabor Lugosi (Author)

Making Markets: How Firms Can Design and Profit from Online Auctions and Exchanges (Hardcover)
by Ajit Kambil (Author), et al.
Why have explanations? [Tintarev & Masthoff]

- Transparency
- “Scrutability”: correct errors in learnt preference model
- Trust/Confidence in system
- Effectiveness & efficiency (speed)
- Satisfaction/enjoyment
Example: explanations for transparency and confidence

- “Movie X was recommended to you because it is similar to movie Y, Z that you recently watched”

- “Movie X was recommended to you because you liked other comedies”

- “Other users who bought book X also bought book Y”
Generating explanations

- Essentially, explain the steps of the CF algorithm, picking the most prominent “neighbors”
 - User-user
 - Item-item

- Harder to do for SVD and other abstract model-fitting recommender algorithms
Conversational recommenders

Example transcript: (from [McSherry, “Explanation in Recommender Systems, AI Review 2005]):

- *Top case*: please enter your query
- *User*: Type = wandering, month = aug
- *Top Case*: the target case is “aug, tyrol, …” other competing cases include “…. ”
- *Top case*: What is the preferred location?
- *User*: why?
- *Top case*: It will help eliminate ... alternatives
- *User*: alps..
Conversational recommenders

- One view: CF using some navigational data as well as ratings

- More structured approach: incremental collaborative filtering
 - similarity metric changes as the query is refined

- e.g., incremental Nearest-Neighbor algorithm [McSherry, AI Review 2005]
Scalable Implementations

Learning objective:

– see some techniques that are used for large-scale recommenders
– Know where to start looking for more information
Google News Personalization

[Das et al, WWW’07] describe algo. and arch.

- Specific challenges: News
 - relevant items are frequently changing
 - users long-lived, but often new users
 - Very fast response times needed

- Specific challenges: Google
 - scale! many items, many many users
 - need to parallelize complex computations
Algorithms

- Input data: clicks
 - eg, “user J clicked on article X”
- Use a combination of three reco algos:
 - user-user (with a simple similarity measure)
 - SVD (“PLSI”)
 - Item-item (mainly for new users; simple covisitation similarity measure)
Tricks/approximations for scalable computing

- **User-user**: calculate weighted avg. over only a *cluster* of users
 - J and K in same cluster if they have a high fraction of overlapped clicks
 - clustering is precomputed offline (using a fast MinHash algorithm)

- **SVD**: Precompute user-side weights; update only item-side weights in real time
 - gives an approximate SVD

- **Tweak offline algorithms for parallel computing on Google’s map-reduce infrastructure**
Architecture (from Das et al)
Experiences with the Netflix prize challenge

- Difference: static dataset

- My “architecture” (such as it was):
 - A clustered user-user
 - randomly chosen clusters (not optimal)
 - cluster size to fit user-user calc in 1GB memory
 - Preprocess, create indices (perl scripts)
 - Calculate similarities (in C) \{memory bottleneck\}
 - Generate predictions (perl)
 - Evaluate accuracy on test set (perl)
Manipulation..
Why manipulate a recommender?

Examples?
Why manipulate a recommender?

- **Examples?**
 - Digg/Slashdot: get an article read
 - PageRank: get your site high on results page
 - Books: Author wants his book recommended
 - Spam

- **How?**
Example: User-User Algorithm

- **i’s informativeness score** = correlation coefficient of i’s past ratings with Joe’s past ratings
- **Prediction for item X** = average of ratings of X, weighted by the rater’s scores

<table>
<thead>
<tr>
<th>user</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>...</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Sue</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>John</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Cloning Attack: Strategic copying

- Attacker may copy past ratings to look informative, gain influence.

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>4</th>
<th>4</th>
<th>2</th>
<th>5</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FreeMeds</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

- Even if ratings are not directly visible, attacker may be able to infer something about ratings from her own recommendations, publicly available statistics.

- Worse if many accounts can be created (sybil attack)
One approach: profile analysis

- This problem of “shilling attacks” has been noted earlier [Lam and Riedl] [O’Mahoney et al]

- Many papers on empirical measurements and statistical detection of attack profiles

- Problem: attackers may get better at disguising their profiles.
Results we cannot achieve

- Prevent any person J from manipulating the prediction on a single item X.
 - Cannot distinguish \textit{deliberate manipulation} from \textit{different tastes} on item X

- “Fairness”, ie., two raters with identical information get exactly the same influence, regardless of rating order.
 - Cannot distinguish second rater with identical information from an informationless clone.
The influence limiter: Key Ideas

[Resnick and Sami, Proceedings of RecSys ‘07 conference]

- Limit influence until rater demonstrates informativeness
- Informative only if you’re the first to provide the information
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

ratings
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

ratings
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

ratings
Predictions on an Item: A Dynamic View

Predicted probability of HIGH by target: HIGH

Recommender algorithm

ratings
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

collection

eventual label by target: HIGH

ratings
Our approach

- Information-theoretic measure of contribution and damage
- Limit influence a rater can have had based on past contribution
- This limits net damage an attacker can cause

Recommender algorithm

predicted probability

correlation

ratings

eventual label
Our Model

- Binary rating system (HIGH/LOW)
- Recommendations for a single target person
- Any recommender algorithm
- Powerful attackers:
 - Can create up to n sybil identities
 - Can “clone” existing rating profiles
- No assumptions on non-attackers:
 - Attacker’s sybils may form majority
 - Do not depend on honest raters countering attacks
Overview of Results

“Influence-limiter” algorithm can be overlaid on any recommender algorithm to satisfy (with caveats):

- **Limited damage**: An attacker with up to n sybils can never cause net total damage greater than $O(1)$ units of prediction error.

- **Bounded information loss**: In expectation, $O(\log n)$ units of information discarded from each genuine rater in total.
Influence Limiter: Architecture

reputation $s R_j$

Scoring

Influence Limiter

Recommender algo

ratings

target
to
target

q_0, q_1, q_n
Influence Limiter Algorithm: Illustration

Influence Limiter

Limited prediction q_{j-1}

Raw predictions q_{j-1}

Recommender algorithm

Ratings
Influence Limiter Algorithm: Illustration

A rater with $R=0.25$ puts in a rating

![Diagram showing Influence Limiter Algorithm]

- Limited prediction: \tilde{q}_{j-1}
- Raw predictions: q_{j-1}
- Recommender algorithm
- Ratings
Influence Limiter Algorithm: Illustration

A rater with $R=0.25$ puts in a rating

\[\tilde{q}_{j-1}, q_j \]

limited prediction

\[q_{j-1}, q_j \]

raw predictions

Recommender algorithm

ratings