Author(s): Rahul Sami, 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.
Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Lecture 13: Manipulation; Privacy

SI583: Recommender Systems
The Influence Limiter: Key Ideas

[Resnick and Sami, Proceedings of RecSys ‘07 conference]

- Limit *influence* until rater demonstrates *informativeness*
- *Informative* only if you’re the first to provide the information
Results we cannot achieve

- Prevent any person J from manipulating the prediction on a single item X.
 - Cannot distinguish *deliberate manipulation* from *different tastes* on item X

- “Fairness”, ie., two raters with identical information get exactly the same influence, regardless of rating order.
 - Cannot distinguish second rater with identical information from an informationless clone.
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

ratings
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

ratings
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

ratings

0 1
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

ratings

eventual label by target: HIGH
Predictions on an Item: A Dynamic View

Recommender algorithm

predicted probability of HIGH

ratings

eventual label by target: HIGH

contribution
Our approach

- Information-theoretic measure of contribution and damage
- Limit *influence* a rater can have had based on past *contribution*
- This limits *net damage* an attacker can cause
Our Model

- Binary rating system (HIGH/LOW)
- Recommendations for a single target person
- Any recommender algorithm
- Powerful attackers:
 - Can create up to n sybil identities
 - Can “clone” existing rating profiles
- No assumptions on non-attackers:
 - Attacker’s sybils may form majority
 - Do not depend on honest raters countering attacks
Overview of Results

“Influence-limiter” algorithm can be overlaid on any recommender algorithm to satisfy (with caveats):

- **Limited damage**: An attacker with up to n sybils can never cause net total damage greater than $O(1)$ units of prediction error.

- **Bounded information loss**: In expectation, $O(\log n)$ units of information discarded from each genuine rater in total.
Influence Limiter: Architecture

Influence Limiter

Recommender algo

Scoring

reputation R_j

ratings

target rating

to target

q_0, q_1, q_n
Influence Limiter Algorithm: Illustration

Recommender algorithm

limited prediction

raw predictions

ratings

Influence Limiter

q_{j-1}
Influence Limiter Algorithm: Illustration

A rater with $R=0.25$ puts in a rating

- **Limited prediction**: \tilde{q}_{j-1}
- **Raw predictions**: q_{j-1}
- **Influence Limiter**
- **Recommender algorithm**
- **Ratings**: 😊😊😊😊
Influence Limiter Algorithm: Illustration

A rater with R=0.25 puts in a rating

Recommender algorithm
Manipulation: summary

- Increasingly important problem

- Range of techniques to defend:
 - Detecting and filtering attack profiles
 - Influence Limiter
 - Incentive schemes
 - Strong identity verification
 - Combinations of these methods
Privacy in Recommender Systems

- Privacy: your right to control dissemination of personally identifiable information

- Privacy hazards:
 - Monitoring behavior without user’s consent
 - Persistent storage of information in cookies
 - Data leaks
 - Data leaks from anonymized datasets
Privacy-preserving CF [Canny]

- High-level idea: distributed computing of recommendations
 - User-specific information not available outside the user’s computer
 - Uses neat cryptographic protocols ("zero-knowledge" protocols) to compute an SVD
Review: Topics we have covered

- Eliciting ratings
- Using implicit ratings
- Collaborative Filtering methods
- Implementation/Architectures
- Evaluation of Recommenders
- Explanations; task-based evaluation
- Manipulation
- Privacy