

Relational Databases
Charles Severance

Relational Databases

http://en.wikipedia.org/wiki/Relational_database

Relational databases model data by storing
rows and columns in tables. The power of the

relational database lies in its ability to
efficiently retrieve data from those tables and
in particular where there are multiple tables

and the relatinships between those tables
involved in the query.

SQLite Database Browser

• SQLite is a very popular browser - it is free and fast and small

• We have a program to manipulate SQLite databases

• http://sqlitebrowser.sourceforge.net/

• SQLite is embedded in Python and a number of other languages

SQLite is in lots of software...

http://www.sqlite.org/famous.html

Symbian Python Philips Skype

 GE Microsoft McAfee Apple

 Adobe Firefox PHP Toshiba Sun Microsystems

 Google

• http://sqlitebrowser.sourceforge.net/

Source: SQLite Terminal

Start Simple - A Single Table

• Lets make a table of People - with a Name and an E-Mail

Our first table with two columns

Source: SQLite Terminal

Our table with four rows

Source: SQLite Terminal

SQL

• Structured Query Language is the language we use to issue commands
to the database

• Create a table

• Retieve some data

• Insert data

• Delete data

http://en.wikipedia.org/wiki/SQL

SQL Insert

• The Insert statement inserts a row into a table

insert into Users (name, email) values (‘Ted’, ‘ted@umich.edu’)

Sources: SQLite Terminal

SQL Delete

• Deletes a row in a table based on a selection criteria

delete from Users where email='ted@umich.edu'

Sources: SQLite Terminal

SQL: Update

• Allows the updating of a feld with a where clause

update Users set name="Charles" where email='csev@umich.edu'

Sources: SQLite Terminal

Retrieving Records: Select

• The select statement retrieves a group of records - you can either
retrieve all the records or a subset of the records with a WHERE
clause

select * from Users

select * from Users where email='csev@umich.edu'

Sources: SQLite Terminal

Sorting with ORDER BY

• You can add an ORDER BY clause to SELECT statements to get the
results sorted in ascending or descending order

select * from Users order by email

select * from Users order by name

Sources: SQLite Terminal

SQL Summary

select * from Users

select * from Users where email='csev@umich.edu'

update Users set name="Charles" where email='csev@umich.edu'

insert into Users (name, email) values (‘Ted’, ‘ted@umich.edu’)

delete from Users where email='ted@umich.edu'

select * from Users order by email

This is not too exciting (so far)

• Tables pretty much look like big fast programmable spreadsheet with
rows, columns, and commands

• The power comes when we have more than one table and we can
exploit the relationships between the tables

Complex Data Models and
Relationships

http://en.wikipedia.org/wiki/Relational_model

Database Design

• Database design is an art form of its own with particular skills and
experience

• Our goal is to avoid the really bad mistakes and design clean and easily
understood databases

• Others may performance tune things later

• Database design starts with a picture...

Building a Data Model

• Drawing a picture of the data objects for our application and then
fguring out how to represent the objects and their relationships

• Basic Rule: Don’t put the same string data in twice - use a
relationship instead

• When there is one thing in the “real world” there should be
one copy of that thing in the database

Track Len Artist Album Genre Rating Count

Source: Apple iTunes Terminal

For each “piece of info”...

• Is the column an object or an
attribute of another object?

• Once we defne objects we need
to defne the relationships between
objects. Track

Len

Artist

Album

Genre

Rating

Count
Source: Apple iTunes Terminal

Track

Len

Artist

Album

Genre

Rating

Count

belongs-to

belongs-to

belongs-to

Source: Apple iTunes Terminal

Track

Len

Artist

Album

Genre

Rating

Count
belongs-to

belongs-to

belongs-to

Source: Apple iTunes Terminal

Representing Relationships in a
Database

We want to keep track of who is the “owner” of each chat message...
Who does this chat message “belong to”???

Source: CTools http://ctools.umich.edu

Database Normalization (3NF)

• There is *tons* of database theory - way too much to understand
without excessive predicate calculus

• Do not replicate data - reference data - point at data

• Use integers for keys and for references

• Add a special “key” to each table which we will reference - by
convention many programmers call this “id”

http://en.wikipedia.org/wiki/Database_normalization

Better Reference Pattern

We use integers to reference rows
in another table.

Sources: SQLite Terminal

Keys
Finding our way around....

Three Kinds of Keys

• Primary key - generally an integer auto-
inrcement feld

• Logical key - What the outside world
uses for lookup

• Foreign key - generally an integer key
point to a row in another table

Site
id
title
user_id
...

Primary Key Rules

• Rails enourages you to follow best practices

• Never use your logical key as the primary
key

• Logical keys can and do change albeit slowly

• Relationships that are based on matching
string felds are far less effcient than integers
performance-wise

User
id
login
password
name
email
created_at
modified_at
login_at

Foreign Keys
• A foreign key is when a table has a

column that contains a key which
points the primary key of another
table.

• When all primary keys are integers,
then all foreign keys are integers -
this is good - very good

• If you use strings as foreign keys -
you show yourself to be an
uncultured swine

User
id
login
...

Site
id
title
user_id
...

Relationship Building (in tables)

Track

Len

Artist

Album

Genre

Rating

Count
belongs-to

belongs-to

belongs-to

Source: Apple iTunes Terminal

Track

Len

Album Rating

Count

belongs-to

AlbumAlbum

idid

titletitle

TrackTrack

idid

titletitle

ratingrating

lenlen

countcount

album_idalbum_id

Table
Primary key
Logical key
Foreign key

AlbumAlbum

idid

titletitle

TrackTrack

idid

titletitle

ratingrating

lenlen

countcount

album_idalbum_id

Table
Primary key
Logical key
Foreign key

ArtistArtist

idid

namename

artist_idartist_id

GenreGenre

idid

namename

genre_idgenre_id

Naming FK artist_id is a
convention.

Sources: SQLite Terminal

Sources: SQLite Terminal

insert into Artist (name) values ('Led Zepplin')
insert into Artist (name) values ('AC/DC')

Sources: SQLite Terminal

insert into Genre (name) values ('Rock')
insert into Genre (name) values ('Metal')

Source: SQLite Terminal

insert into Album (title, artist_id) values ('Who Made Who', 2)
 insert into Album (title, artist_id) values ('IV', 1)

Source: SQLite Terminal

insert into Track (title, rating, len, count, album_id, genre_id)
 values ('Black Dog', 5, 297, 0, 1, 1)
insert into Track (title, rating, len, count, album_id, genre_id)

 values ('Stairway', 5, 482, 0, 1, 1)
insert into Track (title, rating, len, count, album_id, genre_id)
 values ('About to Rock', 5, 313, 0, 2, 2)
insert into Track (title, rating, len, count, album_id, genre_id)
 values ('Who Made Who', 5, 207, 0, 2, 2)

Source: SQLite Terminal

We have relationships!

Sources: SQLite Terminal

Using Join Across Tables

http://en.wikipedia.org/wiki/Join_(SQL)

Relational Power

• By removing the replicated data and replacing it with references to a
single copy of each bit of data we build a “web” of information that the
relational database can read through very quickly - even for very large
amounts of data

• Often when you want some data it comes from a number of tables
linked by these foreign keys

The JOIN Operation

• The JOIN operation links across several tables as part of a select
operation

• You must tell the JOIN the keys which make the connection between
the tables using an ON clause

select Track.title, Genre.name from Track join Genre on Track.genre_id = Genre.id

What we want
to see

The tables which
hold the data

How the tables
are linked

Sources: SQLite Terminal

It can get complex...
select Track.title, Artist.name, Album.title, Genre.name from
Track join Genre join Album join Artist on Track.genre_id =
Genre.id and Track.album_id = Album.id and Album.artist_id =
Artist.id

What we want to
see

The tables which
hold the data

How the tables are
linked

Sources: SQLite Terminal

Sources: SQLite Terminal

Complexity enables Speed

• Complexity makes speed possible and allows you to get very fast
results as the data size grows.

• By normalizing the data and linking it with integer keys, the overall
amount of data which the relational database must scan is far lower
than if the data were simply fattened out.

• It might seem like a tradeoff - spend some time designing your
database so it continues to be fast when your application is a success

Python and SQLite3

http://www.python.org/doc/2.5.2/lib/module-sqlite3.html

SQLite3 is built into Python

• Since SQLite is simple and small and designed to be “embedded” -
Python decided to embed SQLite into Python

• You simply “import sqlite3” and open a connection to the database
and start doing SQL commands

http://www.python.org/doc/2.5.2/lib/module-sqlite3.html

SQLite3 is built into Python
import sqlite3

Open up the database file and get a cursor
conn = sqlite3.connect('music.db')
c = conn.cursor()

print "Genre Rows"
c.execute('select * from Genre')
for row in c :
 print row

$ python sql1.py
Genre Rows
(1, u'Rock')
(2, u'Metal')
$ ls
music.db sql1.py sql2.py

SQLite stores all
tables and data in a

single file.

import sqlite3

Open up the database file and get a cursor
conn = sqlite3.connect('music.db')
c = conn.cursor()

print "Inserting Country"
c.execute('insert into Genre (name) values (?)', ('Country',))

print "Genre Rows"
c.execute('select * from Genre')
for row in c :
 print row

print "Deleting Country"
c.execute("delete from Genre where name='Country'")

print "Genre Rows"
c.execute('select * from Genre')
for row in c :
 print row

$ python sql2.py
Inserting Country
Genre Rows
(1, u'Rock')
(2, u'Metal')
(3, u'Country')
Deleting Country
Genre Rows
(1, u'Rock')
(2, u'Metal')

Additional SQL Topics

• Indexes improve access performance for things like string felds

• Constraints on data - (cannot be NULL, etc..)

• Transactions - allow SQL operations to be grouped and done as a unit

• See SI572 - Database Design

Summary

• Relational databases allow us to scale to very large amounts of data

• The key is to have one copy of any data element and use relations and
joins to link the data to multiple places

• This greatly reduces the amount of data which much be scanned when
doing complex operations across large amounts of data

• Database and SQL design is a bit of an art-form

	Slide 1
	Relational Databases
	Slide 3
	SQLite Database Browser
	SQLite is in lots of software...
	Slide 6
	Start Simple - A Single Table
	Slide 8
	Slide 9
	SQL
	SQL Insert
	Slide 12
	SQL Delete
	Slide 14
	SQL: Update
	Slide 16
	Retrieving Records: Select
	Slide 18
	Sorting with ORDER BY
	Slide 20
	SQL Summary
	This is not too exciting (so far)
	Complex Data Models and Relationships
	Database Design
	Slide 25
	Slide 26
	Slide 27
	Building a Data Model
	Slide 29
	For each “piece of info”...
	Slide 31
	Slide 32
	Representing Relationships in a Database
	Slide 34
	Database Normalization (3NF)
	Better Reference Pattern
	Keys
	Three Kinds of Keys
	Primary Key Rules
	Foreign Keys
	Relationship Building (in tables)
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	We have relationships!
	Using Join Across Tables
	Relational Power
	The JOIN Operation
	Slide 55
	It can get complex...
	Slide 57
	Complexity enables Speed
	Python and SQLite3
	SQLite3 is built into Python
	Slide 61
	Slide 62
	Additional SQL Topics
	Summary

