

Cookies and Sessions
Charles Severance
www.dr-chuck.com

BROWSERBROWSER SERVERSERVERHTTPHTTP
Hyper Text Transfer ProtocolHyper Text Transfer Protocol

How stuff looks How stuff gets made and storedHow stuff gets back and forth...

HTML

CSS

Python

PHP
SQL

For each of these aspects of the web, we have many standards and languages and techniques
to learn.

www.umich.edu www.yahoo.comwww.facebook.com

The read-only web:
hypertext navigation
and lots of GETs

(Screenshot) Source: www.facebook.com
(Globe) source: http://www.clker.com/clipart-2123.html
(Server) source: http://www.clker.com/clipart-server.html

images.yahoo.com29
times

http://www.facebook.com/
http://www.clker.com/clipart-2123.html

ctools.umich.edu

Servers get used by many users
at the same time.

(Screenshots) Source: ctools.umich.edu
(Globe) source: http://www.clker.com/clipart-2123.html
(Server) source: http://www.clker.com/clipart-server.html

http://www.clker.com/clipart-2123.html

ctools.umich.edu

When folks hit a button...
everyone POSTs

???
(Screenshots) Source: ctools.umich.edu
(Globe) source: http://www.clker.com/clipart-2123.html
(Server) source: http://www.clker.com/clipart-server.html

http://www.clker.com/clipart-2123.html

??? Server Questions ???

• Who is this user?

• Are they logged in yet?

• What screen did they come from?

• What button did they push?

• Where do we store this data?

• What screen do they want next?

??? Server Questions ???

• Who is this user?

• Are they logged in yet?

• What screen did they come from?

• What button did they push?

• Where do we store this data?

• What screen do they want next?

Over and over and over and
over and over and over and
over....

same as it ever was

Cookies and Sessions
Maintaining State in HTTP

High Level Summary

• The web is “stateless” - the browser does not maintain a connection
to the server while you are looking at a page. You may never come
back to the same server - or it may be a long time - or it may be one
second later

• So we need a way for servers to know “which browser is this?”

• In the browser state is stored in “Cookies”

• In the server state is stored in “Sessions”

Some Web sites always seem to want to know who you are!

Source: https://weblogin.umich.edu/

Other Web sites always seem to know who you are!

Sources: www.twitter.com & www.flickr.com

http://www.twitter.com/

Browser

Server

GET

Whole
Page

GET

Whole
Page

Draw Draw

You watch the YouTube video
for 30 seconds

How you see YouTube...

ClickClick

Source: http://www.youtube.com/watch?v=f90ysF9BenI

Browser

Server

GET

Whole
Page

GET

Whole
Page

How YouTube sees you...

Draw DrawClickClick

Multi-User

• When a server is interacting with many different browsers at the same
time, the server needs to know *which* browser a particular request
came from

• Request / Response initially was stateless - all browsers looked
identical - this was really really bad and did not last very long at all.

Web Cookies to the Rescue

http://en.wikipedia.org/wiki/HTTP_cookie

Technically, cookies are arbitrary pieces of data chosen by the Web
server and sent to the browser. The browser returns them
unchanged to the server, introducing a state (memory of previous
events) into otherwise stateless HTTP transactions. Without
cookies, each retrieval of a Web page or component of a Web page
is an isolated event, mostly unrelated to all other views of the
pages of the same site.

http://en.wikipedia.org/wiki/HTTP_cookie

Cookies In the Browser

• Cookies are marked as to the web addresses they come from - the
browser only sends back cookies that were originally set by the same
web server

• Cookies have an expiration date - some last for years - others are
short-term and go away as soon as the browser is closed

Playing with Cookies

• Firefox Developer Plugin has a set of cookie features

• Other browsers have a way to view or change cookies

(Screenshots) Source: ctools.umich.edu

Two Kinds of Cookies

• Two kinds of cookies

• Long-lived - who you are - account name last access time - you can
close and reopen your browser and it is still there

• Temporary - used to identify your session - it goes away when you
close the browser

The Firefox Web Developer
Plugin Shows Cookies for the
Current Host.

Google Analytics Cookies

Request Response Again!
This time with cookies...

HTTP Request / Response Cycle

http://www.oreilly.com/openbook/cgi/ch04_02.html

Browser

Web Server

HTTP
Request

HTTP
Response

Internet Explorer, FireFox, Safari, etc.

(Review)

(Screenshot) Source: www.dr-chuck.com

HTTP Request / Response Cycle

GET /index.html HTTP/1.1
Accept: www/source
Accept: text/html
User-Agent: Lynx/2.4

http://www.oreilly.com/openbook/cgi/ch04_02.html

Browser

Web Server

HTTP
Request

We do or initial
GET to a server. The
server checks to see if we
have a cookie with a
particular name set.
Since this our first
interaction, we do not have
cookies set for this host.

HTTP Request / Response Cycle

http://www.oreilly.com/openbook/cgi/ch04_02.html

Browser

Web Server

HTTP
Response

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: sessid=123

<head> .. </head>
<body>
<h1>Welcome

host: sessid=123

Along with the rest of the response,
the server sets a cookie with some
name (sessid) and sends it back
along with the rest of the response.

HTTP Request / Response Cycle

GET /index.html HTTP/1.1
Accept: www/source
Accept: text/html

Cookie: sessid=123
User-Agent: Lynx/2.4

http://www.oreilly.com/openbook/cgi/ch04_02.html

Browser

Web Server

HTTP
Request

host: sessid=123

From that point forward, each time
we send a GET or POST to the
server, we include any cookies
which were set by that host.

HTTP Request / Response Cycle

http://www.oreilly.com/openbook/cgi/ch04_02.html

Browser

Web Server

HTTP
Response

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name=chuck

<head> .. </head>
<body>
<h1>Welcome

host: sessid=123
host:name=chuck

On each response, the server can
change a cookie value or add
another cookie.

HTTP Request / Response Cycle

GET /index.html HTTP/1.1
Accept: www/source
Accept: text/html
Cookie: sessid=123,name=chuck
User-Agent: Lynx/2.4

http://www.oreilly.com/openbook/cgi/ch04_02.html

Browser

Web Server

HTTP
Request

From that point forward, each time
we send a GET or POST to the
server, we include all the cookies
which were set by that host.

host: sessid=123
host:name=chuck

Browser

Server

GET

Page

GET POST

C
ookies

C
ookies

C
ookies

C
ookies

C
oo

ki
es

C
oo

ki
es

Remember that cookies are only sent back to the host that set the cookie.

Page Page

Security

• We ony send cookies back to the
host that originally set the cookie

• The browser has *lots* of cookies
for lots of hosts

• To ses all Cookies: Firefox ->
Preferences -> Privacy -> Show
Cookies

Using Cookies to Support Sessions
and Login / Logout

Some Web sites always seem to want to know who you are!

Source: https://weblogin.umich.edu/

In The Server - Sessions

• In most server applications, as soon as we meet a new browser - we
create a session

• We set a session cookie to be stored in the browser which indicates
the session id in use

• The creation and destruction of sessions is generally handled by a web
framework or some utility code that we just use to manage the
sessions

Session Identifer
• A large, random number that we place in a browser cookie the frst

time we encounter a browser.

• This number is used to pick from the many sessions that the server
has active at any one time.

• Server software stores data in the session which it wants to have from
one request to another from the same browser.

• Shopping cart or login information is stored in the session in the
server

ServerServer

Browser CBrowser C

ServerServer

Browser CBrowser C

Request

ServerServer

Session 97Session 97

Browser CBrowser C

cook=97cook=97

Request

Response

index:index:

““PleasePlease
log in”log in”cook=97

Create
Session

ServerServer

Session 97Session 97

Browser CBrowser C

cook=97cook=97

Typing

We now have a session
established
but are not yet logged in.

Source: https://weblogin.umich.edu/

Login / Logout

• Having a session is not the same as being logged in.

• Generally you have a session the instant you connect to a web site

• The Session ID cookie is set when the frst page is delivered

• Login puts user information in the session (stored in the server)

• Logout removes user information from the session

ServerServer

Session 97Session 97

Browser CBrowser C

cook=97cook=97

Request

login:login:

if good:if good:
set userset user

Click

cook=97
cook=97

ServerServer

Session 97Session 97

user=philuser=phil

Browser CBrowser C

cook=97cook=97

Request

login:login:

if good:if good:
set userset user

Click

Response

cook=97
cook=97

ServerServer

Session 97Session 97

user=philuser=phil

Browser CBrowser C

cook=97cook=97

Using Sessions for Other Stuff

ServerServer
Browser ABrowser A

cook=10cook=10

Browser BBrowser B

cook=46cook=46

Session 10Session 10

user=chuckuser=chuck
bal=$1000bal=$1000

Session 46Session 46

user=januser=jan
bal=$400bal=$400

ServerServer

Session 10Session 10

user=chuckuser=chuck
bal=$1000bal=$1000

Session 46Session 46

user=januser=jan
bal=$500bal=$500

Browser ABrowser A

cook=10cook=10

Browser BBrowser B

cook=46cook=46

withdraw:withdraw:

bal=bal-100bal=bal-100

ServerServer

Session 10Session 10

user=chuckuser=chuck
bal=$1000bal=$1000

Session 46Session 46

user=januser=jan
bal=$500bal=$500

Browser ABrowser A

cook=10cook=10

Browser BBrowser B

cook=46cook=46

withdraw:withdraw:

bal=bal-100bal=bal-100

Click

ServerServer

Session 10Session 10

user=chuckuser=chuck
bal=$1000bal=$1000

Session 46Session 46

user=januser=jan
bal=$500bal=$500

Browser ABrowser A

cook=10cook=10

Browser BBrowser B

cook=46cook=46

cook=46cook=46

withdraw:withdraw:

bal=bal-100bal=bal-100

ServerServer

Session 10Session 10

user=chuckuser=chuck
bal=$1000bal=$1000

Session 46Session 46

user=januser=jan
bal=$400bal=$400

Browser ABrowser A

cook=10cook=10

Browser BBrowser B

cook=46cook=46

cook=46cook=46

withdraw:withdraw:

bal=bal-100bal=bal-100
Response

Request

Review...

High Level Summary

• The web is “stateless” - the browser does not maintain a connection
to the server while you are looking at a page. You may never come
back to the same server - or it may be a long time - or it may be one
second later

• So we need a way for servers to know “which browser is this?”

• In the browser state is stored in “Cookies”

• In the server state is stored in “Sessions”

Browser

Server

GET

Whole
Page

GET

Whole
Page

Draw Draw

You watch the YouTube video
for an 30 seconds

How you see YouTube...

ClickClick

Source: http://www.youtube.com/watch?v=f90ysF9BenI

Browser

Server

Draw DrawClickClick

GET

Whole
Page

GET

Whole
Page

Browser

Server

Draw DrawClickClick

GET

Whole
Page

GET

Whole
Page

Session 42Session 42

cook=
42

cook=
42

cook=
42

cook=
42

Session 42Session 42

??? Server Questions ???

• Who is this user?

• Are they logged in yet?

• What screen did they come from?

• What button did they push?

• Where do we store this data?

• What screen do they want next?

Cookie/Session Summary
• Cookies take the stateless web and allow servers to store small

“breadcrumbs” in each browser.

• Session IDs are large random numbers stored in a cookie and used to
maintain a session on the server for each of the browsers connecting
to the server

• Server software stores sessions *somewhere* - each time a request
comes back in, the right session is retrieved based on the cookie

• Server uses the session as a scratch space for little things

	Slide 1
	Cookies and Sessions
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	??? Server Questions ???
	Slide 8
	Cookies and Sessions Maintaining State in HTTP
	High Level Summary
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Multi-User
	Web Cookies to the Rescue
	Slide 17
	Cookies In the Browser
	Playing with Cookies
	Slide 20
	Two Kinds of Cookies
	Slide 22
	Slide 23
	Request Response Again! This time with cookies...
	HTTP Request / Response Cycle
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Security
	Using Cookies to Support Sessions and Login / Logout
	Slide 34
	In The Server - Sessions
	Session Identifier
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Login / Logout
	Slide 42
	Slide 43
	Slide 44
	Using Sessions for Other Stuff
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Review...
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Cookie/Session Summary

