oo EN.Michigan

Unless otherwise noted, the content of this course material is licensed under a
Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright © 2009, Charles Severance.

You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in
accordance with U.5. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions,
corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content
posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their
compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an
endorsement by the University of Michigan. For more information about how to cite these materials visit
http://michigan.educommons.net/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical
evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you
have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that

may be disturbing to some viewers.

UNIVERSITY OF MICHIGAN @ ®

Computing with Numbers
ZLelle - Chapter 3

Charles Severance - www.dr-chuck.com

Textbook: Python Programming: An Introduction to Computer Science, John Zelle (www.s1182.com)

Numbers

Numeric Data Types and Numeric Operators - 3.1
Using the Math Library - 3.2
Type Conversions - 3.6

Strings and Numbers

What does “ Iype” Mean!

® |n Python variables, literals, and
constants have a “type”

® Python knows the difference ~o>ddd =14
. >>> print ddd
between an integer number and a 5

>>> eee = "hello " + "there"
>>> print eee
hello there

string

® For example “+” means “addition”
if something is a number and

“concatenate” if something is a
strin g concatenate = put together

lype Matters

Python knows what “type”
everything is

Some operations are prohibited
You cannot “add |” to a string

We can ask Python what type
something is by using the type()
function.

>>> eee = "hello " + "there"
>>> eee = ece + |

>>> type(eee)
<type 'str'>

>>> type("hello")
<type 'str'>

>>> type(1)
<type 'Int™

p

Several Types of Numbers

® Numbers have two main types

® |ntegers are whole numbers:-14, -2, 0,
|, 100,401233

® Floating Point Numbers have decimal
parts: -2.5,0.0,98.6, 14.0

® There are other number types - they are
variations on float and integer

>>>xx = 1
>>> type (XX)
<type 'int™>
>>>temp = 98.6
>>> type(temp)
<type 'float™
>>> type(1)
<type 'int™>
>>> type(1.0)
<type 'float™
p

Because of the lack of mathematical
symbols on computer keyboards - we
use “computer-speak’ to express the
classic math operations

® Asterisk is multiplication

Exponentiation (raise to a power) and
absolute value | X | look different from
in math.

operator operation

addition
subtraction

multiplication

division
exponentiation
remainder
absolute value

>>>xX =2
>>>xX =xxX+2
>>> print XX

4

>>>yy =440 * 12
>>> print yy

5280

>>> 7z =yy /1000
>>> print zz

5

>>>11=23
>>>kk=1j % 5

>>> print kk

3

>>> print 4 ** 3

64

>>> print abs(-123.45)

123.45
p

operator

operation

addition
subtraction
multiplication
division
exponentiation
remainder
absolute value

Order of Evaluation

® When we string operators together - Python must know which one
to do first

® This is called “operator precedence”

® Which operator “takes precedence” over the others

Xx=1+2%3-4/5%6

Operator Precedence Rules

® Highest precedence rule to lowest precedence rule

® Parenthesis are always respected

® Exponentiation (raise to a power) Parenthesis
Power

® Multiplication, Division,and Remainder Multiplication
Addition

® Addition and Subtraction Left to Right ¥

® | eft to right

>>>x = |

1+ [4*5

2 %% 3 /4% 5>>>printx11>>> 1 +8/4%5
\

\
| B
_— l
arenthesis
1 +10
Multiplication)
Addition 1 1

Left to Right Y

1 +2**%3/4%35

>>>x =1+2%%3/4%5>>>printx11>>> [+8/4

//7 \,’

*5

Note 8/4 goes before 4*5 because of the 1 T 2 * 5
left-right rule. \
Y
1 +10
Multiplication ‘\‘
Addition 11

Left to Right Y

Operator Precedence

Multiplication

Addition
Remember the rules top to bottom Left to Right Y

When writing code - use parenthesis

When writing code - keep mathematical expressions simple enough
that they are easy to understand

Break long series of mathematical operations up to make them more
clear

Exam Question: x=1+2*3-4/5

Integer Division

® |nteger division truncates

® Floating point division produces
floating point numbers

>>> print 10/2

5

>>> print 9/2

4

>>> print 99/100

0

>>>print 10.0 /2.0
5.0

>>> print 99.0 / 100.0
0.99

Mixing Integer and Floating

® When you perform an

operation where one ~>> print 99 / 100
operand is an integer and the 0
. . >>>print 99 / 100.0
other operand is a floating 0.99
point the result is a floating >>> print 99.0 / 100
| 0.99
point >>>print 1+2%3/4.0-5
2.5

® The integer is converted to a T

floating point before the
operation

7-66

>>> print float(99) / 100

0.99
>>> i =42
® When you put an integer and :y;éyf;(;)
floating point in an expression - lf;nftl?at(i)
the integer is 10
converted to a float >>> type(f)

<type 'float™
: : >>>print 1 +2 * float(3) /4 -5
® You can control this with the 25

built in functions int() and float() .

String
Conversions

® You can also use int() and
float() to convert between
strings and integers

® You will get an if the
string does not contain
numeric characters

>>>gval ="123"
>>> type(sval)
<type 'str'’>

>>> print sval + 1

>>> 1val = int(sval)
>>> type(1val)

<type 'int™>

>>> print 1val + 1

124

>>>nsv = "hello bob"
>>>niv = 1nt(nsv)

Sneak Peek: Error Recovery

Are you tired of seeing trace >>> n1v = Int(nsv)

back errors? raceback (most recent call last):
File "<stdin>", line 1, 1n <module>

Do you want to do something alueError: invalid literal for int

about it?

Do you want to take control of error recovery?

Then you should take advantage of the try/accept capability in Python!

z-216

The try / Structure

® You surround a dangerous section of code with try and
® |f the code in the try works - the is skipped

® |f the code in the try fails - it jumps to the section

z-216

$ cat notry.py astr = "Hello Bob"istr = int(astr)print "First",
istrastr = "123"1str = int(astr)print "Second", 1str

$ python notry.py Traceback (most recent call last):

z-216

$ cat tryexcept.py
astr = "Hello Bob"

try:

except:
istr = -1

print "First", istr

astr ="123"
try:

1str = int(astr)
except:

istr = -1

print "Second", 1str

$ python tryexcept.py
First -1
Second 123

When the second conversion succeeds
- 1t just skips the except: clause and
the program continues.

z-216

Math Library

® Python also includes common
>>> import math

math functions >>> print math.sqrt(25.0)
5.0

® You must import math to use
these

Python

Mathematics

English

pi
e

gin(x)
cos(x)
tan(x)
asin(x)
acos(x)
atan(x)
log(x)
logl10(x)
exp (x)
ceil(x)
floor(x)

-
C

Sin T
COS T
tan x
arcsin x
arccos T
arctanzx
Inz
logyg =

An approximation of pi.
An approximation of e.
The sine of x.
The cosine of x.
The tangent of x.
The inverse of sine x.
The inverse of cosine x.
The inverse of tangent x.
The natural (base e) logarithm of x
The common (base 10) logarithm of x.
The exponential of x.

The smallest whole number >= z

The largest whole number <=z

(in radians)
(in radians)
(in radians)
(returns radians)

(returns radians)

(returns radians

Table 3.2: Some math library functions.

Trigonometry /
Review -

COS

® Radians represent the
length of an arc
described by an angle in

the unit circle (radius >>> import math

|.0) >>> print math.pi
3.14159265359

. . >>> print math.p1/ 4
® So 45 degrees is pi/ 4 or 0.785398163397

1 /8 the way around the >>> print math.cos(math.pi / 4)
. . % 0.707106781187
entire unit circle (2 * pi)

Math Function Summary

® The math functions are there
when you need them

>>> import math
® Unless we are solving complex >>> print math.sqrt(25.0)

trigtonometry problems or >0
statistics problems - pretty

much all we use is the square

golel

Summary

Variables, Literals, and constants have a type

Python knows what type each object is

Operations may work differently between types

The common number types are floating point and integer

We use functions to convert between strings, integers, and floats

Peek Ahead Page 216 - We can use try / except blocks to keep our program from blowing
up with bad data

Python has rich support for common mathematical functions
These functions are mostly useful for statistics and trigonometry

Games use lots of trigonometry

	Slide 1
	Computing with Numbers Zelle - Chapter 3
	Numbers
	What does “Type” Mean?
	Type Matters
	Several Types of Numbers
	Numeric Expressions
	Slide 8
	Order of Evaluation
	Operator Precedence Rules
	Slide 11
	Slide 12
	Operator Precedence
	Integer Division
	Mixing Integer and Floating
	Type Conversions
	String Conversions
	Sneak Peek: Error Recovery
	The try / except Structure
	Slide 20
	Slide 21
	Math Library
	Slide 23
	Trigonometry Review
	Math Function Summary
	Summary

