oo EN.Michigan

Unless otherwise noted, the content of this course material is licensed under a
Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright © 2009, Charles Severance.

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in
accordance with U.5. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions,
corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content
posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their
compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an
endorsement by the University of Michigan. For more information about how to cite these materials visit
http://michigan.educommons.net/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical
evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you
have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that

may be disturbing to some viewers.

UNIVERSITY OF MICHIGAN @ ®

Data Collections
ZLelle - Chapter | |

Charles Severance - www.dr-chuck.com

Textbook: Python Programming: An Introduction to Computer Science, John Zelle

What is a ‘Collection”

® Most of our variables have one value in them - when we put a new
value in the variable - the old value is over written

$ python
Python 2.5.2 (r252:60911, Feb 22 2008, 07:57:53)

|GCC 4.0.1 (Apple Computer, Inc. build 5363)] on darwin

>>>x =)
>>>x =4
>>> print X

4

What is a Collection?

A collection is nice because we can put more than one value in them
and carry them all around in one convenient package.

We have a bunch of values in a single “variable”
We do this by having more than one place “in” the variable.

We have ways of finding the different places in the variable

(Luggage) CC: BY-SA: xajondee (Flickr) http://creativecommons.org/licenses/by-sa/2.0/deed.en

http://creativecommons.org/licenses/by-sa/2.0/deed.en

A Story of Two Collections..

® |ist

® A linear collection of values that stay in order

® A"bag” of values, each with its own label

(Pringle's Can) CC:BY-NC Roadsidepictures (flickr) http://creativecommons.org/licenses/by-nc/2.0/deed.en
(Pringles) CC:BY-NC Cartel82 (flickr) http://creativecommons.org/licenses/by-nc/2.0/deed.en
(Chips) CC:BY-NC-SA Bunchofpants (flickr) http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en
(Bag) CC:BY-NC-SA Monkeyc.net (flickr) http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en

http://creativecommons.org/licenses/by-nc/2.0/deed.en
http://creativecommons.org/licenses/by-nc/2.0/deed.en
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en

The Python List Object

(Pringle's Can) CC:BY-NC Roadsidepictures (flickr) http://creativecommons.org/licenses/by-nc/2.0/deed.en
(Pringles) CC:BY-NC Cartel82 (flickr) http://creativecommons.org/licenses/by-nc/2.0/deed.en

http://creativecommons.org/licenses/by-nc/2.0/deed.en
http://creativecommons.org/licenses/by-nc/2.0/deed.en

>>> orades = list()

>>> grades.appenc
>>> grades.appenc

(100)
(97)

>>> grades.appenc

(100)

>>> print sum(grades)

297

>>> print grades
[100, 97, 100]

>>> print sum(grades)/3.0

99.0
>>>

The grades variable will have a list of values.

Append some values to the list.

Add up the values 1n the list using the sum()
function.

What 1s 1n the list?

Figure the average...

>>> print grades
[100, 97, 100]

>>> newgr = list(grades)

>>> print newgr
100, 97, 100]

>>>newgr|[1] =85

>>> print newgr
[100, 85, 100]

>>> print grades
[100, 97, 100]

What 1s 1n grades?

Make a copy of the
entire grades list.

Change the second new grade
(starts at [0])

The original grades are unchanged.

Looking in Lists...

® We use square brackets to look
up which element in the list we
are interested in.

® grades[2] translates to “grades
sub 2”

® Kind of like in math x;

>>> print grades
[100, 97, 100]

>>> print grades[0]
100

>>> print grades[1]
97

>>> print grades[2]
100

Why lists start at zero?

® |nitially it does not make sense that
the first element of a list is stored at
the zeroth position

® grades[0]
® Math Convention - Number line

® Computer performance - don’t have
to subtract | in the computer all
the time

Elevators in Europe!

(elevator) CC:BY marstheinfomage (flickr)
http://creativecommons.org/licenses/by-nc/2.0/deed.en

http://creativecommons.org/licenses/by-nc/2.0/deed.en

Fun With Lists

® Python has many features that allow us to do things to an entire list in
a single statement

® Lists are powerful objects

>>>st=[21, 14, 4, 3, 12, 18] >>> print 1st

>>> print Ist (21, 14, 3, 12, 18, 50]
21, 14,4, 3, 12, 18] >>> print Ist.index(18)

>>>print 18 1n Ist 4

True | | >>> |st.reverse()
>>> print 24 1n Ist >>> print st

False [50, 18, 12, 3, 14, 21]
>>> [st.append(50)

>>> |st.sort()

>>> print Ist >>> print Ist

(21, 14, 4, 3, 12, 18, 50] 3, 12, 14, 18, 21, 50]
>>> lst..remove(4) >>> del 1st[2]
>>> print Ist >>> print Ist[3, 12, 18, 21, 33]

[219 149 39 129 189 50]
7-343

More functions for lists

>>>a=[1,2,3]
>>> print max(a)
3

>>> print min(a)

1

>>> print len(a)

3

>>> print sum(a)

6

>>>

http://docs.python.org/lib/built-in-funcs.html

>>>print Ist

[3,12,14,18,21,33]

>>>for xval 1n Ist:
print xval

14 Looping through Lists

>>>

yARTR'

Operator Meaning

<seq> + <seq> Concatenation

° | <seq> * <int-expr> | Repetition
LlSt | <geq>|] Indexing
len(<seq>) Length
<seq>[:] Slicing

Operations for <var> in <seq>: | lteration

<expr> in <seq> Membership check (Returns a Boolean)

| Method | Meaning
| {Iist:a.append (x) | Add element x to end of list.

<list>.sort() | Sort (order) the list. A comparison function
may be passed as parameter.
<list>.reverse() | Reverse the list.
<list>.index(x) | Returns index of first occurrence of x.
<list>.insert(i,x) | Insert x into list at index i.
<list>.count(x) | Returns the number of occurrences of x in list.
: <list>.remove(x) Deletes the first occurrence of x in list.

<list>.pop(i) | Deletes the ith element of the list and returns its value.

Quick Peek: Object Oriented

<nerd-alert>

® A list is a special kind of variable >>> 1=
>>>1=1+1

® Regular variables - integer >>>x =1, 2, 3]
. >>> print X
o
Contain some data 1,2, 3]
® Smart variables - string, list . 2 0
>>> print X
® Contain some data and 3,2, 1]

When we combine data + capabilities - we call this an “object”

One way to find out

Method | Meaning

<list>.append(x) | Add element x to end of list.

<list>.sort() | Sort (order) the list. A comparison function
may be passed as parameter.

<list>.reverse() | Reverse the list.

\ <list>.index(x) | Returns index of first occurrence of x.
<list>.insert(i,x) | Insert x into list at index i.
Returns the number of occurrences of x in list.
\ <list>.remove(x) | Deletes the first occurrence of x in list.
\ <list>.pop(i) | Deletes the ith element of the list and returns its value.

Buy a book and read 1t and carry 1t around with you.

® The command lists >>> x = list()

capabilities >>> type(X)
<type 'list™
® |gnore the ones with >>>
underscores - these are used by [' add ',' class ',' contains ',
Python itself ' delattr ',' delitem ',
' delslice ',' doc
® The rest are real operations ' eq " setitem ',' setslice ',

' str ', 'append', 'count’, 'extend’,
'Index’, 'insert’,
® |tis like type() - it tells us 'pop’, 'remove', 'reverse', 'sort']

something *about™ a variable >>>

that the object can perform

>>> vy = “Hello there”

>>> dir(y)

[' add '' class "' contains ' ' delattr ',' doc ',
'eq ' ge "' getattribute ',' getitem ', ' getnewargs '
' getslice "' gt ''" hash ' mt "' le "' len
"t Y repr ' rmod ',' rmul ' setattr ' str |

'capitalize’, 'center’, 'count', 'decode’, 'encode’, 'endswith', 'expandtabs’,
'find', 'Index’, '1salnum’, '1salpha’, '1sdigit', 'islower’, '1sspace’, 'istitle’,
'1supper’, Join', 'ljust', 'lower’, 'lIstrip’, 'partition’, 'replace’, 'rfind’,

rindex’, rjust', 'rpartition’, 'rsplit', 'rstrip’, 'split', 'splitlines', 'startswith',
'strip’, 'swapcase', 'title', 'translate’, 'upper', 'zfill']

x = list()

® These are called
“constructors” - they
make an empty list, str, or
dictionary

® We can make a“fully
formed empty”’ object and
then add data to it using
capabilities (aka methods)

>>>a = l1st()
>>> print a

[]

>>> print type(a)
<type 'list™>
>>>b = dict()
>>>print b

U

>>> print type(b)
<type 'dict™

>>> a.append("fred")
>>> print a
['fred']

>>> ¢ = str()
>>>d = int()
>>> print d

0

Variables (Objects) contain data and capabilities
The dir() function asks Python to list capabilities
We call object capabilities * i

We can construct fresh, empty objects using constructors like list()

Everything in Python (even constants) are objects

(Chips) CC:BY-NC-SA Bunchofpants (flickr)
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en
RAEPs7\ Monkeyc, '

d.en

Python
Dictionaries

http://en.wikipedia.org/wiki/Associative array

http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en

Dictionaries

® Dictionaries are Python’s most powerful data collection
® Dictionaries allow us to do fast database-like operations in Python
® Dictionaries have different names in different languages

® Associative Arrays - Perl / Php

® Properties or Map or HashMap - Java

® Property Bag - C# / .Net

http://en.wikipedia.org/wiki/Associative array

(Bag) CC:BY-NC-SA Monkeyc.net (flickr)
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en

http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en

Dictionaries

® |ists label their entries >>> purse = dict()
based on the position in the >>> purse['money'| = 12
list >>> purse|'candy'] = 3
>>> purse|'tissues'] = 75
® Dictionaries are like bags - == print purse
no order {'money": 12, 'tissues': 75, 'candy": 3}

>>> print purse['candy']

3

>>> purse|['candy'] = purse['candy'] + 2
>>> print purse

{'money": 12, 'tissues': 75, 'candy': 5}

® So we mark the things we
put in the dictionary with a
“tag”

>>> purse = dict()

MOoNc
>>> purse['money'| = 12 andy
>>> purse['candy'] = 3

>>> purse| 'tissues'| = 75 _

>>> print purse
{'money': 12, 'tissues': 75, 'candy': 3}

>>> purse['candy'| = purse['candy'] + 2

>>> print purse
{'money': 12, 'tissues': 75, 'candy': 5}

(Purse) CC:BY Monkeyc.net Stimpson/monstershaq2000' s photostream (flickr)
http://creativecommons.org/licenses/by/2.0/deed.en

Lookup in Lists and Dictionaries

® Dictionaries are like Lists except that they use keys instead of
to look up values

>>> [st = list() >>> ddd = dict()

>>> [st.append(21) >>>ddd|"age"| = 21
>>> |st.append(183) >>> ddd|"course" | = 182
>>> print Ist >>> print ddd

121, 183] {'course’: 182, 'age': 21}
>>> [st[0] = 23 >>> ddd["age"| = 23
>>> print Ist >>> print ddd

123, 183] {'course’: 182, 'age': 23}

>>>

Ist = l1st()

>>> |st.append(21)
>>> |st.append(183)
>>> print Ist

21,

183] =

>>> 1st[0] =233
>>> print Ist

123, 183]

>>> (]
>>> (]

d
d

>>>

Ic

(¢!
"
]

d[’
>>> print ddd {'course': 182, 'age": 21}

{ = dict()

age"| =21
'‘course’ | = 182

>>> ddd["age"| =23
>>>printddd =
{'course’: 182, 'age': 23}

[1st

Key

Value

17 (183

Dictionary
Value

Key
|course]

[age]

183

21

111

ddd

Dictionary Operations

Method

Meaning

<dict>.has key(<key>)

<key> 1n <dict>

Returns true if dictionary contains the
specified key, false if it doesn't.
Same as has _key

<dict>.keys()

Returns a list of the keys.

<dict>.values()

Returns a list of the values.

<dict>.items()

Returns a list of tuples (key,value)
representing the key-value pairs.

<dict>.get(<key>, <default>)

If key is not in the dictionary, returns
default; otherwise returns the value

for key.

del <dict>[<key>]

Delete the specified entry.

<dict>.clear()

Delete all entries.

Dictionary Literals (Constants)

® Dictionary literals use curly braces and have a list of key : pairs

® You can make an empty dictionary using empty curly braces

>>> 133 = { 'chuck’ : 1, 'fred' : 42, 'jan": 100}
>>> print jjj

{'7an": 100, 'chuck’: 1, 'fred": 42}

>>> 000 = { |}

>>> print 000

U

>>>

Dictionary Patterns

® One common use of dictionary is Key Value
counting how often we “see” something

>>> ccc = dict()

>>> cceel'csev"| =1

>>> cceel'cwen"| = |

>>> print cccC

{'csev': 1, 'cwen': 1}

>>> ccc|"cwen"] = cec|"cwen"| + |
>>> print cccC

{'csev': 1, 'cwen': 2}

Dictionary Patterns

® |tisan to reference a key which is not in the dictionary

® We can use the in operator to see if a key is in the dictionary

>>> ccc = dict()
>>>

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

>>> print ""csev' 1n ccc
False

n

print “No”

1n
print “Yes”

Dictionary
Counting

Since it is an to
reference a key which is not
in the dictionary

We can use the dictionary
get() operation and supply a
default value if the key does
not exist to avoid the error
and get our count started.

>>> ccc = dict()

>>> print ccc.get("csev", 0)

0

>>> ccc["csev'] = cec.get(""csev",0) + 1
>>> print ccC

{'csev': 1}

>>> print ccc.get("csev', 0)

1

>>> ccc["csev'"] = cece.get("csev",0) + 1
>>> print ccC

{'csev': 2}

dict.get(key, defaultvalue)

What get() effectively does...

® The get() method basically d = dict()
does an implicit if checking x = d.get("tred”,0)
to see if the key exists in the
dictionary and if the key is
not there - return the

default value d = dict()
if “fred” 1n d:
® The main purpose of get() is x = d[*fred”]
to save typing this four line else:

pattern over and over x =0

Retrieving lists of Keys and Values

® You can get a list of keys, values or items (both) from a dictionary

>>>13) = { 'chuck' : 1, 'fred' : 42, jan": 100}
>>> print |jj.keys()

[jan’, 'chuck’, 'tred'}

>>> print |jj.values()

[100, 1,42
>>> print jjj.1tems()

[(han', 100), (‘chuck’, 1), ('tred’, 42)]
>>>

Looping [hrough Dictionaries

® We loop through the >>>1jj = { 'chuck' : 1, 'fred' : 42, 'jan": 100}
key-value pairs in a >>> for aaa,bbb 1n jjj.1tems() :
dictionary using *two™ ... print aaa, bbb

iteration variables

jan 100 <+

® FEach iteration, the first chuck 1 aaa bbb
variable is the key and fred 42 . fian] [100
the the second variable is S
the corresponding value [chuck] |1

(fred] ¥2

Dictionary Maximum Loop

$ cat dictmax.py
11 = { 'chuck’ : 1, 'fred' : 42, jan": 100}

print jj] $ python dictmax.py

{1an'": 100, 'chuck’: 1, 'fred': 42}
maxcount = None jan 100
for person, count 1n jjj.1items() :

1f maxcount == None or count > maxcount :
maxcount = count

Maxperson = person None is a special value in Python. It is

. like the “absense” of a value. Like
print maxperson, maxcount “nothing” or “empty”’.

Dictionaries are not Ordered

® Dictionaries use a Computer Science technique called “hashing” to
make them very fast and efficient

® However hashing makes it so that dictionaries are not sorted and they
are not sortable

® |ists and sequences maintain their order and a list can be sorted - but
not a dictionary

http://en.wikipedia.org/wiki/Hash function

Dictionaries are not Ordered

>>> |st = dict()

> dlCt _ { P 123, nbn : 4009 "a" - 5() } >>> :~St-aj§)j§)ené,("one"
>>> print dict = ;_st.appenc:,("and")
fa': 123, 'c": 50, 'b': 400} >>> Ist.append("two")

>>> print Ist
['one', 'and', 'two']
>>>]st.sort()

Dictionaries have no order and >>> print Ist
cannot be sorted. Lists have ['and’, 'one’, 'two'}
order and can be sorted. >>>

http://en.wikipedia.org/wiki/Hash function

Summary: Iwo Collections

® |ist

® A linear collection of values that stay in order

® Dictionary

® A"bag”’ of values, each with its own label / tag

(Pringle's Can) CC:BY-NC Roadsidepictures (flickr) http://creativecommons.org/licenses/by-nc/2.0/deed.en
(Bag) CC:BY-NC-SA Monkeyc.net (flickr) http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en

http://creativecommons.org/licenses/by-nc/2.0/deed.en
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en

What do we use these for?

® Lists - Like a Spreadsheet - with columns of stuff to be summed,
sorted - Also when pulling strings apart - like string.split()

- For keeping track of (keyword,value) pairs in memory
with very fast lookup. It is like a small in-memory database. Also used

to commuhnicate with databases and web content.

	Slide 1
	Data Collections Zelle - Chapter 11
	What is not a “Collection”
	What is a Collection?
	A Story of Two Collections..
	The Python List Object
	Slide 7
	Slide 8
	Looking in Lists...
	Why lists start at zero?
	Fun With Lists
	Slide 12
	More functions for lists
	Slide 14
	Slide 15
	Quick Peek: Object Oriented
	What “is” a List Anyways?
	One way to find out Capabilities
	Lets Ask Python...
	Try dir() with a String
	What does x = list() mean?
	Object Oriented Summary
	Python Dictionaries
	Dictionaries
	Slide 25
	Slide 26
	Lookup in Lists and Dictionaries
	Slide 28
	Dictionary Operations
	Dictionary Literals (Constants)
	Dictionary Patterns
	Slide 32
	Slide 33
	Dictionary Counting
	What get() effectively does...
	Retrieving lists of Keys and Values
	Looping Through Dictionaries
	Dictionary Maximum Loop
	Dictionaries are not Ordered
	Slide 40
	Summary: Two Collections
	What do we use these for?

