OPEN.MIcChigan

Unless otherwise noted, the content of this course material is licensed under a

Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright © 2009, Charles Severance.

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in
accordance with U.5. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions,
corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content
posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their
compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an
endorsement by the University of Michigan. For more information about how to cite these materials visit
http://michigan.educommons.net/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical
evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you
have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that

may be disturbing to some viewers.

UNIVERSITY OF MICHIGAN @ @

Chapter 4
Computing With Strings

Charles Severance

Textbook: Python Programming: An Introduction to Computer Science, John Zelle

Stri ng Data T)’Pe >>> str] = "Hello*

>>> str2 = 'there®
A string is a sequence of >>> bob = str] + str?
characters >>> print bobHellothere
>>>gtr3 ='123°
>>> str3 = str3 + 1
Traceback (most recent call last):
File "<stdin>", line 1, in
<module>TypeError: cannot

' ' 2 ' :
When a string contains numbers, it concatenate 'str' and 'int’ objects

A string literal uses quotes ‘Hello’
or “Hello”

For strings, + means “concatenate”

is still a string >>> X = mi(str3) + 1
>>> print X
We can convert numbers in a 124

string into a number using int() >>> 778 7-08

Input() is kind of useless

® When using input(“Prompt”) >>> x = input("Enter ")

it is actually looking for an Enter hello

from input Traceback (most recent call last):
File "<stdin>", line 1, in <module> File

® We use this just to prompt "<string>", line 1, in <module>NameError:

for numbers for simple name 'hello' 1s not defined

programs >>> x = mput("Enter ")

Enter 2 + 5

® We use raw_input(‘“‘Prompt”) ~>~ print X

7

Py -
for non-trivial programs .

Z-78

Real Programs

U Y= St” ng I N Put >>>name = raw 1nput("Enter:")
Enter:Chuck
>>> print name
® We prefer to read data in Chuck
using strings and then parse >>> apple = raw_input("Enter:")
and convert the data as we Enter:100
need >>>x = apple — 10

® This gives us more control
over error situations

and/or bad user input o>y = _ 10

. >>> print X
® Raw input nhumbers must 90

be from strings
Z-79

What of
Thing!?

® We have a way to see what
of data is in a
variable

® We use a special function
called type() to look at the
of data is in a variable

>>>x = "Hello"
>>> print X

Hello
>>> print type(X)

>>>y = "Bob"
>>>print y

Bob

>>> print type(y)

>>>7 =45

>>> print z
45
>>> print type(z)

>>>

Looking Inside Strings

o [] [o]e]v
0 1 2 3 4 D 6 . 8

® We can get at every single
character in a string using an
index specified in square
brackets

Figure 4.1: Indexing of the string "Hello Bob"

>>> greet = "Hello Bob"
® The index value can be an >>> greet [0]

. . JH.‘-‘
eXpression that is ComPUted >>> print greet[0], greet[2], greet[4]
H1lo
® The index value must be an >>> x =

>>> print greet[x-2]
B

integer
Z-380

e [[o] [o]o]e
0 1 2 3 4 D 6 ;i 8

Figure 4.1: Indexing of the string "Hello Bob"

® We can also look at any
continuous section of a string
using a colon

>>> oreet = "Hello Bob*
>>> oreet|0:3]
'Hel
>>> oreet]5:9]
' Bob*
>>> oreet|:5]
'Hello®
® |f a number is omitted it is >>> oreet|S:]
assumed to be the the ' Bob*
beginning or end >>> oreet][:]
'Hello Bob' 281

String indexes from the right

9 8 -7 -6 -5 -4 -3 -2 -]
® Negative index numbers

in a string start from the
right (or end) of the
string and work
backwards

Figure 4.1: Indexing of the string "Hello Bob"

>>> oreet = "Hello Bob*
>>> oreet|-1]

'bc

>>> oreet[-3]

n!
B Z-30

>>> 70t = "abc*

® You will get a if you >>> print zot[5]
attempt to index beyond the end
of a string.

® So be careful when constructing

index values and slices o

String Operators

® We doa ot of work with
strings and Python has a
lot of support for strings

<string>[:]
, , len(<string>) Length

® With respect to strings, Iteration through characters

Python is a “smooth _ |
o Table 4.1: Python string operations.

operator

/-82

How is a String?

>>> oreet = "Hello Bob*

® The function takes a string as >>> print
a parameter and returns the 9
number of characters in the string >>>x =11, 2, "fred", 99]
>>> print len(x)
® Actually tells us the number 4
of elements of any set or sequence >>>

/-82

Len Function

>>> oreet = "Hello Bob* A function 1s some stored
>>>x = len(greet) code that we use. A
>>> print X function takes some mput
9 and produces an output.

“Hello Bob™
(a string)

> 9
(a number)

Guido wrote this code

Len Function

>>> oreet = "Hello Bob* A function 1s some stored
>>>x = len(greet) code that we use. A
>>> print X function takes some mput
9 and produces an output.

9
(a number)

“Hello Bob”
(a string)

Multiplying Strings!?

® While it is seldom useful, the
asterisk operator applies to
strings

>>> z1g = "Hi*
>>>7ag = Zig 3
>>> print zag
HiHiH1

>>> x = ()

/-81

Looping Through a String

>>> zap = "Fred
>>> for Xyz 1n zap:
print xyz

® A string is a sequence (ordered
set) of characters

® The for loop iterates through a

sequence, with the iteration F
variable taking successive values I
from the sequence each time C
the loop body is run d
>>>

Z-96

String Library

String Library

® Python has a number of
string operations which are
in the string library import string

® We use these library
operations quite often when
we are pulling apart input
data

zap =string.lower(greet)

® To use these, we import the

string library
Z-96

What is a string
Library? def

® Some super developers
in the Python world
write the libraries for us

to use et
® import string
® Somewhere there is a def

file string.py with a
bunch of def statements

Function

Meaning

capitalize(s)
capwords (s)
center(s, width)
count (s, sub)
find(s, sub)
join(list)
ljust(s, width)
lower(s)
lstrip(s)
replace(s,oldsub,newsub)
rfind(s, sub)
rjust(s,width)
rstrip(s)
split(s)

upper (s)

Copy of s with only the first character capitalized
Copy of s; first character of each word capitalized
Center s in a field of given width

Count the number of occurrences of sub in s
Find the first position where sub occurs in s
Concatenate 1ist of strings into one large string
Like center, but s is left-justified

Copy of s in all lowercase characters

Copy of s with leading whitespace removed
Replace occurrences of oldsub in s with newsub
Like find, but returns the rightmost position
Like center, but s is right-justified

Copy of s with trailing whitespace removed

Split s into a list of substrings (see text)

Copy of s; all characters converted to uppercase

Table 4.2: Some components of the Python string library

http://docs.python.org/lib/string-methods.html

Searching a String

® We use the find() function
to search for a substring
within another string

Figure 4.1: Indexing of the string "Hello Bob"

>>> 1mport string

® find() finds the first >>> oreet = "Hello Bob"

occurance of the substring >>> pos = string.find(greet,"o")

>>> print pos
4
>>> aa = string.find(greet,"z")

>>> print aa
-1

® |f the substring is not found,
find() returns - |

® Remember that string

position starts at zero
7-94-95

Making everything UPPER CASE

® You can make a copy of a string in
lower case or upper case

® Often when we are searching for a
string using find() - we first convert
the string to lower case so we can
find a string regardless of case

>>> 1mport string

>>> oreet = "Hello Bob"

>>> nnn = string.upper(greet)
>>> print nnn

HELLO BOB

>>> 111 = string.lower(greet)
>>> print 111

hello bob
>>>

7-94-95

Search and Replace

® The replace() function >>> 1mport string
is like a “search and >>> oreet = "Hello Bob"
replace” operation in >>> nstr = string.replace(greet,"Bob","Jane")
a word processor >>> print nstr
Hello Jane
® |t replaces all >>> greet = "Hello Bob*
occurrences of the >>> nstr = string.replace(greet,"o","X")
search string with the >>> print nstrHellX BXb
replacement string >>>

7-94-95

Stripping Whitespace

® Sometimes we want to take
a string and remove
whitespace at the beginning
and/or end

® |strip() and rstrip() to the
left and right only

® strip() Removes both begin
and ending whitespace

>>> 1mport string
>>>greet =" Hello Bob "
>>> string.Istrip(greet)
'Hello Bob '

>>> string.rstrip(greet)

' Hello Bob'

>>> string.strip(greet)

'Hello Bob'
>>>

7-94-95

Breaking Strings into Parts

® We are often presented with input that we need to break into pieces

® We use the split() function to break a string into a sequence of strings

>>> 1mport string
>>> abc = "With three words*
>>> stuff = string.split(abc)
>>> print stuff
['With', 'three', 'words']
>>>
/-92, 7-96

>>> 1mport string >>> print stuff

>>> abc = "With three words* ['With', 'three', 'words']
>>> stuff = string.split(abc) >>> for w 1n stuft:
>>> print stuff print w

['With', 'three', 'words']

>>> print len(stuff)

R

>>> print stufi] 1]

three >>>

Split breaks a string into parts produces a list of strings. We think
of these as words. We can access a particular word or loop through
all the words.

/-92, 7-96

>>> line = "A lot of spaces*
>>> etc = line.split()

>>> print etc

['A', 'lot', 'of', 'spaces’]

>>>

>>> 1mport string

>>> |1ine = "first,second,third*
>>> thing = string.split(line)
>>> print thing
['first,second,third']

>>> print len(thing)

1

>>> thing = string.split(line,",")
>>> print thing

['first', 'second’, 'third']

>>>

You can specify what delimiter
character to use in the splitting.
Also when you do not specify a
delimiter, multiple spaces 1s thought
of as “one” delimater.
You can also just add .split() to the
7-92. 7-96 end of a string variable.

File Processing

File Processing

® A text file can be thought of as a sequence of lines

From stephen.marquard(@uct.ac.za Sat Jan 5 09:14:16 2008

Return-Path: <postmaster(@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500To: source@collab.sakaiproject.orgFrom:
stephen.marquard(@uct.ac.zaSubject: [sakai] svn commit: 139772 -
content/branches/Details: http://source.sakaiproject.org/viewsvn/?
view=rev&rev=39772

Z-107

Opening a File

Before we can read the contents of the file we must tell Python which
file we are going to work with and what we will be doing with the file

This is done with the open() function

open() returns a “file handle” - a variable used to perform operations
on the file

Kind of like “File -> Open” in a Word Processor

Z-108

Using open()

® handle = open(filename, mode) fhand = open("mbox.txt", "r")

® returns a handle use to manipulate the file

® filename is a string

¢¢)

® mode is “r’ if we are planning reading the file and “w” if we are going
to write to the file.

http://docs.python.org/lib/built-in-funcs.html Z-108

File Handle as a Sequence

® A file handle open for read can be
treated as a sequence of strings
where each line in the file is a string xtile = open("mbox.txt", "r'")
in the sequence

for cheese 1n xfile:
® \We can use the for statement to print cheese

iterate through a sequence

® Remember - a sequence is an
ordered set

Counting Lines in a File

O Open 1 file read_only izza — Open("mbOX.tXt", "1‘")
® Use a for loop to read each howmany = 0
line for slice 1n pizza:

howmany = howmany

® Count the lines and print out
the number of lines

7-107, Z-110

Summary

String Data Type ® Searching strings

input() and raw_input() ® Changing Case

Indexing strings ® Removing Whitespace
Slicing strings ® Splitting a string into parts
String operators ® File Processing

String len() function ® Opening a File

Looping through a string ® [ooping through a file

String Library

	Slide 1
	Chapter 4 Computing With Strings
	String Data Type
	Input() is kind of useless
	Real Programs Use String Input
	What Kind of Thing?
	Looking Inside Strings
	Slicing Strings
	String indexes from the right
	A Character too Far
	String Operators
	How Long is a String?
	Len Function
	Slide 14
	Multiplying Strings?
	Looping Through a String
	String Library
	Slide 18
	What is a Library?
	Slide 20
	Searching a String
	Making everything UPPER CASE
	Search and Replace
	Stripping Whitespace
	Breaking Strings into Parts
	Slide 26
	Slide 27
	File Processing
	Slide 29
	Opening a File
	Using open()
	File Handle as a Sequence
	Counting Lines in a File
	Summary

