

Loop Structures and Booleans
Zelle - Chapter 8
Charles Severance - www.dr-chuck.com

Textbook: Python Programming: An Introduction to Computer Science, John Zelle

Repeated Steps

Output:

0
1
2
3
4

Program:

for i in range(5) :
 print i

i = 0 .. 4i = 0 .. 4

print iprint i

Z-233

Defnite Loops

Defnite Loops

• Loops that run a fxed (aka
defnite) number of times

• Loops that “iterate” through
an ordered set

• Loops that run “for” a
number of times

for abc in range(5) :
 print “Hi”
 print abc

Hi
0
Hi
1
Hi
2
Hi
3
Hi
4

Z-39

Defnite Loops

• Loops that run a fxed (aka
defnite) number of times

• Loops that “iterate” through
an ordered set

• Loops that run “for” a
number of times

for abc in range(5) :
 print “Hi”
 print abc

Hi
0
Hi
1
Hi
2
Hi
3
Hi
4

Z-39

Colon (:) defines the start of a
block. Indenting determines which

lines belong to the block.

Looking at In...
• The iteration variable

“iterates” though the
sequence (ordered set)

• The block (body) of code
is executed once for each
value in the sequence

• The iteration variable
moves through all of the
values in the sequence

for abc in range(5) :
 ... block of code ...

Iteration variable

Five-element sequence
[0, 1, 2, 3, 4]

In a FlowChart
• The iteration variable

“iterates” though the
sequence (ordered set)

• The block (body) of code
is executed once for each
value in the sequence

• The iteration variable
moves through all of the
values in the sequence

Program:

for i in range(4) :
 print i

i = 0i = 0

i = 1i = 1

i = 2i = 2

i = 3i = 3

Loop body is run repeatedly

print iprint i

print iprint i

print iprint i

print iprint i

What is
range(10) ?

• range(10) is a built in
function that returns a
sequence of numbers

• The for statement can iterate
through any sequence

• A sequence can have values
of different types

Z-40

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for i in [0, 1, 2] :
... print I
...
0
1
2
>>> for i in [0, "abc", 9, 2, 3.6] :
... print I
...
0
abc
9
2
3.6

File Processing

File Processing

• A text fle can be thought of as a sequence of lines

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>
Date: Sat, 5 Jan 2008 09:12:18 -0500To: source@collab.sakaiproject.orgFrom:
stephen.marquard@uct.ac.zaSubject: [sakai] svn commit: r39772 -
content/branches/Details: http://source.sakaiproject.org/viewsvn/?
view=rev&rev=39772

Z-107

Opening a File

• Before we can read the contents of the fle we must tell Python which
fle we are going to work with and what we will be doing with the fle

• This is done with the open() function

• open() returns a “fle handle” - a variable used to perform operations
on the fle

• Kind of like “File -> Open” in a Word Processor

Z-108

Using open()

• handle = open(flename, mode)

• returns a handle use to manipulate the fle

• flename is a string

• mode is “r” if we are planning on reading the fle and “w” if we are
going to write to the fle.

http://docs.python.org/lib/built-in-funcs.html

fhand = open("mbox.txt", "r")

Z-108

File Handle as a Sequence

• A fle handle open for read can be
treated as a sequence of strings
where each line in the fle is a string
in the sequence

• We can use the for statement to
iterate through a sequence

• Remember - a sequence is an
ordered set

xfile = open("mbox.txt", "r")

for cheese in xfile:
 print cheese

Counting Lines in a File

• Open a fle read-only

• Use a for loop to read each
line

• Count the lines and print out
the number of lines

pizza = open("mbox.txt", "r")

howmany = 0
for slice in pizza:
 howmany = howmany + 1

print howmany

Z-242

What We Do in Loops
Note: Even though these examples are simple the

patterns apply to all kinds of loops

Patterns in Loops

• Counting in loops

• Summing in loops

• Averaging in loops

• Searching in loops

• Detecting in loops

• Largest or smallest

• Using break in a loop

• Using Continue in a loop

Looping through a Set

print “Before”
for thing in [3, 41, 12, 9, 74, 15] :
 print thing
print “After”

$ python basicloop.py
Before
3
41
12
9
74
15
After

What is the Largest Number?

•3 41 12 9 74 15

What is the Largest Number?

What is the Largest Number?

largest_so_far -13 41 74

Making “smart” loops

• The trick is “knowing”
something about the whole
loop when you are stuck
writing code that only sees one
entry at a time

• Favorite dog food…

Set some variables to initial
values

For thing in data:

Look for something or do
something to each entry
separately, updating a

variable.

Look at the variables.

Finding the largest value
Largest = -1
print “Before”, largest
For value in [3, 41, 12, 9, 74, 15]:
 if value > largest:
 largest = value
 print largest, value

Print “After”, largest

$ python largest.py
Before -1
3 3
41 41
41 12
41 9
74 74
74 15
After 74

We make a variable that contains the largest value we have seen so far. If the current
value is larger, it becomes the new largest value we have seen so far.

Counting in a Loop
zork = 0
print "Before", zork
for thing in [3, 41, 12, 9, 74, 15] :
 zork = zork + 1
 print zork, thing
print "After", zork

$ python countloop.py
 Before 0
1 3
2 41
3 12
4 9
5 74
6 15
After 6

To count how many times we execute a loop we introduce a counter variable that
starts at 0 and we add one to it each time through the loop.

Summing in a Loop
zork = 0
print "Before", zork
for thing in [3, 41, 12, 9, 74, 15] :
 zork = zork + thing
 print zork, thing
print "After", zork

$ python countloop.py
 Before 0
3 3
44 41
56 12
65 9
139 74
154 15
After 154

To add up a value we encounter in a loop, we introduce a sum variable that starts at 0 and
we add the value to the sum each time through the loop.

Finding the Average in a Loop

count = 0
sum = 0
print "Before", count, sum
for value in [3, 41, 12, 9, 74, 15] :
 count +=1
 sum += value
 print count, sum, value
print "After", count, sum, sum / count

$ python averageloop.py
Before 0 0
1 3 3
2 44 41
3 56 12
4 65 9
5 139 74
6 154 15
After 6 154 25

An average just combines the counting and sum patterns
and divides when the loop is done.

Searching in a Loop

print "Before“
for value in [3, 41, 12, 9, 74, 15] :
 if value > 20:
 print "Large number",value
print "After"

$ python search1.py
Before
Large number 41
Large number 74
After

We use an if statement in the loop to catch the values we are
looking for.

Did we encounter a value?

found = 0
print "Before", found
for value in [3, 41, 12, 9, 74, 15] :
 if value == 9:
 found = 1
 print found, value
print "After", found

$ python search1.py
Before 0
0 3
0 41
0 12
1 9
1 74
1 15
After 1

If we just want to search and know if a value was found - we use a variable that starts at zero and
is set to one as soon as we find what we are looking for.

Using a Boolean Variable

found = False
print "Before", found
for value in [3, 41, 12, 9, 74, 15] :
 if value == 9:
 found = True
 print found, value

print "After", found

$ python search1.py
Before False
False 3
False 41
False 12
True 9
True 74
True 15
After True

If we just want to search and know if a value was found - we use a variable that starts at zero and
is set to one as soon as we find what we are looking for.

Remembering where...
found = False
where = -1
count = 0print "Before", found
for value in [3, 41, 12, 9, 74, 15] :
 count = count + 1
 if value == 9:
 found = True
 where = count
 print found, where, value

print "After", found, where

$ python search1.py
Before False
False -1 3
False -1 41
False -1 12
True 4 9
True 4 74
True 4 15
After True 4

Finding the largest value

largest = -1
print "Before", largest
for value in [3, 41, 12, 9, 74, 15] :
 if value > largest :
 largest = value
 print largest, value

print "After", largest

$ python largest.py
Before -1
3 3
41 41
41 12
41 9
74 74
74 15
After 74

We make a variable that contains the largest value we have seen so far. If the current value
is larger, it becomes the new largest value we have seen so far.

Finding the smallest valuecount = 0
print "Before“
for value in [9, 41, 12, 3, 74, 15] :
 if count == 0 :
 smallest = value

 count = count + 1
 if value < smallest :
 smallest = value
 print smallest, value

print "After", smallest

$ python smallest.py
 Before
9 9
9 41
9 12
3 3
3 74
3 15
After 3

We still have a variable that is the smallest so far. The first time through the
loop we take the first value to be the smallest.

Breaking out of a loop

print "Before“
for value in [3, 41, 12, 9, 74, 15] :
 print "Loop top",value
 if value == 12 :
 break
 print "Loop bottom", value
print "After"

$ python breakloop.py
 Before
Loop top 3
Loop bottom 3
Loop top 41
Loop bottom 41
Loop top 12
After

Break immediately terminates the current loop and jumps out of the loop.

break (out)

Breaking out of a loop

print "Before“
for value in [3, 41, 12, 9, 74, 15] :
 print "Loop top",value
 if value == 12 :
 break
 print "Loop bottom", value
print "After"

$ python breakloop.py
Before
Loop top 3
Loop bottom 3
Loop top 41
Loop bottom 41
Loop top 12
After

Break immediately terminates the current loop and jumps out of the loop.

Remembering
where the
frst one

was...

found = False
where = -1
count = 0
print "Before", found
for value in [3, 41, 12, 9, 74, 15] :
 count = count + 1
 if value == 9:
 found = True
 where = count
 break
 print found, value
print "After", found, where

Continuing with the
next iteration

print "Before“
for value in [3, 41, 12, 9, 74, 15] :
 print "Loop top",value
 if value > 10 :
 continue
 print "Loop bottom", value
print "After"

$ python breakloop.py
 Before
Loop top 3
Loop bottom 3
Loop top 41
Loop top 12
Loop top 9
Loop bottom 9
Loop top 74
Loop top 15
After

Continue immediately terminates the current loop iteration and jumps to the top
of the loop and starts the next iteration of the loop.

Continuing with the
next iteration

print "Before“
for value in [3, 41, 12, 9, 74, 15] :
 print "Loop top",value
 if value > 10 :
 continue
 print "Loop bottom", value
print "After"

$ python breakloop.py
Before
Loop top 3
Loop bottom 3
Loop top 41
Loop top 12
Loop top 9
Loop bottom 9
Loop top 74
Loop top 15
After

Continue immediately terminates the current loop iteration and jumps to the top
of the loop and starts the next iteration of the loop.

Nested Loops $ python nested.py
 Top 1
1 X
1 Y
Bottom 1
Top 2
2 X
2 Y
Bottom 2
Top 3
3 X
3 Y
Bottom 3

for out in [1, 2, 3] :
 print "Top", out
 for nest in ["X", "Y"] :
 print out, nest
 print "Bottom", out

Each time the outer loop runs once,
the inner loop runs completely

through the loop.

Boolean Operators and
Expressions

Boolean Operations

• We can do calculations with boolean variables just like with integer
variables

• The boolean operations are: and or not

• Comparison operators < > <= >= == != return boolean (True or
False)

Boolean Operators

(x == 4) and (y ==2)

True if both expressions
are true.

(x == 4) or (y == 2)

Evaluates to true if either
expression is true.

not (x == 4)

Not “flips” the logic
- True becomes
False and False
becomes True.

Boolean Operation
Example

import string

for str in ["bob", "bark at the moon", "where at"] :
 words = string.split(str)
 if len(words) >= 2 and words[1] == "at" :

 print "+++++", str
 else:

 print "-----", str
$ python findat.py
----- bob
+++++ bark at the moon+++++
 where at

Summary
• Loops over a set

• File Loops

• Counting in loops

• Summing in loops

• Averaging in loops

• Searching in loops

• Detecting in loops

• Largest or smallest

• Using break in a loop

• Using continue in a loop

• Boolean operations and, or,
not

	Slide 1
	Loop Structures and Booleans Zelle - Chapter 8
	Repeated Steps
	Definite Loops
	Slide 5
	Slide 6
	Looking at In...
	In a FlowChart
	Slide 9
	What is range(10) ?
	File Processing
	Slide 12
	Opening a File
	Using open()
	File Handle as a Sequence
	Counting Lines in a File
	What We Do in Loops Note: Even though these examples are simple the patterns apply to all kinds of loops
	Patterns in Loops
	Looping through a Set
	What is the Largest Number?
	Slide 21
	Slide 22
	Making “smart” loops
	Finding the largest value
	Counting in a Loop
	Summing in a Loop
	Finding the Average in a Loop
	Searching in a Loop
	Did we encounter a value?
	Using a Boolean Variable
	Remembering where...
	Slide 32
	Finding the smallest value
	Breaking out of a loop
	Slide 35
	Remembering where the *first* one was...
	Continuing with the next iteration
	Slide 38
	Nested Loops
	Boolean Operators and Expressions
	Boolean Operations
	Boolean Operators
	Boolean Operation Example
	Summary

