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Lecture 13: 
Manipulation; Privacy

 SI583: Recommender Systems



   SCHOOL OF INFORMATION  
UNIVERSITY OF MICHIGANsi.umich.edu

4

The Influence Limiter: Key Ideas

[Resnick and Sami, Proceedings of RecSys ‘07 
conference]

 Limit influence until rater demonstrates 
informativeness

 Informative only if you’re the first to provide 
the information
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Results we cannot achieve

 Prevent any person J from manipulating the 
prediction on a single item X.
– Cannot distinguish deliberate manipulation from 

different tastes on item X

 “Fairness”, ie., two raters with identical 
information get exactly the same influence, 
regardless of rating order.
– Cannot distinguish second rater with identical 

information from an informationless clone.
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Predictions on an Item: A Dynamic 
View
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Our approach
 Information-theoretic measure of contribution 

and damage
 Limit influence a rater can have had based on 

past contribution
 This limits net damage an attacker can cause
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Our Model

 Binary rating system (HIGH/LOW)
 Recommendations for a single target person
 Any recommender algorithm
 Powerful attackers:

– Can create up to n sybil identities
– Can “clone” existing rating profiles

 No assumptions on non-attackers:
– Attacker’s sybils may form majority

– Do not depend on honest raters countering 
attacks
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Overview of  Results

“Influence-limiter” algorithm can be overlaid on  
any recommender algorithm to satisfy (with 
caveats):

 Limited damage: An attacker with up to n sybils 
can never cause net total damage greater than 
O(1) units of prediction error

 Bounded information loss: In expectation,  
O(log n) units of  information discarded from 
each genuine rater in total.
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Influence Limiter: Architecture
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Influence Limiter Algorithm: 
Illustration
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Influence Limiter Algorithm: 
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Manipulation: summary

 Increasingly important problem

 Range of techniques to defend:
– Detecting and filtering attack profiles
– Influence Limiter
– Incentive schemes

– Strong identity verificiation
– Combinations of these methods

18
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Privacy in Recommender Systems

 Privacy: your right to control 
dissemination of personally identifiable 
information

 Privacy hazards:
– Monitoring behavior without user’s consent
– Persistent storage of information in cookies
– Data leaks
– Data leaks from anonymized datasets

19
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Privacy-preserving CF [Canny]

 High-level idea: distributed computing of 
recommendations
– User-specific information not available outside the 

user’s computer
– uses neat cryptographic protocols (“zero-

knowledge” protocols) to compute an SVD

20
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Review: Topics we have covered

 Eliciting ratings
 Using implicit ratings
 Collaborative Filtering methods
 Implementation/Architectures
 Evaluation of Recommenders
 Explanations; task-based evaluation
 Manipulation
 Privacy
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