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Lecture 5:
User-User Recommender

 SI583: Recommender Systems
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Generating recommendations

 Core problem: predict how much a person 
“Joe” (is likely to) like an item “X”

 Then, can decide to recommend most likely 
successes, filter out items below a threshold, 
etc.
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user ite
m

A B C X. . .

Joe

Sue

John

7

7

4 4 2 ?5

55 6 86

7 22 3
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User-User recommenders: Intuition

 Assumption: If Joe and another user agreed 
on other items, they are more likely to agree 
on X

 Collaborative filtering approach:
– For each user, find how similar that user is to Joe 

on other ratings

– Find the pool of users “closest” to Joe in taste

– Use the ratings of those users to come up with a 
prediction
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User-user algorithm: Details to be 
formalized

 How is similarity measured?
– how are ratings normalized?

 How is the pool of neighbors selected?
 How are different users’ ratings 

weighted in the prediction for Joe?
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CF Algorithms in the Literature

 Sometimes classified as memory-based vs. model-
based 

 Model based:  statistically predict an unknown rating
– Fit a statistical model, then estimate
– E.g., SVD

 Memory-based: ad-hoc use of previous ratings
– No explicit class of models, although sometimes retrofit
– E.g., user-user, item-item
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Measures of  similarity

user ite
m

A B C . . .

Joe

Sue

John

6 46

7

Amy

D

7 3 7 3

4

7 7 7

9 2 3 2

Bob 7 3



   SCHOOL OF INFORMATION  
UNIVERSITY OF MICHIGANsi.umich.edu

10

Some possible similarity metrics

For all our metrics: focus on the ratings on 
items that both i and j have rated

 Similarity(i,j) = number of items on which i 
and j have exactly the same rating
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Some possible similarity metrics

 Similarity(i,j) = number of items on which i 
and j have the same rating
– intuitive objection: we would have 

similarity(Joe,John) > similarity(Joe, Sue)
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Some possible similarity metrics

 Similarity(i,j) = number of items on which i 
and j have the same rating
– intuitive objection: we would have 

similarity(Joe,John) > similarity(Joe, Sue)

 Similarity(i,j) = 

      (i’s rating vector).(j’s rating vector)T
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Some possible similarity metrics

 Similarity(i,j) = number of items on which i 
and j have the same rating
– intuitive objection: we would have 

similarity(Joe,John) > similarity(Joe, Sue)

 Similarity(i,j) = 

      (i’s rating vector).(j’s rating vector)T

– intuitive objection: we would have 
similarity(Joe,John) > similarity(Joe, Sue)
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Some possibilities..

 Normalize for mean rating:
– Let  µi = i’s average rating

– Let i’s normalized rating vector 

        xi = (rating on A -  µi , rating on B -  µi, ....)

– Define similarity(i,j) = xi.xj
T
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Mean-normalized ratings

user ite
m

A B C . . .

Joe

Sue

John

1 -11

0

Amy

D

2 -2 2 -2

-1

0 0 0

5 -2 -1

Bob 2 -2

-2
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Some possibilities..

 Normalize for mean rating:
– Let  µi = i’s average rating

– Let i’s normalized rating vector 

        xi = (rating on A -  µi , rating on B -  µi, ....)

– Define similarity(i,j) = xi.xj
T

 Objection: 

    similarity(Joe, Amy) > similarity(Joe, John)
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Normalizing for mean and standard 
deviation
 Normalize for mean rating:

– Let  µi = i’s average rating

– Let i’s normalized rating vector 

        xi = (rating on A -  µi , rating on B -  µi, ....)

 Then, normalize for standard deviation
– zi = (1/σi)xi,

– where σi = ||xi|| =√  xi(A)2 + xi(B)2 + ../(#items rated by i)

 Define
similarity(i,j) = zi . zj

T
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Mean-std.dev normalized ratings (z-scores)

user ite
m

A B C . . .

Joe

Sue

John

1 -11

0

Amy

D

1 -1 1 -1

-1

0 0 0

1.7 -0.7 -0.3

Bob 1 -1

-0.7
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Normalizing for mean and standard 
deviation
 Normalize for mean rating:

– Let  µi = i’s average rating

– Let i’s normalized rating vector 

        xi = (rating on A -  µi , rating on B -  µi, ....)

 Then, normalize for standard deviation
– zi = (1/σi)xi,

– where σi = ||xi|| =√  xi(A)2 + xi(B)2 + ../(#items )

 (Modified for different numbers of ratings):
similarity(i,j) = zi . zj

T/(#items)  [Pearson correlation coefficient]
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Pearson correlation coefficient

 Intuitively:similarity measure that
– adjusts for different average rating for different 

users
– adjusts for different swing magnitudes for different 

users
– adjusts for different numbers of common ratings

 Also has a good statistical justification
– arises naturally in a statistical model..
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Correlation: Statistical justification

Statistical model: 
 Item w drawn randomly from some space
 Each user’s rating is a random variable:

– i’s rating can be represented by ri(w)

 Goal: Estimate rJoe(item) from observing rSue(item), 
rJohn(item), etc..

 If rj is independent of ri ,  rj is useless for estimating ri

 The more correlated rj is with ri, the more useful it is 
(independence => correlation = 0)

 Correlation can be estimated from common ratings
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Linear Algebra Representation

 R: [n× m] matrix representing n users’ ratings on m 
items

 X: [n× m] matrix representing ratings normalized by 
user means

 Z: [n× m] matrix representing z-scores (normalized 
ratings)
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Mathematical representation

 R: [n× m] matrix representing n users’ ratings on m items
 X: [n× m] matrix representing ratings normalized by user 

means
 Z: [n× m] matrix representing z-scores (normalized ratings)

 C=XXT is an [n× n] matrix of covariances
– Cij  /(#items i&j rated) estimates covariance of ri, rj

 P=ZZT is an [n× n] matrix of correlations
– Pij  /(#items i&j rated) estimates correlation of ri, rj

If matrices are complete:
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Other similarity measures

 Any distance measure between vectors 
can be used to define a similarity

 e.g., “cosine similarity”
– treat rating vectors as lines in space, 

similarity based on how small the angle 
between i and j is

 How do you decide which one is best?
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Other similarity measures

 Any distance measure between vectors can 
be used to define a similarity

 e.g., “cosine similarity”
– treat rating vectors as lines in space, similarity 

based on how small the angle between i and j is

 How do you decide which one is best?
– intuitively judge what normalizations are important
– try them out empirically on your data!
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User-user algorithm: Details to be 
formalized

 How is similarity measured?
– how are ratings normalized?

 How is the pool of neighbors selected?
 How are different users’ ratings 

weighted in the prediction for Joe?
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Choosing a pool of  neighbors

 Common approach: k-nearest neighbors
– Pick up to k users who have rated X, in order of 

decreasing similarity to X
– parameter k is typically about 20-50

 Alternative: Thresholding
– Pick all users with correlation coefficients greater 

than t who have rated X
– threshold  t >0 is recommended
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Weighting users

 Users’ ratings on X are weighted according to 
computed similarities

 Prediction for Joe is weighted average
– wij = Pearson correlation similarity(i,j)

– predicted zJoe(x) = ∑ i in pool  wi,Joe zi(x)

 Denormalize to compute predicted rating
– predicted rJoe(x) = µJoe + zJoe(x)σJoe
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Example: Predict Joe’s rating for X
user ite

m
A B C . . .

Joe

Sue

John

6 46

7

Amy

D

7 3 7 3

4

7 7 7

9 2 3 2

Bob 7 3

X

4

6

6
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Example: z-scores

user ite
m

A B C . . .

Joe

Sue

John

1 -11

0

Amy

D

1 1 -1

-1

0 0 0

1.7 -0.7 -0.3

Bob 1 -1

X

-1

0.8

0.6

-1

-0.7
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Example: weights and predictions

 similarity (Amy,Joe) = 0.95
 similarity (Sue,Joe) = 1
 similarity (Bob,Joe) = 1

 predicted zJoe(x) = -0.36

 predicted rating = 5 -2*0.36 = 4.22
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Recommendations [Herlocker et al, 
Information and Retrieval, 2002]

Herlocker et al, Information and Retrieval, 2002
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