

Networking Part 2
Charles Severance

Review...

Layered Network
Model

• A layered approach allows the
problem of implementing a network
to be broken into more manageable
sub problems

• For example the IP layer is allowed
to lose a packet if things go bad

• It is TCP’s Responsibility to store
and retransmit data.

Application LayerApplication Layer
Web, E-Mail, File TransferWeb, E-Mail, File Transfer

Transport Layer (TCP)Transport Layer (TCP)
Reliable ConnectionsReliable Connections

Internetwork Layer (IP)Internetwork Layer (IP)
Simple, UnreliableSimple, Unreliable

Link Layer (IP)Link Layer (IP)
Physical ConnectionsPhysical Connections

141.211.144.188

67.149.102.75

67.149.94.33

To: 67.149.94.33

To: 67.149.*.*

67.149.*.*

To: 67.149.94.33

While in the network, all
that matters is the Network

number.

Clipart: http://www.clker.com/search/networksym/1

http://www.clker.com/search/networksym/1

Transport Protocol (TCP)
• Built on top of IP

• Assumes IP might lose some
data

• In case data gets lost - we keep a
copy of the data a we send until
we get an acknowledgement

• If it takes “too long” - just send it
again Source: http://en.wikipedia.org/wiki/Internet_Protocol_Suite

http://en.wikipedia.org/wiki/Internet_Protocol_Suite

System to System IP

• Regardless of the number of connections between two systems, the
traffc is transported across the internet as a single IP address - It is
the responsibility of TCP to separate (de-multiplex) each stream on
each system

Transport Protocol (TCP)

• The responsibility of the transport layer is to present a reliable end-
to-end pipe to the application

• Data either arrives in the proper order or the connection is closed

• TCP keeps buffers in the sending and destination system to keep data
which has arrived out of order or to retransmit if necessary

• TCP provides individual connections between applications

Security for TCP
http://en.wikipedia.org/wiki/Secure_Sockets_Layer

http://en.wikipedia.org/wiki/Secure_Sockets_Layer

http://en.wikipedia.org/wiki/Secure_Sockets_Layer

Generally, the backbone of
the Internet is pretty

secure to prying eyes from
generic baddies...

Your local connection
(particularly when

wireless) is your greatest
exposure.

TCP/IPTCP/IPSystem to System Secure TCP/IPSystem to System Secure TCP/IP

Clipart: http://www.clker.com/search/networksym/1
Photo CC BY: karindalziel (fickr)
http://creativecommons.org/licenses/by/2.0/

http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://www.clker.com/search/networksym/1
mailto:http://creativecommons.org/licenses/by/2.0/
mailto:http://creativecommons.org/licenses/by/2.0/

Secure Sockets
Transport Layer Security (TLS)

• When Secure Sockets Layer (SSL) is used, all of the data in the TCP is
encrypted before it leaves your machine and decrypted in the
destination machine

• It is very diffcult but not impossible to break this security - normal
people do not have the necessary compute resources to break TLS

• Encrypting sockets takes resources - so we use it for things when it is
needed

• The IP and link layers are unaware when the contents of a TCP
connections are encrypted (Abstraction)

Secure
Sockets

• SSL is best thought of as a
“sub” layer

• Like a thin shim between the
application layer and transport
layer

• Hides data from prying eyes

http://en.wikipedia.org/wiki/Secure_Sockets_Layer

Chart: http://en.wikipedia.org/wiki/Internet_Protocol_Suite
Photo CC BY: karindalziel (fickr)
http://creativecommons.org/licenses/by/2.0/

http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://en.wikipedia.org/wiki/Internet_Protocol_Suite

Secure Application Protocols

• There are often secure and unencrypted application protocols

• http://ctools.umich.edu

• https://ctools.umich.edu

• Your browser tells you when using a secure connection - you should
never type passwords into a non-secure connection

• Especially over wireless - especially at a security conference...

http://ctools.umich.edu/
https://ctools.umich.edu/

Source: https://ctools.umich.edu/portal

https://ctools.umich.edu/portal

TCP, Ports, and Connections
http://en.wikipedia.org/wiki/TCP_and_UDP_port

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

http://en.wikipedia.org/wiki/TCP_and_UDP_port
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

System to System IP

• Regardless of the number of connections between two systems, the
traffc is transported across the internet as a single IP address - It is
the responsibility of TCP to separate (de-multiplex) each stream on
each system

www.umich.eduwww.umich.edu

IncomingIncoming
E-MailE-Mail

LoginLogin

Web ServerWeb Server

2525

PersonalPersonal
Mail BoxMail Box

2323

8080

443443

109109

110110

74.208.28.17774.208.28.177

blah blah blah blah
blah blahblah blah

Please connect me to the
secure web server (port 443)
on http://www.dr-chuck.com

Clipart: http://www.clker.com/search/networksym/1

http://www.dr-chuck.com/
http://www.clker.com/search/networksym/1

Common TCP Ports

• Telnet (23) - Login

• SSH (22) - Secure Login

• HTTP (80)

• HTTPS (443) - Secure

• SMTP (25) (Mail)

• IMAP (143/220/993) - Mail Retrieval

• POP (109/110) - Mail Retrieval

• DNS (53) - Domain Name

• FTP (21) - File Transfer

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Application Protocols
http://en.wikipedia.org/wiki/Http
http://en.wikipedia.org/wiki/Pop3

http://en.wikipedia.org/wiki/Http
http://en.wikipedia.org/wiki/Pop3

HTTP - Hypertext Transport
Protocol

• The dominant Application Layer Protocol on the Internet

• Invented for the Web - to Retrieve HTML, Images, Documents etc

• Extended to be data in addition to documents - RSS, Web Services,
etc..

• Basic Concept - Make a Connection - Request a document - Retrieve
the Document - Close the Connection

http://en.wikipedia.org/wiki/Http

http://en.wikipedia.org/wiki/Http

HTTP Request / Response Cycle

http://www.oreilly.com/openbook/cgi/ch04_02.html

Browser

Web Server

HTTP
Request

HTTP
Response

Internet Explorer,
FireFox, Safari, etc.

Source: http://www.dr-chuck.com/

http://www.oreilly.com/openbook/cgi/ch04_02.html
http://www.dr-chuck.com/

HTTP Request / Response Cycle

Browser

Web Server

HTTP
Request

HTTP
Response

Internet Explorer,
FireFox, Safari, etc.

GET /index.html

<head> .. </head>
<body>
<h1>Welcome to my
 application</h1>

</body>

http://www.oreilly.com/openbook/cgi/ch04_02.html Source: http://www.dr-chuck.com/

http://www.oreilly.com/openbook/cgi/ch04_02.html
http://www.dr-chuck.com/

Internet Standards
• The standards for all of the Internet

protocols (inner workings) are
developed by an organization

• Internet Engineering Task Force
(IETF)

• www.ietf.org

• Standards are called “RFCs” -
“Request for Comments”

Source: http://tools.ietf.org/html/rfc791

http://tools.ietf.org/html/rfc791

Source: http://tools.ietf.org/html/rfc791

http://tools.ietf.org/html/rfc791

“Hacking” HTTP

Last login: Wed Oct 10 04:20:19 on ttyp2
si-csev-mbp:~ csev$ telnet www.umich.edu 80
Trying 141.211.144.188...
Connected to www.umich.edu.
Escape character is '^]'.
GET /
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

HTTP
Request

HTTP
Response

Browser

Web Server

Port 80 is the non-encrypted HTTP port

A Bit of Python Network Software
http://en.wikipedia.org/wiki/Abstraction_(computer_science)

http://en.wikipedia.org/wiki/Abstraction_(computer_science

A Simple Web Browser

• We will write a Python application
that connects to web server and
retrieves the top level page

• Our software will run in a client (our
desktop) and talk to a server - far
away in the network “cloud”

Source: http://en.wikipedia.org/wiki/Internet_Protocol_Suite

http://en.wikipedia.org/wiki/Internet_Protocol_Suite

Network/Network/
InternetInternet

HardwareHardware

SoftwareSoftware

Phone CC BY: Johan Larsson (fickr)
Servers CC BY: Jesse Wagstaff (fickr)
http://creativecommons.org/licenses/by/2.0/

http://flickr.com/photos/johanl/2968794599/
http://flickr.com/photos/jesse/2844890722/
http://flickr.com/photos/jesse/2844890722/
http://flickr.com/photos/jesse/2844890722/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

 HardwareHardware

 SoftwareSoftware

InputInput
DevicesDevices

CentralCentral
ProcessingProcessing

UnitUnit

MainMain
MemoryMemory

OutputOutput
DevicesDevices

SecondarySecondary
MemoryMemory

Network/Network/
InternetInternet

Phone CC BY: Johan Larsson (fickr)
http://creativecommons.org/licenses/by/2.0/

http://flickr.com/photos/johanl/2968794599/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

 HardwareHardware

 SoftwareSoftware

CentralCentral
ProcessingProcessing

UnitUnit

MainMain
MemoryMemory

SecondarySecondary
MemoryMemory

Network/Network/
InternetInternet

IP Suite: http://en.wikipedia.org/wiki/Internet_Protocol_Suite
Phone CC BY: Johan Larsson (fickr) http://creativecommons.org/licenses/by/2.0/

http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://flickr.com/photos/johanl/2968794599/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

GET /
import socketmysock = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)mysock.connect((“www.dr-
chuck.com”, 80))mysock.send("GET /\n")
while 1: data = mysock.recv(512) if (len(data) < 1
) : break print data;mysock.close()

Source: http://en.wikipedia.org/wiki/Internet_Protocol_Suite

http://en.wikipedia.org/wiki/Internet_Protocol_Suite

In computer science, abstraction
is a mechanism and practice to
reduce and factor out details so

that one can focus on a few
concepts at a time.

import socketmysock = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)mysock.connect((“www.dr-
chuck.com”, 80))mysock.send("GET /\n")
while 1: data = mysock.recv(512) if (len(data) < 1
) : break print data;mysock.close()

http://en.wikipedia.org/wiki/Abstraction_(computer_science)

Source: http://en.wikipedia.org/wiki/Internet_Protocol_Suite

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Abstraction_(computer_science
http://en.wikipedia.org/wiki/Internet_Protocol_Suite

Layered Network
Model

• A layered approach allows the
problem of implementing a network
to be broken into more manageable
sub problems

• The layers provide abstraction -
each layer can focus on one
problem and assume the other
layers do their jobs

Application LayerApplication Layer
Web, E-Mail, File TransferWeb, E-Mail, File Transfer

Transport Layer (TCP)Transport Layer (TCP)
Reliable ConnectionsReliable Connections

Internetwork Layer (IP)Internetwork Layer (IP)
Simple, UnreliableSimple, Unreliable

Link Layer (IP)Link Layer (IP)
Physical ConnectionsPhysical Connections

http://en.wikipedia.org/wiki/Abstraction_(computer_science)

http://en.wikipedia.org/wiki/Abstraction_(computer_science

import socketmysock =
socket.socket(socket.AF_INET,

socket.SOCK_STREAM)mysock.connect((“www.dr-
chuck.com”, 80))mysock.send("GET /\n")
while 1: data = mysock.recv(512) if
(len(data) < 1) : break print
data;mysock.close()

A Simple Web Browser

$ python http.py
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>

<title>Error 404 - Not found</title>
</head>

.... import socketmysock = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)mysock.connect((“www.dr-
chuck.com”, 80))mysock.send("GET /\n")
while 1: data = mysock.recv(512) if
(len(data) < 1) : break print
data;mysock.close()

import socket
while 1:
 host = raw_input("Enter host: ");
 if (host == "quit") :
 break
 mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 mysock.connect((host, 80))
 mysock.send("GET /\n")
 data = "" while 1: chunk = mysock.recv(512) if (len(chunk)
< 1) : break # print data; data = data + chunk print
"Page size:", len(data) mysock.close()

$ python browser.py
Enter host: www.dr-chuck.com
Page size: 1996
Enter host: www.umich.edu
Page size: 25404
Enter host: www.google.com
Page size: 6152
Enter host: www.yahoo.com
Page size: 9554
Enter host: ww.dr-chuck.com
Traceback (most recent call last):
 File "browser.py", line 10, in <module>
 mysock.connect((host, 80))
 File "<string>", line 1, in connect
socket.gaierror: (8, 'nodename nor servname provided, or not known')

import socket
while 1:
 host = raw_input("Enter host: ");
 if (host == "quit") :
 break
 mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 mysock.connect((host, 80))
 mysock.send("GET /\n")
 data = "" while 1: chunk = mysock.recv(512) if (len(chunk)
< 1) : break # print data; data = data + chunk print
"Page size:", len(data) mysock.close()

How might we
recover from this

error in Python more
gracefully?

POP3 Protocol

• Post Offce Protocol

• Your laptop/PDA is not always connected to the network

• Your mail is delivered to a “Post offce Box” - which is always up and
waiting for your mail

• From time to time - you connect to the “Post Offce Box” and pull
down your new mail

http://www.ietf.org/rfc/rfc1939.txt

CC BY: Faeryan (fickr)
http://creativecommons.org/licenses/by/2.0/

http://www.ietf.org/rfc/rfc1939.txt
http://flickr.com/photos/faeryan/278777281/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

mail.umich.edumail.umich.edu

IncomingIncoming
E-MailE-Mail

2525

PersonalPersonal
Mail BoxMail Box 110110

74.208.28.17774.208.28.177

Login and retrieve
your mail at 8AM.

Mail sent
at 2AM.Mail received

at 2:01AM.
Put in Mail

box.

Clipart: http://www.clker.com/search/networksym/1

http://www.clker.com/search/networksym/1

http://www.ietf.org/rfc/rfc1939.txt

 USER name Arguments: a string identifying a mailbox
(required), which is of signifcance ONLY to the server
Restrictions: may only be given in the AUTHORIZATION state after
the POP3 greeting or after an unsuccessful USER or PASS command
 Discussion: To authenticate using the USER and PASS command
 combination, the client must frst issue the USER command.
If the POP3 server responds with a positive status indicator
("+OK"), then the client may issue either the PASS command to
complete the authentication, or the QUIT command to terminate
the POP3 session. If the POP3 server responds with a negative
status indicator ("-ERR") to the USER command, then the client may
either issue a new authentication command or may issue the QUIT
 command.

 The server may return a positive response even though no
 such mailbox exists. The server may return a negative
response if mailbox exists, but does not permit plaintext
password authentication. Possible Responses: +OK
name is a valid mailbox -ERR never heard of mailbox name
 Examples: C: USER frated S: -ERR sorry, no
mailbox for frated here ... C: USER mrose
S: +OK mrose is a real hoopy frood

The Written Specifcation for the
POP3 Protocol

http://www.ietf.org/rfc/rfc1939.txt

$ telnet mail.comcast.net 110
Trying 76.96.30.119...
Connected to mail.g.comcast.net.
Escape character is '^]'.
+OK POP3 ready
USER csev
+OK
PASS ***********
+OK ready
LIST
+OK 32 messages (2611298)
1 3433
2 4009
3 45565
4 8540
.

RETR 6
+OK
Received: from imta11.westchester.pa.mail.comcast.net
([76.96.62.22])
X-Originating-IP: [76.96.62.22]
Received: by 10.150.57.18 with HTTP; Tue, 10 Jun 2008
13:33:13 -0700 (PDT)
Date: Tue, 10 Jun 2008 16:33:13 -0400
From: "Bob S." <***********@gmail.com>
To: c.severance@ieee.org
Subject: Blast from the past

Hi Chuck,

I want to comment on your router problem at home.
Are you being bad and using something other than
Unix/Linux to combine your network connection?

Bob S
.

Summary

• We start with a “pipe” abstraction - we can send and receive data on
the same “socket”

• We can optionally add a security layer to TCP using SSL - Secure
Socket Layer (aka TLS - Transport Layer Security)

• We use well known “port numbers” so that applications can fnd a
particular application *within* a server such as a mail server, web
service, etc

Summary

• When doing network programming we make use of a library that hide
all the detail of how the Internet is put together - we simple open and
use a TCP connection (Abstraction)

• Each application defnes a set of rules of interaction between client
and server (a protocol)

• Knowing the protocol - we can write an application to talk that
protocol

	Slide 1
	Networking Part 2
	Review...
	Layered Network Model
	Slide 5
	Transport Protocol (TCP)
	System to System IP
	Slide 8
	Security for TCP
	Slide 10
	Secure Sockets Transport Layer Security (TLS)
	Secure Sockets
	Secure Application Protocols
	Slide 14
	TCP, Ports, and Connections
	Slide 16
	Slide 17
	Common TCP Ports
	Application Protocols
	HTTP - Hypertext Transport Protocol
	HTTP Request / Response Cycle
	Slide 22
	Internet Standards
	Slide 24
	Slide 25
	“Hacking” HTTP
	A Bit of Python Network Software
	A Simple Web Browser
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	POP3 Protocol
	Slide 41
	Slide 42
	Slide 43
	Summary
	Slide 45

