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What is a ‘Collection”

® Most of our variables have one value in them - when we put a new
value in the variable - the old value is over written

$ python
Python 2.5.2 (r252:60911, Feb 22 2008, 07:57:53)

|GCC 4.0.1 (Apple Computer, Inc. build 5363)] on darwin

>>>x =)
>>>x =4
>>> print X

4



What is a Collection?

A collection is nice because we can put more than one value in them
and carry them all around in one convenient package.

We have a bunch of values in a single “variable”
We do this by having more than one place “in” the variable.

We have ways of finding the different places in the variable

(Luggage) CC: BY-SA: xajondee (Flickr) http://creativecommons.org/licenses/by-sa/2.0/deed.en
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A Story of Two Collections..

® |ist

® A linear collection of values that stay in order

® A"bag” of values, each with its own label
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The Python List Object
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>>> orades = list()

>>> grades.appenc
>>> grades.appenc

(100)
(97)

>>> grades.appenc

(100)

>>> print sum(grades)

297

>>> print grades
[100, 97, 100]

>>> print sum(grades)/3.0

99.0
>>>

The grades variable will have a list of values.

Append some values to the list.

Add up the values 1n the list using the sum()
function.

What 1s 1n the list?

Figure the average...



>>> print grades
[100, 97, 100]

>>> newgr = list(grades)

>>> print newgr
100, 97, 100]

>>>newgr|[ 1] =85

>>> print newgr
[100, 85, 100]

>>> print grades
[100, 97, 100]

What 1s 1n grades?

Make a copy of the
entire grades list.

Change the second new grade
(starts at [0])

The original grades are unchanged.



Looking in Lists...

® We use square brackets to look
up which element in the list we
are interested in.

® grades[2] translates to “grades
sub 2”

® Kind of like in math x;

>>> print grades
[100, 97, 100]

>>> print grades[0]
100

>>> print grades[ 1]
97

>>> print grades[2]
100



Why lists start at zero?

® |nitially it does not make sense that
the first element of a list is stored at
the zeroth position

® grades[0]
® Math Convention - Number line

® Computer performance - don’t have
to subtract | in the computer all
the time

Elevators in Europe!

(elevator) CC:BY marstheinfomage (flickr)
http://creativecommons.org/licenses/by-nc/2.0/deed.en
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Fun With Lists

® Python has many features that allow us to do things to an entire list in
a single statement

® Lists are powerful objects



>>>st=[ 21, 14, 4, 3, 12, 18] >>> print 1st

>>> print Ist (21, 14, 3, 12, 18, 50]
21, 14,4, 3, 12, 18] >>> print Ist.index(18)

>>>print 18 1n Ist 4

True | | >>> |st.reverse()
>>> print 24 1n Ist >>> print st

False [50, 18, 12, 3, 14, 21]
>>> [st.append(50)

>>> |st.sort()

>>> print Ist >>> print Ist

(21, 14, 4, 3, 12, 18, 50] 3, 12, 14, 18, 21, 50]
>>> lst..remove(4) >>> del 1st[2]
>>> print Ist >>> print Ist[3, 12, 18, 21, 33]

[219 149 39 129 189 50]
7-343



More functions for lists

>>>a=[1,2,3]
>>> print max(a)
3

>>> print min(a)

1

>>> print len(a)

3

>>> print sum(a)

6

>>>

http://docs.python.org/lib/built-in-funcs.html



>>>print Ist

[3,12,14,18,21,33]

>>>for xval 1n Ist:
print xval

14 Looping through Lists

>>>

yARTR'



Operator Meaning

<seq> + <seq> Concatenation

° | <seq> * <int-expr> | Repetition
LlSt | <geq>| ] Indexing
len(<seq>) Length
<seq>[: ] Slicing

Operations for <var> in <seq>: | lteration

<expr> in <seq> Membership check (Returns a Boolean)

| Method | Meaning
| {Iist:a.append (x) | Add element x to end of list.

<list>.sort() | Sort (order) the list. A comparison function
may be passed as parameter.
<list>.reverse() | Reverse the list.
<list>.index(x) | Returns index of first occurrence of x.
<list>.insert(i,x) | Insert x into list at index i.
<list>.count(x) | Returns the number of occurrences of x in list.
: <list>.remove(x) Deletes the first occurrence of x in list.

<list>.pop(i) | Deletes the ith element of the list and returns its value.




Quick Peek: Object Oriented

<nerd-alert>



® A list is a special kind of variable >>> 1=
>>>1=1+1

® Regular variables - integer >>>x =1, 2, 3]
. >>> print X
o
Contain some data 1,2, 3]
® Smart variables - string, list . 2 0
>>> print X
® Contain some data and 3,2, 1]

When we combine data + capabilities - we call this an “object”



One way to find out

Method | Meaning

<list>.append(x) | Add element x to end of list.

<list>.sort() | Sort (order) the list. A comparison function
may be passed as parameter.

<list>.reverse() | Reverse the list.

\ <list>.index(x) | Returns index of first occurrence of x.
<list>.insert(i,x) | Insert x into list at index i.
Returns the number of occurrences of x in list.
\ <list>.remove(x) | Deletes the first occurrence of x in list.
\ <list>.pop(i) | Deletes the ith element of the list and returns its value.

Buy a book and read 1t and carry 1t around with you.



® The command lists >>> x = list()

capabilities >>> type(X)
<type 'list™
® |gnore the ones with >>>
underscores - these are used by [' add ',' class ',' contains ',
Python itself ' delattr ',' delitem ',
' delslice ',' doc
® The rest are real operations ' eq " setitem ',' setslice ',

' str ', 'append', 'count’, 'extend’,
'Index’, 'insert’,
® |tis like type() - it tells us 'pop’, 'remove', 'reverse', 'sort']

something *about™ a variable >>>

that the object can perform



>>> vy = “Hello there”

>>> dir(y)

[' add '' class "' contains ' ' delattr ',' doc ',
'eq ' ge "' getattribute ',' getitem ', ' getnewargs '
' getslice "' gt ''" hash ' mt "' le "' len
"t Y repr ' rmod ',' rmul ' setattr ' str |

'capitalize’, 'center’, 'count', 'decode’, 'encode’, 'endswith', 'expandtabs’,
'find', 'Index’, '1salnum’, '1salpha’, '1sdigit', 'islower’, '1sspace’, 'istitle’,
'1supper’, Join', 'ljust', 'lower’, 'lIstrip’, 'partition’, 'replace’, 'rfind’,

rindex’, rjust', 'rpartition’, 'rsplit', 'rstrip’, 'split', 'splitlines', 'startswith',
'strip’, 'swapcase', 'title', 'translate’, 'upper', 'zfill']



x = list()

® These are called
“constructors” - they
make an empty list, str, or
dictionary

® We can make a“fully
formed empty”’ object and
then add data to it using
capabilities (aka methods)

>>>a = l1st()
>>> print a

[]

>>> print type(a)
<type 'list™>
>>>b = dict()
>>>print b

U

>>> print type(b)
<type 'dict™

>>> a.append("fred")
>>> print a
['fred']

>>> ¢ = str()
>>>d = int()
>>> print d

0



Variables (Objects) contain data and capabilities
The dir() function asks Python to list capabilities
We call object capabilities * i

We can construct fresh, empty objects using constructors like list()

Everything in Python (even constants) are objects



(Chips) CC:BY-NC-SA Bunchofpants (flickr)
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Dictionaries

® Dictionaries are Python’s most powerful data collection
® Dictionaries allow us to do fast database-like operations in Python
® Dictionaries have different names in different languages

® Associative Arrays - Perl / Php

® Properties or Map or HashMap - Java

® Property Bag - C# / .Net

http://en.wikipedia.org/wiki/Associative array

(Bag) CC:BY-NC-SA Monkeyc.net (flickr)
http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en
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Dictionaries

® |ists label their entries >>> purse = dict()
based on the position in the >>> purse['money'| = 12
list >>> purse|'candy'] = 3
>>> purse|'tissues'] = 75
® Dictionaries are like bags - == print purse
no order {'money": 12, 'tissues': 75, 'candy": 3}

>>> print purse['candy']

3

>>> purse|['candy'] = purse['candy'] + 2
>>> print purse

{'money": 12, 'tissues': 75, 'candy': 5}

® So we mark the things we
put in the dictionary with a
“tag”



>>> purse = dict()

MOoNc
>>> purse['money'| = 12 andy
>>> purse['candy'] = 3

>>> purse| 'tissues'| = 75 _

>>> print purse
{'money': 12, 'tissues': 75, 'candy': 3}

>>> purse['candy'| = purse['candy'] + 2

>>> print purse
{'money': 12, 'tissues': 75, 'candy': 5}

(Purse) CC:BY Monkeyc.net Stimpson/monstershaq2000' s photostream (flickr)
http://creativecommons.org/licenses/by/2.0/deed.en



Lookup in Lists and Dictionaries

® Dictionaries are like Lists except that they use keys instead of
to look up values

>>> [st = list() >>> ddd = dict()

>>> [st.append(21) >>>ddd|"age"| = 21
>>> |st.append(183) >>> ddd|"course" | = 182
>>> print Ist >>> print ddd

121, 183] {'course’: 182, 'age': 21}
>>> [st[0] = 23 >>> ddd["age"| = 23
>>> print Ist >>> print ddd

123, 183] {'course’: 182, 'age': 23}



>>>

Ist = l1st()

>>> |st.append(21)
>>> |st.append(183)
>>> print Ist

21,

183] =

>>> 1st[0] =233
>>> print Ist

123, 183]

>>> (]
>>> (]

d
d

>>>

Ic

(¢!
"
]

d[’
>>> print ddd {'course': 182, 'age": 21}

{ = dict()

age"| =21
'‘course’ | = 182

>>> ddd["age"| =23
>>>printddd =
{'course’: 182, 'age': 23}

[1st

Key

Value

17 (183

Dictionary
Value

Key
|course]

[age]

183

21

111

ddd



Dictionary Operations

Method

Meaning

<dict>.has key(<key>)

<key> 1n <dict>

Returns true if dictionary contains the
specified key, false if it doesn't.
Same as has _key

<dict>.keys()

Returns a list of the keys.

<dict>.values()

Returns a list of the values.

<dict>.items()

Returns a list of tuples (key,value)
representing the key-value pairs.

<dict>.get(<key>, <default>)

If key is not in the dictionary, returns
default; otherwise returns the value

for key.

del <dict>[<key>]

Delete the specified entry.

<dict>.clear()

Delete all entries.




Dictionary Literals (Constants)

® Dictionary literals use curly braces and have a list of key : pairs

® You can make an empty dictionary using empty curly braces

>>> 133 = { 'chuck’ : 1, 'fred' : 42, 'jan": 100}
>>> print jjj

{'7an": 100, 'chuck’: 1, 'fred": 42}

>>> 000 = { |}

>>> print 000

U

>>>




Dictionary Patterns

® One common use of dictionary is Key Value
counting how often we “see” something

>>> ccc = dict()

>>> cceel'csev"| =1

>>> cceel'cwen"| = |

>>> print cccC

{'csev': 1, 'cwen': 1}

>>> ccc|"cwen"] = cec|"cwen"| + |
>>> print cccC

{'csev': 1, 'cwen': 2}




Dictionary Patterns

® |tisan to reference a key which is not in the dictionary

® We can use the in operator to see if a key is in the dictionary

>>> ccc = dict()
>>>

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

>>> print ""csev' 1n ccc
False



n

print “No”

1n
print “Yes”



Dictionary
Counting

Since it is an to
reference a key which is not
in the dictionary

We can use the dictionary
get() operation and supply a
default value if the key does
not exist to avoid the error
and get our count started.

>>> ccc = dict()

>>> print ccc.get("csev", 0)

0

>>> ccc["csev'] = cec.get(""csev",0) + 1
>>> print ccC

{'csev': 1}

>>> print ccc.get("csev', 0)

1

>>> ccc["csev'"] = cece.get("csev",0) + 1
>>> print ccC

{'csev': 2}

dict.get(key, defaultvalue)



What get() effectively does...

® The get() method basically d = dict()
does an implicit if checking x = d.get("tred”,0)
to see if the key exists in the
dictionary and if the key is
not there - return the

default value d = dict()
if “fred” 1n d:
® The main purpose of get() is x = d[*fred”]
to save typing this four line else:

pattern over and over x =0



Retrieving lists of Keys and Values

® You can get a list of keys, values or items (both) from a dictionary

>>>13) = { 'chuck' : 1, 'fred' : 42, jan": 100}
>>> print |jj.keys()

[jan’, 'chuck’, 'tred'}

>>> print |jj.values()

[100, 1,42
>>> print jjj.1tems()

[(han', 100), (‘chuck’, 1), ('tred’, 42)]
>>>




Looping [ hrough Dictionaries

® We loop through the >>>1jj = { 'chuck' : 1, 'fred' : 42, 'jan": 100}
key-value pairs in a >>> for aaa,bbb 1n jjj.1tems() :
dictionary using *two™ ... print aaa, bbb

iteration variables

jan 100 <+

® FEach iteration, the first chuck 1 aaa bbb
variable is the key and fred 42 . fian] [100
the the second variable is S
the corresponding value [chuck] |1

(fred] ¥2



Dictionary Maximum Loop

$ cat dictmax.py
11 = { 'chuck’ : 1, 'fred' : 42, jan": 100}

print jj] $ python dictmax.py

{1an'": 100, 'chuck’: 1, 'fred': 42}
maxcount = None jan 100
for person, count 1n jjj.1items() :

1f maxcount == None or count > maxcount :
maxcount = count

Maxperson = person None is a special value in Python. It is

. like the “absense” of a value. Like
print maxperson, maxcount “nothing” or “empty”’.



Dictionaries are not Ordered

® Dictionaries use a Computer Science technique called “hashing” to
make them very fast and efficient

® However hashing makes it so that dictionaries are not sorted and they
are not sortable

® |ists and sequences maintain their order and a list can be sorted - but
not a dictionary

http://en.wikipedia.org/wiki/Hash function



Dictionaries are not Ordered

>>> |st = dict()

> dlCt _ { P 123, nbn : 4009 "a" - 5() } >>> :~St-aj§)j§)ené,("one"
>>> print dict = ;_st.appenc:,("and")
fa': 123, 'c": 50, 'b': 400} >>> Ist.append("two")

>>> print Ist
['one', 'and', 'two']
>>> ]st.sort()

Dictionaries have no order and >>> print Ist
cannot be sorted. Lists have ['and’, 'one’, 'two'}
order and can be sorted. >>>

http://en.wikipedia.org/wiki/Hash function



Summary: Iwo Collections

® |ist

® A linear collection of values that stay in order

® Dictionary

® A"bag”’ of values, each with its own label / tag

(Pringle's Can) CC:BY-NC Roadsidepictures (flickr) http://creativecommons.org/licenses/by-nc/2.0/deed.en
(Bag) CC:BY-NC-SA Monkeyc.net (flickr) http://creativecommons.org/licenses/by-nc-sa/2.0/deed.en
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What do we use these for?

® Lists - Like a Spreadsheet - with columns of stuff to be summed,
sorted - Also when pulling strings apart - like string.split()

- For keeping track of (keyword,value) pairs in memory
with very fast lookup. It is like a small in-memory database. Also used

to commuhnicate with databases and web content.
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