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Lecture 9: 
Page Rank; Singular Value 
Decomposition

 SI583: Recommender Systems
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Recap: PageRank
 Google’s big original idea [Brin &Page, 1998]
 Idea: ranking is based on “random web surfer”:

– start from any page at random
– pick a random link from the page, and follow it
– repeat!
– ultimately, this process will converge to a stable distribution over 

pages (with some tricks...)
– most likely page in this stable distribution is ranked highest

 Strong points:
– Pages linked to by many pages tend to be ranked higher (not 

always)
– A link (“vote”) from a highly-ranked page carries more weight
– Relatively hard to manipulate
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Some Intuitions

 Will D’s Rank be more or less than ¼?
 Will C’s Rank be more or less than B’s?
 How will A’s Rank compare to D’s?
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Third Iteration

 AR+E

 Normalized (divide by 1.18)

r1   .2879845
r2  .21046512
r3  .39263566
r4   .2879845

r1  .24424721
r2  .17850099
r3   .3330046
r4  .24424721
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Personalized PageRank

 Pick E to be some sites that I like
– My bookmarks
– Links from my home page

 Rank flows more from these initial links than 
from other pages
– But much of it may still flow to the popular sites, 

and from them to others that are not part of my 
initial set
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Other applications for pagerank?

8
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Another method: Singular Value 
Decomposition (SVD)
 Back to product recommendation setting
 SVD-based collaborative filtering often used in place 

of User-user / Item-Item

 Two different advantages:
– Accuracy benefits: identifies “latent features” of items that 

are useful for predictions
– Scalability: Easier to compute when ratings are sparse

 Related terms: Principal Component Analysis, Latent 
Semantic Indexing, 
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Motivating SVD

 Consider the following scenario
– Joe rates items A,B,C,D; likes AC, dislikes BD
– Sue rates items C,D,E,F; likes CE, dislikes DF
– John rates items E,F,G,H; likes EG, dislikes FH

 Will Joe like item G?
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Motivating SVD

 Consider the following scenario
– Joe rates items A,B,C,D; likes AC, dislikes BD
– Sue rates items C,D,E,F; likes CE, dislikes DF
– John rates items E,F,G,H; likes EG, dislikes FH

 Will Joe like item G?
– user-user fails because Joe, John have no 

common ratings
– item-item fails
– intuitively, can argue that Joe is likely to like G..

 Idea: Capture the intuition in a CF algorithm
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Motivating SVD..

 One intuitive explanation for why Joe might 
like G:
– A,C,E,G have some common “feature”, which is 

why users who like one like the others
– e.g., ACEG may be funny movies; Joe, Sue, John 

all like funny movies

 Generalize this idea to multiple features
 Important features have to be automatically 

discovered from ratings
– or a hybrid of content and collab. filtering
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Software modules: User-User

visit site

reco. items

UI

Ratings
DB

Reco.
gener-
ation

Indexed
DB

Similarities

Pearson
Comp.

sort,
norma-

lize

Clker.com
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Software modules

visit site

reco. items

UI

Ratings
DB

Reco.
gener-
ation

Indexed
DB

Feature 
weights

Learn
features

sort,
norma-
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Clker.com
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SVD Conceptual Model
 Fit previous data to a model with k features:

 Weights vAf1, etc. indicate extent to which A has 
feature f1,f2

 Weights uJoe,f1 etc. indicate extent to which Joe likes 
featues f1,f2

 Predict Joe’s preference for X from fitted weights

Joe

f1

Sue

A B

f2

Items

Users

vAf1

uJoe,f1

latent features

X
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Learning the weights: SVD
 start with mean-normalized rating matrix X
 SVD decomposition: calculate U,S,V such 

that
– U: m× k, S: k× k, V: k× n
– X = USV
– S is a diagonal matrix (zero on non-diag)
– U,V are “orthogonal” => features are independent

 S indicates “intensity” of each feature
– Sii: singular value of feature i
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Fitting the weights: SVD

 Model weights from SVD  (U,S,V):

 Weight (item j, feature f) = √ sff Vfj

 Weight (user i, feature f) = √ sff Uif

Joe

f1

Sue

A B

f2

Items

Users

vAf1

uJoe,f1

latent features

X

Alternative: get software package to calculate weights directly..
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SVD: selecting features

 More features => better fit possible
– but also more noise in weights
– and harder to compute (matrices are larger)

 In practice, do best fit with a small number of 
features (10,say)

 Which features are picked?
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SVD: selecting features

 More features => better fit possible
– but also more noise in weights
– and harder to compute

 In practice, do best fit with a small number of 
features (10,say)

 Which features are picked?
– Those with the highest singular value (intensity)
– Small singular value => feature has negligible 

effect on predictions
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SVD-based CF: Summary

 Pick a number of features k
 Normalize ratings
 Use SVD to find best fit with k features
 Use fitted model to predict value of Joe’s 

normalized rating for item X
 Denormalize (add Joe’s mean) to predict 

Joe’s rating for X
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SVD Practicalities

 SVD is a common mathematical operation; 
numerous libraries exist

 Efficient algorithms to compute SVD for the 
typical case of sparse ratings

 A fast, simple implementation of an SVD-
based recommender (by Simon 
Funk/Brandyn Webb) was shown to do very 
well on the Netflix challenge
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SVD and Content Filtering

 Similar idea: Latent Semantic Indexing used 
in content-filtering
– Fit item descriptions and keywords by a set of 

features
– Related words map onto the same feature
– Similar items have the similar feature vectors

 Useful to combine content+collaborative 
filtering
– Learn some features from content, some from 

ratings
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