

Web Services and Application
Programming Interfaces

SI539 - Charles Severance

Service Oriented Approach

http://en.wikipedia.org/wiki/Service-oriented_architecture

Service Oriented Approach

• Most non-trivial web applications are
service oriented

• They use services from other applications

• Credit Card Charge

• Hotel Reservation systems

• Twitter ApplicationApplication

(Gears) Source: http://www.clker.com/clipart-2952.html
(Cloud) Source: http://www.clker.com/search/networksym/1

http://www.clker.com/clipart-2952.html

Multiple Systems

• Initially - two systems cooperate and
split the problem

• As the data/service becomes useful -
multiple applications want to use the
information / application

• Standards for SOA need to be
developed

http://www.youtube.com/watch?v=mj-kCFzF0ME

Application Progam Interface

http://en.wikipedia.org/wiki/API

The API itself is largely abstract in that it specifies an
interface and controls the behavior of the objects specified in
that interface. The software that provides the functionality
described by an API is said to be an “implementation” of the
API. An API is typically defined in terms of the programm
ing language used to build an application.

http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Programming_language

Application Program Interface

• An API is a layer that is
“between” an application and
 some aspect of the
environment such as a
system resource.

• The API is a contract that
simplifes interacting with a
resource - hides detail

http://www.youtube.com/watch?v=31bS6cUHj-U

The Twitter API

Biz Stone (Founder of Twitter): Yeah. The API has been arguably the most important, or maybe even
inarguably, the most important thing we’ve done with Twitter. It has allowed us, first of all, to keep the
service very simple and create a simple API so that developers can build on top of our infrastructure and
come up with ideas that are way better than our ideas, and build things like Twitterrific, which is just a
beautiful elegant way to use Twitter that we wouldn’t have been able to get to, being a very small team.So,
the API which has easily 10 times more traffic than the website, has been really very important to us.

http://readwritetalk.com/2007/09/05/biz-stone-co-founder-twitter/

Web Services

http://en.wikipedia.org/wiki/Web_services

Web Service Protocols

• Since the Service Oriented
Architecture (SOA) and
Applicaiton Program Interface
(API) approaches are so common
we have developed general-
purpose infrastructure to use
applications remotely and work
with remote resources across the
web

http://en.wikipedia.org/wiki/Image:Webservice_xrpc.png

ApplicationApplication

(Gears) Source: http://www.clker.com/clipart-2952.html
(Cloud) Source: http://www.clker.com/search/networksym/1

http://www.clker.com/clipart-2952.html

Web Service Technologies
• SOAP - Simple Object Access Protocol (software)

• Remote programs/code which we use over the network

• Note: Chuck does not like SOAP because it is overly complex*

• REST - Representational State Transfer (resource focused)

• Remote resources which we create, read, update and delete
remotely

http://en.wikipedia.org/wiki/SOAP_(protocol)

http://en.wikipedia.org/wiki/REST

REST
Representational State Transfer

http://wiki.developer.mindtouch.com/REST/REST_for_the_Rest_of_Us

http://www.infoq.com/articles/rest-introduction

http://en.wikipedia.org/wiki/REST

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

REpresentational State Transfer

• Rest goes back to the basic concepts of the Internet

• URLs = Documents

• We have HTTP Operations on URLs: GET, PUT, POST, and DELETE

• Actually there are called URIs - Uniform Resource Identifers

URI versus URN versus URL

• Uniform Resource Locator - Where to get a resources

• http://en.wikipedia.org/wiki/Uniform_Resource_Locator

• Uniform Resource Name - More of a “look up key”

• urn:isbn:0-486-27557-4

• Advice - For now pretend URI = URL

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

HTTP Methods

• HTTP Methods Operate on a URI

• GET - Retrieve a resource at a URI

• POST - Create/Modify a resource at a URL (remember <form>)

• PUT - Create/Replace/Overwrite a resource at a URI

• DELETE - Delete a resource at a URI

What does a REST Resource look like?

• It depends - the idea is that when you GET the “resource” is returned
to you in the most convenient format

• If it is an image - it is the bytes which make up the image

• If it is an “Object” such as a person - it may be an XML
representation of that person

GET http://directory.umich.edu/users/csev

<person>
 <name>Dr. Chuck</name>
 <email>csev@umich.edu</email>
 <office>305B West Hall</office>
</person>

DirectoryDirectory
ServiceService

/users/jimeng/users/jimeng

/users/csev/users/csev

An XML Serialization of the resource.

Twitter - a REST Example

Twitter REST API

• A series of URLs which you retrieve which return data

• Much like the information on twitter.com

• Returns XML data in the HTTP Document

http://apiwiki.twitter.com/REST+API+Documentation

http://apiwiki.twitter.com/REST+API+Documentation

<?xml version="1.0" encoding="UTF-8"?>
<users type="array">
<user>
 <id>14870169</id>
 <name>gbhatnag</name>
 <screen_name>gbhatnag</screen_name>
 <location>iPhone: 42.284775,-83.732422</location>
<profile_image_url>http://s3.amazonaws.com/twitter_production/profile_images/54535105/profi
le_normal.jpg</profile_image_url> <followers_count>29</followers_count>
 <status>
 <created_at>Sun Mar 15 17:52:44 +0000 2009</created_at> <id>1332217519</id>
 <text>to add to @aatorres: projects that may fall into pervasive computing, situated
technologies, distributed media, would be interesting #sxsw</text> </status>
</user>
<user>
 <id>928961</id>
 <name>Rasmus Lerdorf</name>
 ……..
</user>
</users> http://twitter.com/statuses/friends/drchuck.xml

Retrieving Twitter Data in Python

cat twpals1.py

import urllib

TWITTER_URL = 'http://twitter.com/statuses/friends/ACCT.xml‘

while True:
 print '‘
 acct = raw_input('Enter Twitter Account:')
 if (len(acct) < 1) : break
 url = TWITTER_URL.replace('ACCT', acct)
 document = urllib.urlopen (url).read()
 print document[:250]

Parsing XML in Python

• XML Becomes a Document Object Model - DOM

http://en.wikipedia.org/wiki/Document_Object_Model

The Document Object Model (DOM) is a platform- and language-independent standard
object model for representing HTML or XML documents as well as an Application
Programming Interface (API) for querying, traversing and manipulating such documents.

XML as a Tree

<a>
 B
 <c>
 <d>D</d>
 <e>E</e>
 </c>

aa

bb cc

BB dd ee

DD EE
Elements Text

XML Text and Attributes

<a>
 <b x=”5”>B
 <c>
 <d>D</d>
 <e>E</e>
 </c>

aa

bb cc

BB dd ee

DD EE
Elements Text

55

x
attrib

text
node

<?xml version="1.0" encoding="UTF-8"?>
<users type="array">
<user>
 <id>14870169</id>
 <name>Gaurav Bhatnagar</name>
 <screen_name>gbhatnag</screen_name>
 <location>42.28,-83.74</location>
 <status>
 <created_at>Sun Mar 15 17:52:44</created_at>
 <text>to add to @aatorres: projects</text>
 </status>
</user>
<user>
 <id>928961</id>
 <name>Rasmus Lerdorf</name>
 ……..
</user>
</users>

usersusers

useruser useruser

screen_namescreen_name statusstatus

created_atcreated_at texttext

to add to ...to add to ...

...

Sun...Sun...

gbhatnaggbhatnag

 document = urllib.urlopen (url).read()
 dom = xml.dom.minidom.parseString(document)

usersusers

useruser useruser

screen_namescreen_name statusstatus

created_atcreated_at texttext

to add to ...to add to ...

...

Sun...Sun...

gbhatnaggbhatnag

 document = urllib.urlopen (url).read()
 dom = xml.dom.minidom.parseString(document)

useruser

screen_namescreen_name statusstatus

gbhatnaggbhatnag

 document = urllib.urlopen (url).read()
 dom = xml.dom.minidom.parseString(document)
 x = dom.getElementsByTagName('user')

texttext

useruser

screen_namescreen_name statusstatus

rasmusrasmus texttext

,[....]

getElementsByTagName pulls out a Python List of sub-trees.

 url = TWITTER_URL.replace('ACCT', acct)
 document = urllib.urlopen (url).read()
 dom = xml.dom.minidom.parseString(document)
 count = 0
 for user in dom.getElementsByTagName('user') :
 count = count + 1
 print count

Counting the number of user tags...

 for user in dom.getElementsByTagName('user') :
 name = getTag(user, 'screen_name')
 print name
 status = user.getElementsByTagName('status')
 text = getTag(status,'text')
 if len(text) > 0 :
 print " ", text[:50]

useruser

screen_namescreen_name statusstatus

created_atcreated_at texttext

to add to ...to add to ...Sun...Sun...

gbhatnaggbhatnag

<user>
 <id>14870169</id>
 <name>Gaurav Bhatnagar</name>
 <screen_name>gbhatnag</screen_name>
 <location>42.28,-83.74</location>
 <status>
 <created_at>Sun Mar 15 17:52:44</created_at>
 <text>to add to @aatorres: projects</text>
 </status>
</user>

 for user in dom.getElementsByTagName('user') :
 name = getTag(user, 'screen_name')
 print name
 status = user.getElementsByTagName('status')
 text = getTag(status,'text')
 if len(text) > 0 :
 print " ", text[:50]

useruser

screen_namescreen_name statusstatus

created_atcreated_at texttext

to add to ...to add to ...Sun...Sun...

gbhatnaggbhatnag
$ python twpals2.py

 Enter Twitter Account: drchuck
Gbhatnag
 to add to @aatorres: projects that
Rasmus
 @nine_L Which shop is that?

def getTag(node, tagname):
 if isinstance(node,list) and len(node) < 1 : return '‘
 if isinstance(node, list): node = node[0]

 nodelist = node.getElementsByTagName(tagname)[0].childNodes
 rc = '‘
 for node in nodelist:
 if node.nodeType == node.TEXT_NODE:
 rc = rc + node.data
 return rc

screen_namescreen_name

gbhatnaggbhatnag

useruser

 for user in dom.getElementsByTagName('user') :
 name = getTag(user, 'screen_name')

XML Text and Attributes

<a>
 <b x=”5”>B
 <c>
 <d>D</d>
 <e>E</e>
 </c>

aa

bb cc

BB dd ee

DD EE

55

x
attrib

text
node

 rc = '‘
 for node in nodelist:
 if node.nodeType == node.TEXT_NODE:
 rc = rc + node.data

$ python twpals2.py

 Enter Twitter Account: drchuck
Gbhatnag
 to add to @aatorres: projects that may fall into p
Rasmus
 @nine_L Which shop is that?
Ptarjan
 Home sweet home
Olegliber
 introducing ourselves and our interests...
Wilm
 Randomness: my firewall just informed me that Skyp
Dugsong
 RT @themediaisdying Chicago Tribune changes masthe

<user>
 <id>14870169</id>
 <name>Gaurav Bhatnagar</name>
 <screen_name>gbhatnag</screen_name>
 <location>42.28,-83.74</location>
 <status>
 <created_at>Sun Mar 15 17:52:44</created_at>
 <text>to add to @aatorres: projects</text>
 </status>
</user>

python twpals3.py
 Enter Twitter Account:drchuck
Gbhatnag
 42.28,-83.74
 to add to @aatorres: projects that may fall into p
Rasmus
 Sunnyvale, California
 Grr.. #lazyweb, how do I tell Thunderbird to use

Summary

• Service Oriented Architecture - allows an application to be broken
into parts and distributed across a network - and for standards to be
developed for service reuse

• An Application Program Interface (API) is a contract for interaction

• Web Services provide infrastructure for applications cooperating (an
API) over a network - SOAP and REST are two styles of web services

	Slide 1
	Web Services and Application Programming Interfaces
	 Service Oriented Approach
	Service Oriented Approach
	Multiple Systems
	Application Progam Interface
	Application Program Interface
	The Twitter API
	 Web Services
	Web Service Protocols
	Web Service Technologies
	REST Representational State Transfer
	REpresentational State Transfer
	URI versus URN versus URL
	HTTP Methods
	What does a REST Resource look like?
	Slide 17
	Twitter - a REST Example
	Twitter REST API
	Slide 20
	Slide 21
	Slide 22
	Retrieving Twitter Data in Python
	Parsing XML in Python
	XML as a Tree
	XML Text and Attributes
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Summary

