oo EN.Michigan

Unless otherwise noted, the content of this course material is licensed under a
Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright © 2009, Charles Severance.

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in
accordance with U.5. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions,
corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content
posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their
compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an
endorsement by the University of Michigan. For more information about how to cite these materials visit
http://michigan.educommons.net/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical
evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you
have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that

may be disturbing to some viewers.

UNIVERSITY OF MICHIGAN @ ®



Loop Structures and Booleans
ZLelle - Chapter 8

Charles Severance - www.dr-chuck.com

Textbook: Python Programming: An Introduction to Computer Science, John Zelle



Repeated Steps

| Output:

0 Program: B}
print 1 \

\4

B W o — O

/-233



Definite Loops



Definite Loops

® | oops that run a fixed (aka
definite) number of times

® | oops that “iterate” through
an ordered set

® | oops that run “for” a
number of times

for abc 1n range(5) :
print “Hi1”
print abc

Hi

Hi

Hi

Hi

Hi

/-39



Definite Loops

® | oops that run a fixed (aka

definite) number of times
for abc 1n range()) :
® | oops that “iterate” through orint “Hi1”
an ordered set orint abc

® | oops that run “for” a

number of times
Colon (:) defines the start of a

block. Indenting determines which
lines belong to the block.

Hi

Hi

Hi

Hi

Hi

/-39



Looking at In...

® The iteration variable

“iterates” though the Five-element sequence

dered set
sequence (ordered set) [teration variable [0, 1,2,3,4]
® The block (body) of code \ p
is executed once for each for abc range(S) .
value in the sequence
| ... block of code ...

® The iteration variable
moves through all of the
values in the sequence



a FlowChart

more items in <sequence>
® The iteration variable
“iterates” though the

sequence (ordered set)
<var> = next item

® The block (body) of code
is executed once for each
value in the sequence

® The iteration variable
moves through all of the
values in the sequence




more items in <sequence>

yes

<var> = next item

Program:

print 1

Loop body 1s run repeatedly

I
print 1

\4



>>>range(10)

What is 0,1,2,3,4,5,6,7,8,9]

>>>for11n [0, 1, 2] :

range(10) ? . printl

0

® range(10) is a built in 1

function that returns a )

sequence of numbers >>> for i in [0, "abc”", 9. 2, 3.6] :
® The for statement can iterate print |

through any sequence O
® A sequence can have values abc

of different types 9

2

| 3.6



File Processing



File Processing

® A text file can be thought of as a sequence of lines

From stephen.marquard(@uct.ac.za Sat Jan 5 09:14:16 2008

Return-Path: <postmaster(@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500To: source@collab.sakaiproject.orgFrom:
stephen.marquard(@uct.ac.zaSubject: [sakai] svn commit: 139772 -
content/branches/Details: http://source.sakaiproject.org/viewsvn/?
view=rev&rev=39772

Z-107



Opening a File

Before we can read the contents of the file we must tell Python which
file we are going to work with and what we will be doing with the file

This is done with the open() function

open() returns a “file handle” - a variable used to perform operations
on the file

Kind of like “File -> Open” in a Word Processor

Z-108



Using open()

® handle = open(filename, mode) fhand = open("mbox.txt", "r")

® returns a handle use to manipulate the file

® filename is a string

¢¢ )

® mode is “r’ if we are planning on reading the file and “w” if we are
going to write to the file.

http://docs.python.org/lib/built-in-funcs.html Z-108



File Handle as a Sequence

® A file handle open for read can be
treated as a sequence of strings
where each line in the file is a string xtile = open("mbox.txt", "r'")
in the sequence

for cheese 1n xfile:
® \We can use the for statement to print cheese

iterate through a sequence

® Remember - a sequence is an
ordered set



Counting Lines in a File

® Open afile read-only

® Use a for loop to read each
line

® Count the lines and print out
the number of lines

p1zza = open("'mbox.txt",

howmany = 0

for slice 1n pi1zza:
howmany = howmany

"..n
I

/-242



What We Do in Loops

Note: Even though these examples are simple the
patterns apply to all kinds of loops



Patterns in Loops

® Counting in loops
® Summing in loops
® Averaging in loops
® Searching in loops

® Detecting in loops

® [argest or smallest
® Using break 1n a loop

® Using Continue 1n a loop



Looping through a Set

$ python basicloop.py
Before
| 3
print “Before” 41
for thing 1n [3, 41, 12,9, 74, 15] : 12
print thing 9
print “After” 74
15

After



What is the Largest Number?



What 1s the Largest Number?



What 1s the Largest Number?

largest so far




Making “smart” loops

® The trick is “knowing”
something about the whole
loop when you are stuck
writing code that only sees one
entry at a time

° Favorite dog food...

Set some variables to initial
values

For thing 1n data:

Look for something or do
something to each entry
separately, updating a
variable.

L.ook at the variables.



Finding the largest value

Largest = -1 $ python largest.py
print “Before”, largest Betore -1
3
largest 41
largest 41
largest 41
74
Print “After”, largest 74
After 74

We make a variable that contains the largest value we have seen so far. If the current
1s larger, 1t becomes the new largest value we have seen so far.



Counting in a Loop

$ python countloop.py
print "Before", zork Before 0
for thing 1n [3, 41, 12,9, 74, 15] : 13
zork = zork + 1 241
print zork, thing 312
print "After", zork 49
574
615
After 6

To count how many times we execute a loop we introduce a
and we add one to it each time through the loop.



$ python countloop.py
print "Before", Before 0
for thing 1n [3, 41, 12,9, 74, 15] :
thing
print , thing
print "After",

After 154

To add up a value we encounter 1n a loop, we introduce a and
we add the value to the sum each time through the loop.



Finding the Average in a Loop

count = $ python averageloop.py
Betore 0
print "Before", count, 133
for value 1n [3, 41, 12,9, 74, 15] : 244 41
count +=1 35612
4659
print count, , value d 14
print "After", count, , sum / count 6 15
After 6 25
An average just combines the counting and patterns

and divides when the loop 1s done.



Searching in a Loop

print "Before™ $ python searchl.py
for value 1in [3, 41, 12, 9, 74, 15] : Before
if value > 20: Large number 41
print "Large number",value Large number 74
print "After" After

We use an if statement 1n the loop to catch the values we are
looking for.



Did we encounter a value!

$ python searchl.py

Before
print "Before", 3
for value 1n [3, 41, 12,9, 74, 15] : 41
if value == 9: 12
9
print , value 74
print "After", 15
After 1
If we just want to search and - W€ use a that starts at zero and

1s set to one as soon as we what we are looking for.



Using a Variable

$ python searchl.py

print "Before", Before
for value in [3, 41, 12, 9, 74, 15] - 3
if value == 41
12
print , value )
74
print "After", L5
After
If we just want to search and - W€ use a that starts at zero and

1s set to one as soon as we what we are looking for.



Remembering where...

where = -1

count = Oprint "Before",

for value 1n [3, 41, 12,9, 74, 15] :

count = count + 1

if value ==

where =
print

print "After",

count
, where, value

$ python searchl.py
Before
-13
-1 41
-1 12
49
474
415
After




Finding the largest value

largest = -1 $ python largest.py
print "Before", largest ]33§f0r6 -1
largest 41 41
largest 4:_ 12
largest 41 9
74 774
print "After", largest 74 15
After 74

We make a variable that contains the largest value we have seen so far. If the current value
1s larger, 1t becomes the new largest value we have seen so far.



count = 0 Finding the smallest value
print "Before*

for value 1n [9, 41, 12, 3,74, 15] : $ python smallest.py
1f count == 0 : Before
smallest = value 99
9 4]
count = count + 1 012
1f value < smallest : 33
smallest = value 374
print smallest, value 315
After 3

print "After", smallest

We still have a variable that 1s the smallest so far. The first time through the
loop we take the first value to be the smallest.



Breaking out of a loop

print "Before* $ python breakloop.py

for value in [3, 41, 12, 9, 74, 15] : Betore

print "Loop top",value Loop top 3
if value == 12 : Loop bottom 3
break Loop top 41
print "Loop bottom", value Loop bottom 41
Loop top 12

print "After" .
After = preak (out)

Break immediately terminates the current loop and jumps out of the loop.



Breaking out of a loop

print "Before* $ python breakloop.py

for value 1n [3, 41, 12,9, 74, 15] : Before
print "Loop top",value Loop top 3
if value == 12 : Loop bottom 3

_— break Loop top 41

§ print "Loop bottom", value Loop bottom 41
¥ print "After" Loop top 12
After

Break immediately terminates the current loop and jumps out of the loop.



where = -1

count = 0 Remembering

print "Before",

for value in [3, 41, 12,9, 74, 15] : Where the

count = count + 1

if value == 9: >kﬁ rst* one
where = count
e Was...
\ print , value

Y print "After",



Continuing with the

$ python breakloop.py
next _Before
Loop top 3
Loop bottom 3
print "Before* Loop top 41
for value in [3, 41, 12,9, 74, 15] : T oon tob 12
print "Loop top",value LooDb top 9
1t Valu§ > 10 Looi) bottom 9
continue Loop top 74
print "Loop bottom", value Loop top 15
print "After" After
Continue 1immediately terminates the current loop and jumps to the top

of the loop and starts the next of the loop.



Continuing with the

$ python breakloop.py
next _Before
Loop top 3
| Loop bottom 3
print "Before* Loop top 41
, for Vglue in [3, 41, 12,9, 74, 15] : Loop top 12
/ print "Loop top",value 1.oop ton 9
if value > 10 Loop bottom 9

.contmue Loop top 74
print "Loop bottom", value Loap top 15
print "After" After
Continue 1immediately terminates the current loop and jumps to the top

of the loop and starts the next of the loop.



N este d LOO P S $ python nested.py

Top 1
1 X
for outin [1, 2, 3] : -
e : Bottom 1
print "Top", out Top 2
for nest in ["X", "Y"] : 2(?()
print out, nest Y
print "Bottom", out Bottom 2
Top 3
| 3X
Each time the outer loop runs once, 3Y
the inner loop runs completely Bottom 3

through the loop.



Boolean Operators and
Expressions



® We can do calculations with boolean variables just like with integer
variables

® The boolean operations are:

® Comparison operators < > <= >= == I= return boolean (True or
False)



Boolean Operators

(x==4)and (y ==2)

True if both expressions
are true.

(x==4) or (y =2)

Evaluates to true if either
expression 1s true.

(x==4)

the logic
- True becomes
False and False
becomes True.



Boolean Operation
Example

import string
for str in ["bob", "bark at the moon", "where at" | :
words = string.split(str)
if len(words) >= 2 and words[1] == "at" :

print "+++++", str
else:

. $ python findat. py
print "----- 5 bob

+++++ park at the noon++++
wher e at



Loops over a set
File Loops
Counting in loops
Summing in loops
Averaging in loops

Searching in loops

Summary

Detecting in loops
Largest or smallest
Using break in a loop
Using continue 1n a loop

Boolean operations and, or,
not



	Slide 1
	Loop Structures and Booleans Zelle - Chapter 8
	Repeated Steps
	Definite Loops
	Slide 5
	Slide 6
	Looking at In...
	In a FlowChart
	Slide 9
	What is range(10) ?
	File Processing
	Slide 12
	Opening a File
	Using open()
	File Handle as a Sequence
	Counting Lines in a File
	What We Do in Loops Note: Even though these examples are simple the patterns apply to all kinds of loops
	Patterns in Loops
	Looping through a Set
	What is the Largest Number?
	Slide 21
	Slide 22
	Making “smart” loops
	Finding the largest value
	Counting in a Loop
	Summing in a Loop
	Finding the Average in a Loop
	Searching in a Loop
	Did we encounter a value?
	Using a Boolean Variable
	Remembering where...
	Slide 32
	Finding the smallest value
	Breaking out of a loop
	Slide 35
	Remembering where the *first* one was...
	Continuing with the next iteration
	Slide 38
	Nested Loops
	Boolean Operators and Expressions
	Boolean Operations
	Boolean Operators
	Boolean Operation Example
	Summary

