oo EN.Michigan

Unless otherwise noted, the content of this course material is licensed under a
Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright © 2009, Charles Severance.

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in
accordance with U.5. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions,
corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content
posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their
compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an
endorsement by the University of Michigan. For more information about how to cite these materials visit
http://michigan.educommons.net/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical
evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you
have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that

may be disturbing to some viewers.

UNIVERSITY OF MICHIGAN @ ®

Web Services and Application
Programming Interfaces

SI539 - Charles Severance

Service Oriented Approach

http://en.wikipedia.org/wiki/Service-oriented architecture

Service Oriented Approach

® Most non-trivial web applications are
service oriented

® They use services from other applications

® Credit Card Charge

® Hotel Reservation systems

Application

® TJwitter

(Gears) Source: http://www.clker.com/clipart-2952.html
(Cloud) Source:_http://www.clker.com/search/networksym/1

http://www.clker.com/clipart-2952.html

Multiple Systems

® |nitially - two systems cooperate and
split the problem

® As the data/service becomes useful -
multiple applications want to use the
information / application

® Standards for SOA need to be
developed

http://www.youtube.com/watch?v=mj-kCFzFOME

Application Progam Interface

The API itself is largely in that it specifies an
interface and controls the behavior of the objects specified in

that interface. The software that provides the functionality
described by an API is said to be an “implementation” of the

API. An API is typically defined in terms of the programm
build an application.

http://en.wikipedia.org/wiki/API

http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Programming_language

Application Program Interface

® An APl is a layer that is
“between” an application and
some aspect of the
environment such as a
system resource.

® The APl is a contract that
simplifies interacting with a
resource - hides detail

http://www.youtube.com/watch?v=31bS6¢cUH;-U

Biz Stone (Founder of Twitter): Yeah. The API has been arguably the most important, or maybe even

inarguably, the most important thing we’ve done with Twitter. It has allowed us, first of all, to keep the

service very simple and create a simple API so that developers can build on top of our infrastructure and

come up with 1deas that are way better than our 1deas, and build things like Twitterrific, which 1s just a

beautiful elegant way to use Twitter that we wouldn’t have been able to get to, being a very small team.
, has been really very important to us.

http://readwritetalk.com/2007/09/05/biz-stone-co-founder-twitter/

Web Services

http://en.wikipedia.org/wiki/Web services

(Gears) Source: http://www.clker.com/clipart-2952.html
(Cloud) Source:_http://www.clker.com/search/networksym/1

Web Service Protocols

® Since the Service Oriented
Architecture (SOA) and
Applicaiton Program Interface
(API) approaches are so common
we have developed general-
purpose infrastructure to use
applications remotely and work
with remote resources across the
web

http://en.wikipedia.org/wiki/Image: Webservice xrpc.png

http://www.clker.com/clipart-2952.html

Web Service Technologies

® SOAP - Simple Object Access Protocol (software)

® Remote programs/code which we use over the network

® Note: Chuck does not like SOAP because it is overly complex*
® REST - Representational State Transfer (resource focused)

® Remote resources which we create, read, update and delete
remotely

http://en.wikipedia.org/wiki/SOAP_(protocol)
http://en.wikipedia.org/wiki/REST

REST
Representational State Transfer

http://www.1ics.uci.edu/~fielding/pubs/dissertation/rest arch style.htm

http://en.wikipedia.org/wiki/REST

http://www.infoq.com/articles/rest-introduction

http://wiki.developer.mindtouch.com/REST/REST for the Rest of Us

REpresentational State Transfer

® Rest goes back to the basic concepts of the Internet
® URLs = Documents

® We have HTTP Operations on URLs: GET, PUT, POST, and DELETE

® Actually there are called URIs - Uniform Resource Identifiers

URI versus URN versus URL

® Uniform Resource Locator - Where to get a resources
® http://en.wikipedia.org/wiki/Uniform_Resource Locator

® Uniform Resource Name - More of a “look up key”

® urn:isbn:0-486-27557-4 URI

-

® Advice - For now pretend URI = URL [__‘ URL | URN

http://en.wikipedia.org/wiki/Uniform Resource Identifier

HT TP Methods

® HTTP Methods Operate on a URI
® GET - Retrieve a resource at a URI
® POST - Create/Modify a resource at a URL (remember <form>)

® PUT - Create/Replace/Overwrite a resource at a URI

® DELETE - Delete a resource at a URI

What does a REST Resource look like?

® |t depends - the idea is that when you GET the “resource” is returned
to you in the most convenient format

® |fitis an image - it is the bytes which make up the image

® |fitis an“Object” such as a person - it may be an XML
representation of that person

GET http://directory.umich.edu/users/csev

<person>
<name>Dr. Chuck</name>

<email>csev(@umich.edu</email>
<office>305B West Hall</office>
</person>

An XML Serialization of the resource.

users/csev

users/jimeng

Twitter - a REST Example

Twitter REST AP

® A series of URLs which you retrieve which return data

® Much like the information on twitter.com

® Returns XML data in the HT TP Document

http://apiwiki.twitter.com/REST+API+Documentation

User Methods

statuses/friends
Returns the authenticating user's friends, each with current status inline. They are ordered by the

order in which they were added as friends. It's also possible to request another user's recent friends list via
the id parameter below.

URL: http://twitter.com/statuses/friends. format

Formats: xml, |son

Method(s): GET

Farameters:

e« id. Optional. The ID or screen name of the user for whom to request a list of friends. Ex:
http://twitter.com/statuses/friends/12345.J50on Or
http://twitter.coms/statuses/friends/bob.xml
user id. Optional. Specfies the ID of the user for whom to return the list of friends. Helpful for
disambiguating wnen a valid user I1D 1s also a valid screen name. EX:

http://twitter.com/statuses/friends.xml?user 1d

Helpful for disambiguating when a valid screen name is also a user ID. Ex:
http://twitter.com/statuses/friends.xml?screen name
cpage. Optional. Retrieves the next 100 friends. Ex:
http://twitter.com/statuses/friends.xml?page=~2

Returns: list of basic user information elements

http://apiwiki.twitter.com/REST+API+Documentation

Basic user information element
Basic user information elements contain primary user information with nested a <status>

element to describe the user's most current update.
<USer>

id

name

SCreen_name

location

description

profile_image url

url

protected

followers_count

<status>
created at
id
(ext
source
truncated
in_reply to_status_id
in_reply to user_id
favorited
in_reply_to_screen_name

<?xml version="1.0" encoding="UTF-8"7>
<users type="array'>

<1d>14870169</1d>
<name>gbhatnag</name>
<screen name>gbhatnag</screen name>
<location>1Phone: 42.284775,-83.732422</location>
<profile 1mage url>http://s3.amazonaws.com/twitter production/profile 1mages/54535105/profi
le normal.jpg</profile 1mage url> <followers count>29</followers count>
<status>
<created at>Sun Mar 15 17:52:44 +0000 2009</created at> <1d>1332217519</id>
<text>to add to (@aatorres: projects that may fall into pervasive computing, situated
technologies, distributed media, would be interesting #sxsw</text> </status>

<user>
<1d>928961</id>
<name>Rasmus Lerdorf</name>

</user>
</users> http://twitter.com/statuses/friends/drchuck.xml

Retrieving Iwitter Data in Python

cat twpalsl.py
import urllib
TWITTER URL = "http://twitter.com/statuses/friends/ ACCT.xml*

while True:
print '
acct = raw_1nput('Enter Twitter Account:')
if (len(acct) < 1) : break
url = TWITTER URL.replace('ACCT", acct)
document = urllib.urlopen (url).read()
print document[:250]

Parsing XML in Python

® XML Becomes a Document Object Model - DOM

The Document Object Model (DOM) is a platform- and language-independent standard
object model for representing HTML or XML documents as well as an Application
Programming Interface (API) for querying, traversing and manipulating such documents.

http://en.wikipedia.org/wiki/Document Object Model

XML as a Tree

<a~>
B
<c>
<d>D</d>
<e>E</e>
</c>

Elements Text

XML Text and Attributes

<a~>
<b x="5">B
<c> X
<d>D</d> attrib
<e>E</e>
</c>

Elements Text

<?xml version="1.0" encoding="UTF-8"?>

USCTS
<user>

<id>14870169</1d>
<name>Gaurav Bhatnagar</name>
<screen name>gbhatnag</screen name>
<location>42.28,-83.74</location>
<status>
<created at>Sun Mar 15 17:52:44</created at>
<text>to add to (@aatorres: projects</text>
</status>
</user>
<user>
<1d>928961</1d>
<name>Rasmus Lerdorf</name> gbhatnag

— —-— . & . . -

to add to ...

document = urllib.urlopen (url).read()
dom = xml.dom.minidom.parseString(document)

document = urllib.urlopen (url).read() USCI'S

dom = xml.dom.minidom.parseString(document)

to add to ...

document = urllib.urlopen (url).read()
dom = xml.dom.minidom.parseString(document)
x = dom.getElementsByTagName('user')

gbhatnag t Ay 1 raSmus

getElementsByTagName pulls out a Python List of sub-trees.

url = TWITTER URL.replace('ACCT", acct)

document = urllib.urlopen (url).read()

dom = xml.dom.minidom.parseString(document)

count = (

for user in dom.getElementsByTagName('user') :
count = count + 1

print count

Counting the number of user tags...

for user in dom.getElementsByTagName('user') :
name = getTag(user, 'screen name')
print name
status = user.getElementsByTagName('status')
text = getTag(status,'text’)
if len(text) > 0 :
print " ", text[:50]

—— - -~

<user>
<1d>14870169</id>
<name>Gaurav Bhatnagar</name> gbhatnag
<screen name>gbhatnag</screen name>
<location>42.28,-83.74</location>
<status>
<created at>Sun Mar 15 17:52:44</created at>
<text>to add to (@aatorres: projects</text>
</status>
</user>

to add to ...

for user in dom.getElementsByTagName('user') :
name = getTag(user, 'screen name')
print name
status = user.getElementsByTagName('status')
text = getTag(status,'text’)
if len(text) > 0 :
print " ", text[:50]

— —-— . e & . o= -

$ python twpals2.py

Enter Twitter Account: drchuck
Gbhatnag

to add to (@aatorres: projects that
Rasmus

(@nine L Which shop 1s that?

def getTag(node, tagname):
if 1sinstance(node,list) and len(node) <1 : return '
if 1sinstance(node, list): node = node[0]

nodelist = node.getElementsByTagName(tagname)[0].childNodes
I.C —
for node in nodelist:
if node.nodeType == node. TEXT NODE:
rc = rc + node.data

return rc

for user in dom.getElementsByTagName('user') :
name = getTag(user, 'screen _name')

XML Text and Attributes

<a>
<b x="5">B
<c>
<d>D</d>
<e>E</e> X
</c> attrib

—

= | D)
D, 1D

rc=""*
for node 1n nodelist:

if node.nodeType == node. TEXT NODE:
rc = rc + node.data

$ python twpals2.py

Enter Twitter Account: drchuck
Gbhatnag
to add to (@aatorres: projects that may fall into p
RER 1
(@nine L Which shop is that?
Ptarjan
Home sweet home
Olegliber
introducing ourselves and our interests...
Wilm
Randomness: my firewall just informed me that Skyp
Dugsong
RT @themediaisdying Chicago Tribune changes masthe

<user>
<1d>14870169</1d>
<name>Gaurav Bhatnagar</name>
<screen name>gbhatnag</screen name>

<status>
<created at>Sun Mar 15 17:52:44</created at>
<text>to add to (@aatorres: projects</text>

</status>
</user>
python twpals3.py
Enter Twitter Account:drchuck
Gbhatnag

to add to (@aatorres: projects that may fall into p
RENTUN

Grr.. #lazyweb, how do I tell Thunderbird to use

Summary

® Service Oriented Architecture - allows an application to be broken
into parts and distributed across a network - and for standards to be

developed for service reuse

® An Application Program Interface (API) is a contract for interaction

® Web Services provide infrastructure for applications cooperating (an
APl) over a network - SOAP and REST are two styles of web services

	Slide 1
	Web Services and Application Programming Interfaces
	 Service Oriented Approach
	Service Oriented Approach
	Multiple Systems
	Application Progam Interface
	Application Program Interface
	The Twitter API
	 Web Services
	Web Service Protocols
	Web Service Technologies
	REST Representational State Transfer
	REpresentational State Transfer
	URI versus URN versus URL
	HTTP Methods
	What does a REST Resource look like?
	Slide 17
	Twitter - a REST Example
	Twitter REST API
	Slide 20
	Slide 21
	Slide 22
	Retrieving Twitter Data in Python
	Parsing XML in Python
	XML as a Tree
	XML Text and Attributes
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Summary

