oo EN.Michigan

Unless otherwise noted, the content of this course material is licensed under a
Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright © 2009, Charles Severance.

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in
accordance with U.5. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions,
corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content
posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their
compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an
endorsement by the University of Michigan. For more information about how to cite these materials visit
http://michigan.educommons.net/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical
evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you
have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that

may be disturbing to some viewers.

UNIVERSITY OF MICHIGAN @ ®



Computers and Programs
ZLelle - Chapter |

Charles Severance - www.dr-chuck.com

Textbook: Python Programming: An Introduction to Computer Science, John Zelle



Users .vs. Programmers

® Users see computers as a set of tools - word processor, spreadsheet
® Programmers have some tools that allow them to build new tools

® Programmers sometimes write tools for lots of users and sometimes
programmers write little widgets for themselves to automate a task



Why do we program!

® To get some task done - part of some non-programming job
® Clean up survey data
® To produce something for others to use - a real programming job

® Fix a performance problem in the Sakai software



(Screenshot) Source: ctools.umich.edu R w—
. . myworkspace@ctools.umich.edu g
(iPhone) CC BY: Johan Larsson (flickr) e e e e

http://creativecommons.org/license/by/2.0

= Welcome Back!

User

Computer

Creators
Hardware + Software

Data Information Networks

From a software creator’s point of view, we build the software. The end users
(stakeholders/actors) are our masters - who we want to please - often they pay
us money when they are pleased. But the data, information, and networks are
our problem to solve on their behalf. The hardware and software are our
friends and allies 1n this quest.



What is Code! Software! A
Program!?

® A set of stored instructions
® |tis a little piece of our intelligence in the computer

® |tis a little piece of our intelligence we can give to others - we figure
something out and then we encode it and then give it to someone
else to save them the time and energy of figuring it out

® A piece of performance art



How Many Lines in a File?

® You could read and Or I could send you this 1n
understand E-Mail:
® Chapter 4 page |10 infile = open("mbox", "r")

print len(infile.readlines())
® Chapter || Page 341

® Appendix A Page 447



Hardware Architecture



Input
Devices

Devices

Software

Central

Processing
Unat

Generic
Computer

Secondary
Memory

/-5



Definitions

Input Devices: Keyboard, Mouse, Touch Screen
Output Devices: Screen, Speakers, Printer, DVD Burner

Central Processing Unit: Runs the Program - AKA The CPU is always
wondering “what to do next”! Not the brains exactly - very dumb but
very very fast

Main Memory: Fast small temporary storage - lost on reboot - aka RAM

Secondary Memory: Slower large permanent storage - lasts until deleted -
disk drive / memory stick



Hardware

Input

Devices

Output
Devices

Software

Central
Processing
Unait

Network/
Internet

Secondary
Memory

(iPhone) CC BY: Johan Larsson (flickr)
http://creativecommons.org/license/by/2.0



Web Server

A web server often
functions with no mput or
output devices connected

to the system. It takes
Incoming requests from
the network - does some
work with those requests
and send output back
across the network.

wl Al
L] A | B
-‘--'.I T . ._'—
RN | ' i
o fuscenigi, T8 )
et d E
\ Sl
_ . — - :— . 'l-.____: -' r‘
e 1
7 .-'—‘:h——%j{r' g Fy
; - f
——-—-_._:—-- 1
| . 2
I-
-

Hardware

Software

Central
Processing
Unait

Network/
Internet

Secondary
Memory

(Servers) CC BY: Jesse Wagstaff (flickr)
http://creativecommons.org/license/by/2.0



(Servers) CC BY: Jesse Wagstaff (flickr)
(Phone) CC BY: John Larsson (flickr)
http://creativecommons.org/license/by/2.0

Network/

Internet




Programmer lools



Becoming a Programmer

® We use the computer - we just have to learn some programmer tools
® Compiler - Takes our code and makes it executable
® |nterpreter - Reads our code and runs it

® Development Environment - Helps us write code



VWWhen a Program Runs...

® When a program runs it: @—> @
rogram

® Takes some input data

the data using a set An example program
of instructions (a program) takes a text file as its
mput and
® Produces some output and
prints out the number
® Think of it as “value add” of lines in the file.

/-8



Programmer [ools

® We use the computer - we just have some new tools

® Development Environment - A “Word Processor” or “Text Editor”
for Programmers - we write code in a development environment

® Compiler - Takes our code and makes an executable version of our
program

® |nterpreter - Reads our code and runs it directly - Python is an
interpreted language - Python is an interpreter



Source
Code
(Program)

User Inputs
Data

Compiler

L Machine
Code

Y

\

st +—
Data

Figure 1.2: Compiling a High-Level Language

Source
Code

(Program)

Inputs

Data

b

Computer
Running an

Interpreter

—— - Outputs
Data

User

ey

Figure 1.3: Interpreting a High-Level Language.

A programmer
develops a program.

If a compiler 1s used
the compiler
translated the source
to machine code for
distribution.

If an interpreter 1s
used, the
programmer simply
distributes the
source code.




Terms

® Source code - the programs we humans write - and read - written in a
programming language - source code is generally portable across
systems

® Machine code - what really runs on the machine - not very readible -
produced by a compiler - machine code is unique to hardware and
operating system.



Download Python Software

1|..

[ sV iG H €T Tw LTI-Wim Diigolet SOC Arjen 5Tl CTools—jira mojo Dash UKES|I LearnG GAPP heolt Safari Ant shal ULCC EHC

_search|
@ p lJ t hOﬂ Advanced Search

Screen styles
» Download normal large® i

ABOUT Download Standard Python Software

RS MNote: there's a security fix for Python 2.2, 2.3 and 2.4. Of the releases below, only 2.4.4

DOCUMENTATION and 2.5 and later include the fix.
DOWNLOAD

Releases
Windows, DOS
Macintosh

Linux e Python 2.5.2 compressed source tarball (for Unix or OS X compile)
Other
Source Python 2.5.2 bzipped source tarball (for Unix or OS X compile, more compressed)

Python 3000
SV Access

Contributed Software (Windows binary -- does not include source)

COMMUNITY Python 2.5.2 Windows AMD64 installer (Windows AMDG64 binary -- does not include
FOUNDATION source)

CORE DEVELOPMENT Python 2.5.2 Windows [tanium installer (Windows [tanium binary -- does not include
LINKS source)

The current production version is Python 2.5.2. You should start here if you want to learn
Python or if you want the most stable version. Here are some quick download links. For the
MDS checksums and OpenPGP signatures, look at the detailed Python 2.5.2 page:

Python 2.5.2 Windows installer




main() {
printf("Hello world\n");

j

Your
Source

~

"@@@@ DATA'A@@@@@@@@@
@@ @@@@" @@
"@@@BFQRRRRRRAR@@@
"O@@@@@@@@_nl_synbol _pt
r"a@ DATAA@@@@@@@@@@@
@Dt @@@P @@
t"@@@BFrRCRRRARARA@Q@@
FrFO@@Q@@@@ | a_synbol _ptr
"@ DATA @@ @@@@@
0<84>"@ @ @ @ @A @ @ usr/|ib/
libmx. A dylibr@@@@@L"@@ &
N @ @ XCA¥N XNANCC@ AN @ @ usr /
lib/libSy

Code

The C Language
Compiler Reads
your source code

and produces your Your

machine code. Machine

Code
]|

ELFFAAANAN @ @@Q@Q@Q@@@@@B"@CC@A@@@xal\x82'"D'"HN@ @ @ x990 "@ @ @ @ @ @
Q@A "@"@

"OFr@@@"@@ @\ x80"D'"H4\ x80"D'H\ xe0" @ @ @ xe0"@ @@ EF@@@Dr@@@@Ct@@T"
AA@@T\ x81I"D"H'\T\ x81'"D"H'\S"@ @ @S @@ @D @@ @A @@ @A\ "D"HQVhT\ x83"D"H\ xe8\ x
b7\ xf f\ xff\xff\xf4\x90\ x90W x89\ xeb5S\ xe8"@ @@ @\ x81\ xc3_"R @ @\ x8b\ x83\ xf c\ xff\
xf £\ xff\x85\xcOt B\ xff\xdO\x8b]\xfc\xc9\xc3\x90\x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x9
OW\ x89\ xeb\ x83\ xecH\ x80=L\ x952D"H*@ "L\ xeb”™\ \ x83\ xcO0"D\ xa3H\ x95"D"H\ xf f \ xd2\ xalH\
X952 DMH\ x8bM P\ x85\ xd2u\ xeb\ xc6NEL\ xX95"DMHA\ xc 9\ xc 3\ x90W\ x89\ xeb\ x83\ xecH\ xal\\ x9
ANDMH\ x85\ xcO0t '\ xb8"@ @ @ @ x85\ xcOt X\ xc7~D$\ \ x94"DMH\ xe8\ xbc| \ xf b\ xf 7\ x8d\ xb6" @
@@ @x8d\ xbf "@@ @ @ xc9\ xc3\ x90\ x90W\ x89\ xeb\ x



print “hello world”

1 @E@QP @@ PO@CE@QAEQ@E0> @D P@R@A@E@@@@ picsy
nbol _stub_ TEX"@ @@ @@ @CA@RCA@A X PA@R@A@R@Q@ X' @@ @B"
POP@@@@ @S> @CH@@@@@ @@ _ synbol _stubr@@@ TEXT
\PORORORARARAXNAPRCARAR QRO ARARAQRAA
<g0>r@@H@@@@@@@T__picsynbol stubl TEXT"@ @@ Q@@ Q@ Q@@
@@@@ @ @B

‘@@ '@@@E@@@Q@@ L @R@R@@R@@
_cstringr@@@@@@@ 1 Machine ?@@@@ Q@@ <80>" @ @ AX
"@@"<80>@@@E'@@CC (ode F@eCROEERERA@
A @@AD_DATA @ @ @ @ @ PP @@ @
"@EEP@R@A@CEEEC £ i, '@ rQEECCCeQ
@e mreeeeeceee 10 NC .gree
"0@@CrOR@EOOAC B @@ @ @@ _nl _synbol _ptr
‘@ DATA@@eeeeee« Lython pee

I "@@@R @R @Q@QA Y@@@@ | a_synbol _ptrh
e mrveeeeeeeeolNlerpretera ee

<8I @@@B @RERRACCRAACCRAV@@Q@EA _dyl "@@@
@E@E@@Q@Q@ _DAA@R@RRARCRRAAOrQQAA\ @@
F@@@RPORRRRRRRRRRRRRARRARAQ@ bss'@@R@A@ Q@
PRR@@Q@ DA @RRRRRRRRARAI@CAD @CA@RCA@R@ @
‘B @RO@RORAORAORANA@RA@RA@@A@Q@ _comn'@@@ Q@@ Q@@
@ DATA'@@R@RR@RRRRR@AY PAE @CA@RA@R@AD @R@a Q@
PPRCRRRRNPCRRRRRRRARRA@AN@E@@ LI NKED T'@@@ @
@P@@E@R@@F D @A @@A@FDR@A@ACRAANPA@R@AR@@@D



Source
Code
(Program)

User Inputs
Data

Compiler

L Machine
Code

Y

\

st +—
Data

Figure 1.2: Compiling a High-Level Language

Source
Code

(Program)

Inputs

Data

b

Computer
Running an

Interpreter

—— - Outputs
Data

User

ey

Figure 1.3: Interpreting a High-Level Language.

A programmer
develops a program.

If a compiler 1s used
the compiler
translated the source
to machine code for
distribution.

If an interpreter 1s
used, the
programmer simply
distributes the
source code.




Compiler .vs. Interpreter

® Only the programmer needs to have the compiler - once the compiler
is done - the executable program is self-contained

® The programmer keeps the source code and distributes the
executable - different executables are needed for Mac, PC, etc.

® Both the programmer and user need to have the Interpreter installed
on their system

® Generally the programmer distributes the source code of the
program



Python is an Interpreter

To run Python programs, users must install Python on their computers

Development is quick and easy - we simply make a change to our
program and run it again in a single step

For data analysis - Python is just a tool that you keep on your desktop
or laptop

Interpreters are more convenient when the user and programmer are
the same person



Running Python Interactively

Z-9



Python Interactive

® Since Python is interpreted we can just type programs directly into
Python

® See Also http://datamech.com/devan/trypython/trypython.py

Computer

Running an

Interpreter




csev$ python

Python 2.5 (125:51918, Sep 19 2006, 08:49:13)

[GCC 4.0.1 (Apple Computer, Inc. build 5341)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>y = |

>>> print X

1
>>> v =x + ]
>>> print X
2
>>> exit()
This 1s a good test to make sure that you have
python correctly installed.



Syntax Errors

® The computer has a language where you an tell it what you want to do -
this is Python

® |t seems unfair when you submit a program to the computer and it says
“syntax error” - given that it *knows™ the language and you are just

learning it. It seems rude and cruel.

® You must remember that you are intelligent and *can™* learn - the
computer is simple and very fast - but cannot learn - so it is easier for you

to learn Python than for the computer to learn English...



The Essence of Programming



Input
Devices

Devices

Software

Central

Processing
Unat

Generic
Computer

Secondary
Memory

/-5



Program Steps or Program Flow

Like a recipe or installation instructions, a program is a sequence of
steps to be done in order

Some steps are conditional - they may be skipped
Sometimes a step or group of steps are to be repeated

Sometimes we store a set of steps to be used over and over as
needed several places throughout the program

Z-14



Sequential Steps

Program:

x =1
print X ————> |

X:X—i_l/)z
print X

When a program is running, it flows from one step to the next.
We as programmers set up “paths” for the program to follow.



Conditional Steps

Program:
X=15 Output:
ifx <10:
print "Smaller* g Smgller
» Finis

if x > 20:
print "Bigger"

print “Finis”

Z-199



Done

| I
W

Loops (repeated steps) have
a loop. Often these

Repeated Steps

Output:
Program:

print “Bye”

that change each time through
go through a sequence of numbers.

YAIRR



Stored (and reused) Steps

‘o Program:
~ . hello():
prieit “Elgllg™ def hello(): Output:
O BLEIE L print "Hello"
print "Fun" N Hello

—— Fun

hello() Z1p

print “Z1p

hello()

We call these little stored chunks of code “subprograms” or “functions”.



A Python Program

/-14



def main():
print "This program 1llustrates a chaotic function"

x = input("Enter a number between 0 and 1: ")

for 1 1n range(10):
x=3.9%*x*(] -x) python chaos.pyThis program 1illustrates a
haotic functionEnter a number between 0

print X

main()

0.698274248196
0.821680557759
0.571434313164
0.955098841721
0.16725167263

0.543186347468
0.96772626363




def main():

Stored steps print "This program illustrates a chaotic function"
x = mput("Enter a number between 0 and 1: ")

for 1 1n range(10):
x=3.9*x*(1-x)

Calling the stored steps




def main():

print "This program illustrates a chaotic function”
x = mput("Enter a number between 0 and 1: ")

for 1 1n range(10):
x=3.9*x*(1-x)




def main():

orint "This program 1llustrates a chaotic function”
x = mput("Enter a number between 0 and 1: ")

| ain



def main():

print "This program 1llustrates a chaotic function"
x = mput("Enter a number between 0 and 1: ")

| ain



The colon (:) starts a block of indented code

def main():

print "This program 1llustrates a chaotic function"
x = mput("Enter a number between 0 and 1: ")

Indented code
continues until a line
1S encountered that
1S less indented.

for 1 1n range(10):<— Start
x=3.9 *x*(]-x)




The colon (:) starts a block of indented code

def main(): «— Start

print "This program illustrates a chaotic function"
x = mput("Enter a number between 0 and 1: ")
for 1 1n range(10):

x=3.9*x*(]-x)

print X

Indented code
continues until a line
1S encountered that
1S less indented.

<~ End




Variables and Assignment
Statements

Z-16



Variables and Assignments

o A is a scratch local to store some value such as a number or a
string

® An assighment statement consists of an expression on the right hand
side and a to store the result

39 * x * (1 - x)



Assignment Statement 1nto the variable named x

def main():

print "This program 1llustrates a chaotic function”
x = mput("Enter a number between 0 and 1: ")

for 1 1n range(10):
x=3.9*x*(]-x)




A variable 1s a memory location X
used to store a value (0.6).

4
0.6 6

0.
x=39 * x * (1 - x)
\

0.4

4‘4 L/

Left side 1s an expression. Once 0.93
expression 1s evaluated, the result 1s
placed 1n (assigned to) x.



A variable 1s a memory location
used to store a value. The value
stored 1n a variable can be updated X
by replacing the old value (0.6)
with a new value (0.93).

x=39 * x * (1 - x)

Right side 1s an expression. Once
expression 1s evaluated, the result 1s 0.93
placed 1n (assigned to) the variable
on the left side (1.e. x).



Comments in Python

/-14



Comments in Python

® Anything after a # is ighored by Python
® Why comment!
® Describe what is going to happen in a sequence of code
® Document who wrote the code or other ancillary information

® Turn off a line of code - perhaps temporarily

/-14



Comments can document
our programs.

Comments can also be
used to temporarily turn
off lines of code without

deleting those lines 1n case
we want them back later.

# File: chaos.py
# A stimple program illustrating chaotic behavior

def main():

print "This program 1llustrates a chaotic function"

x = input("Enter a number between 0 and 1: ")
for 1 in range(10):

# print 1

Xx=39*x*(1-x)

/-14



Summary

® This is a quick overview of Chapter |
® We will revisit these concepts throughout the course

® Focus on the big picture



	Slide 1
	Computers and Programs Zelle - Chapter 1
	Users .vs. Programmers
	Why do we program?
	Slide 5
	What is Code?  Software?  A Program?
	How Many Lines in a File?
	Hardware Architecture
	Slide 9
	Definitions
	Slide 11
	Slide 12
	Slide 13
	Programmer Tools
	Becoming a Programmer
	When a Program Runs...
	Slide 17
	Slide 18
	Terms
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Compiler .vs. Interpreter
	Python is an Interpreter
	Running Python Interactively
	Python Interactive
	Slide 28
	Syntax Errors
	The Essence of Programming
	Slide 31
	Program Steps or Program Flow
	Sequential Steps
	Conditional Steps
	Repeated Steps
	Stored (and reused) Steps
	A Python Program
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Variables and Assignment Statements
	Variables and Assignments
	Slide 47
	Slide 48
	Slide 49
	Comments in Python
	Slide 51
	Slide 52
	Summary

