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1.1 Introduction 

Engineers can gain a better understanding of real world scenarios by using various 
modeling techniques to explain a system's behavior. Two of these techniques are ODE 
modeling and Boolean modeling. An important feature of an accurate ODE model is its 
fixed point solutions. A fixed point indicates where a steady state condition or equilibrum 
is reached. After locating these fixed points in a system, the stability of each fixed point 
can be determined (see subsequent Wikis). This stability information enables engineers to 
ascertain how the system is functioning and its responses to future conditions. It also 
gives information on how the process should be controlled and helps them to choose the 
type of control that will work best in achieving this.  

1.2 Concept Behind Finding Fixed Point 

A fixed point is a special system condition where the measured variables or outputs do 
not change with time. In chemical engineering, we call this a steady state. Fixed points 
can be either stable or unstable. If disturbances are introduced to a system at steady state, 
two different results may occur:  

1. the system goes back to those original conditions (stable point)  

2. the system deviates from those conditions rapidly (unstable point)  

Subsequent wiki articles will discuss these different types of fixed points in more detail. 
The focus of this article will be simply finding fixed points, not classifying them. We will 
discuss several methods of finding fixed points, depending on the type of model 
employed.  
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1.2.1 ODE Model 

When a process or system is modeled by an ODE or a set of ODEs, the fixed points can 
be found using various mathematical techniques, from basic hand calcuations to 
advanced mathematical computer programs. Independent of the method used, the basic 
principle remains the same: The ODE or set of ODEs are set to zero and the 
independent variables are solved for. At the points where the differential equations 
equal zero there is no change occurring. Thus, the solutions found by setting the ODEs 
equal to zero represent the numerical values of independent variables (i.e. temperature, 
pressure, concentration) at steady state conditions. If a single ODE or set of ODEs 
becomes too complicated to be solved by hand, a mathematical program such as 
Mathematica can be used to find fixed points. The latter part of this article focuses on 
how to use Mathematica to find fixed points of complicated systems of ODEs.  

Note that in some cases there may not be an analytical method to find a fixed point. This 
case commonly occurs when the solution to a fixed point involves a high degree 
polynomial or another mathematical function that does not have an analytical inverse. In 
these cases, we can still find fixed points numerically if we have the parameters.  

1.2.2 Boolean Model 

A Boolean Model, as explained in “Boolean Models,” consists of a series of variables 
with two states: True (1) or False (0). A fixed point in a Boolean model is a condition or 
set of conditions to which the modeled system converges. This is more clearly seen by 
drawing state transition diagrams.  

 

State Transition Diagram from BooleanModels 



  3 

From the state transition diagram above, we can see that there are two fixed points in this 
system: 0,1,1 and 1,1,1. Starting in any state on the diagram and following the arrows, 
one of these two states will be reached eventually, indicating that the system tends to 
achieve either of these sets of operating conditions. If slight disturbances are introduced 
to the system while it is operating at one of these sets of conditions, it will return to 0,1,1 
or 1,1,1. Also noted in the state transition diagram are state cycles. The difference 
between a state cycle and a fixed point is that a state cycle refers to the entire set of 
Boolean functions and transition points leading to the steady-state conditions, whereas a 
fixed point merely refers to the one point in a state cycle where steady-state conditions 
are reached (such points are indicated by a yellow circle in the diagram).  

1.3 Finding Fixed Points: Four Possible Cases 

There are four possible scenarios when finding the fixed points of an ODE or system of 
ODEs:  

1.) One fixed point  

2.) Multiple fixed points  

3.) Infinite fixed points  

4.) No fixed points  

 

1.3.1 One Fixed Point 

The first type of ODE has only one fixed point. An example of such an ODE is found in 
the Modeling of a Distillation Column [1]. An ODE is used to model the energy balance 
in the nth stage of the distillation column:  

 

Which can also be written as:  

 

 
If initial conditions i.e. Tn − 1,Ln − 1,xn − 1 are known, the equation above reduces to:  
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Where a and b are constants since all the variables are now known.  

 

 

 

By analyzing the equation , we can immediately 

deduce that at steady state . Clearly, there is only one fixed point in this 
system, only one temperature of the distillation column which will be at steady-state 
conditions. We can use Mathematica to solve for the fixed point of this system and check 
our results. In Mathematica, the Solve[] function can be used to solve complicated 
equations and systems of complicated equations. There are some simple formatting rules 
that should be followed while using Mathematica:  

1. Type your equation and let the differential be called an arbitrary variable (e.g. T[t])  

2. Type Solve[T[t]==0,T] and hit Shift+Enter  

3. This produces an output contained inside curly brackets  

Please read the Solving ODEs with Mathematica section for more information on syntax 
and functions.  

A sample of how the format in Mathematica looks like is shown below:  
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Maple can be used to visualize a single fixed point. Wherever the plot intersects the x-
axis represents a fixed point, because the ODE is equal to zero at that point.  

The following Maple syntax was used to plot the ODE: plot(0.5+4t, t=-
2..2,T=0..5,color=black);  

The constant a = 0.5 and the constant b = 4 in the above example.  

The resulting graph is below, the red point indicates at what T a fixed point occurs:  
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Solving a single fixed point for an ODE and a controller in Mathematica  

1. Identify what type of controller it is (P, I , PI, or PID etc.)  

2. Identify your ODE equations (Is the controller a function of the ODE?)  

Example: Solve for the fixed points given the three differential equations and the two 
controllers (u1 and u2).  
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Where H is the level in the tank, Fin is the flow in, Fout the flow out, and u1 and u2 are 
the signals to the valves v1 and v2. Kv1 and Kv2 are valve gains (assumed to be linear in 
this case, although this does not have to be). Note that the exit flow also depends on the 
depth of fluid in the tank.  

You next parameterize your model from experimental data to find values for the 
constants:  

A=2.5 meters squared  

K_(v1)=0.046 meters cubed/(minute mA)  

K_(v2)=0.017 meters squared/(minute mA)  

Next you want to add:  

• A full PID controller to regulate Fout via FC1 connected to v2.  

• A P-only controller to regulate H via LC1 connected to v1.  

For this system you want to maintain the tank level at 3 meters and the exit flow (Fset) at 
0.4 m3 /minute. The following Mathematica code should look as follows:  

 

1.3.2 Multiple Fixed Points 

Multiple fixed points for an ODE or system of ODEs indicate that several steady states 
exist for a process, which is a fairly common situation in reactor kinetics and other 
applications. When multiple fixed points exist, the optimal steady-state conditions are 
chosen based on the fixed point's stability and the desired operating conditions of the 
system.  

The following is an example of a system of ODEs with multiple fixed points:  
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The above system of ODEs can be entered into Mathematica with the following syntax:  

 

 
This system in particular has four fixed points. Maple can be used to visualize the fixed 
points by using the following syntax:  

 
with(plots):  

fieldplot([14*x-2*x^2-x*y,16*y-2*y^2-x*y],x=0..10,y=0..10,fieldstrength=log);  

 
The first line initializes the plotting package within Maple that allows for plotting vector 
fields. The second line uses the command “fieldplot” and inputs the two ODEs that make 
up the system. The scales of the x and y-axis are set to range from 0 to 10. The 
fieldstrength command is mainly used for visual purposes, so that the direction of the 
arrows becomes more apparent. Below is the resulting plot:  
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The red dots indicate the fixed points of the system. On the plot, these points are where 
all the surrounding arrows converge or diverge. Converging arrows indicate a stable fixed 
point, in this example the point at (4,6) is a stable fixed point. Diverging arrows indicate 
an unstable fixed point, in this example (0,0), (0,8) and (7,0) are unstable fixed points.  

1.3.3 Infinite Fixed Points  

An example of an ODE with infinite fixed points is an oscillating ODE such as:  

 

where a is a constant.  

 
Using Mathematica to solve for the fixed points by setting  
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If you click the "More" link on Mathematica it will basically state that there are other 
solutions possible according to the Help section shown below:  

 

 
The Maple syntax used to graph the solved differential equation is:  

plot(cos(3t),t=0..10,T=-1..1,color=black);  

The constant a = 3 in this case.  
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The infinite fixed points can be seen in the graph below, where anytime the function 
crosses the x axis, we have a fixed point:  

 

 

1.3.4 No Fixed Points  

The fourth type of ODE does not contain fixed points. This occurs when a certain 
variable (such as temperature or pressure) has no effect on a system regardless of how it 
changes. Generally, systems with this sort of behavior should be avoided because they 
are difficult to control as they are always changing.  

This can be modeled by vertical or horizontal lines due to the fact that no fixed points are 
found by setting the line equal to zero. An ODE is used to model a line held constant at a:  
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Where, a can be any constant except 0.  

Intuitively, trying to find a fixed point in this system is not possible, because a constant 
such as 3 can never equal zero. Solving this ODE is not possible even by analyzing the 
system. Therefore, when inputting this into Mathematica, it yields {}. The notation {} 
means that there are no fixed points within the system. The image below is how 
Mathematica solves the ODE.  

 

 
By using Maple (version 10), one can visually see a lack of fixed points by using the 
following syntax:  

plot(3, t = 0..10, T = 0..10, color = black);  

The constant a = 3 in the above case.  

This image shows that the line is horizontal and never crosses the x axis, indicating a lack 
of fixed points.  
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1.4 Summary 

A fixed point is a system condition where the measured variables or outputs do not 
change with time. These points can be stable or unstable; refer to Using Eigenvalues to 
evaluate stability for an introduction to a common method for determining stability of 
fixed points.  

There are four possible cases when determining fixed points for a system described by 
ODEs:  

• One fixed point  
• Multiple fixed points  
• Infitite fixed points  
• No fixed points  

There are methods described above for using Mathematica or Maple to solve for the fixed 
points in each case. Fixed points can also be determined for a Boolean model.  

Knowing the fixed points of a system is very important when designing a control 
architecture for the system. These are the operating conditions that the system will exhibit 
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at steady-state. Controllers can have influence on the fixed points, so a thorough analysis 
of fixed points using equations describing the system and the controllers should be 
conducted before implementation of the control scheme.  

1.5 Worked out Example 1: Manipulating a System of Equations 

Recall the example system of ODEs used in the Multiple Fixed Points Section:  

 

 

Find how the fixed points change when m = 2 and n = 3.  

SOLUTION  

 

 

1.6 Worked out Example 2: System of ODEs 

You are asked to estimate the fixed point(s)of a heat exchanger in your plant. The fixed 
points corresponds to the temperatures of your tube-side (hot) and shell-side (cold) fluids 
respectively, Tt,out and Ts,out. Neglect heat loss to the surrounding area i.e. 

.  
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Given the two main ODEs used to model a heat exchanger, use Mathematica to solve for 
the fixed points of the system in terms of the known variables.  

(equation 1) 

 

(equation 2)  

The values for m, cp, ρ, Ft,in, Ft,out, k, A, δz, and Tt,in, Fs,in, Fs,out, Ts,in are given and fixed.  

Please refer to the Wiki article on HeatExchangeModel for detailed explanation on the 
meaning of the variables and the derivation of the ODEs above.  

Hint: Lump up all known variables under one general variable  

 
SOLUTION  

Simplify the 2 equations to the ODEs below:  

(equation 1a) 

(equation 2a) 

where , , and 

, ,  

Type these equation into Mathematica using the appropriate syntax and use the Solve[] 
function to find the fixed points.  
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We have found our fixed point. Just plug in the variables as defined earlier for a, b, c, d, 
e, f and you will obtain the temperatures in terms of the useful parameters.  

1.7 Multiple Choice Question 1 

The solutions found by setting the ODE equal to zero represent:  

a) independent variables not at steady state conditions  

b) dependent variables not at steady state conditions  

c) independent variables at steady state conditions  

d) dependent variables at steady state conditions  

Answer: C  

1.8 Multiple Choice Question 2 

How many fixed points are there when the following equation is solved by Mathematica?  

 

a) none  

b) 1  

c) 2  
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d) 3  

Answer: D  

1.9 Sage's Corner 

Stability of Fixed Points  
http://video.google.com/googleplayer.swf?docId=-5690380917022362654 

slides for this talk  
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2.1 Introduction 

Chemical engineering processes often operate in nonlinear and unsteady manners (i.e. not 
always at steady state), and are generally governed by nonlinear ordinary differential 
equations (ODEs). The ODE is a relation that contains functions of only one independent 
variable and derivatives with respect to that variable. Many studies have been devoted to 
developing solutions to these equations, and in cases where the ODE is linear it can be 
solved easily using an analytical method. However, if the ODE is nonlinear and not all of 
the operating parameters are available, it is frequently difficult or impossible to solve 
equations directly. Even when all the parameters are known, powerful computational and 
mathematical tools are needed to completely solve the ODEs in order to model the 
process. In order to simplify this modeling procedure and obtain approximate functions to 
describe the process, engineers often linearize the ODEs and employ matrix math to solve 
the linearized equations.  

A linear equation is an equation in which each term is either a constant or the product of a 
constant times the first power of a variable. These equations are called "linear" because 
they represent straight lines in Cartesian coordinates. A common form of a linear 
equation in the two variables x and y is y = mx + b. This is opposed to a nonlinear 
equation, such as m = ex + x2 + 2x + 5. Even though 2x + 5 is a linear portion of the 
equation, ex and x2 are not. Any nonlinear terms in an equation makes the whole system 
nonlinear.  

 
Non-linear system of equations:  
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After linearization (around the steady state point {-0.47,-0.35,0.11,0.23}:  

 

Note that each equation is comprised solely of first order variables.  

 
Even though it is unlikely that the chemical engineering process to be modeled operates 
in a linear manner, all systems can be approximated as linear at a point. This is preferred 
as linear systems are much easier to work with than nonlinear equations. Although 
linearization is not an exact solution to ODEs, it does allow engineers to observe the 
behavior of a process. For example, linearized ODEs are often used to indicate exactly 
how far from steady state a given process deviates over specified operating ranges. This 
wiki page discusses how to solve a linearized ODE by hand and by using Mathematica, 
and proceeds to work out several examples of linearized ODEs commonly seen in 
chemical engineering practice.  

2.2 Applications to Chemical Engineering 

As mentioned above, linearizing ODEs allows engineers to understand the behavior of 
their system at a given point. This is very important because many ODEs are impossible 
to solve analytically. It will also lead to determining the local stability of that point. Most 
of the time a system will be linearized around steady state, but this is not always the case. 
You may be interested in understanding the behavior of your system at its operating point 
or equilibrium state (not necessarily steady state). The linearization approach can be used 
for any type of nonlinear system; however, as a chemical engineer, linearizing will 
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usually involve ODEs. Chemical engineers use ODEs in applications such as CSTRs, 
heat exchangers, or biological cell growth.  

It is also important to understand the advantages and disadvantages of linearizing a 
system of ODEs: 

2.2.1 Advantages 

• Provides a simpler, more convenient way to solve the ODEs  
• The behavior of a process can be observed  
• Any type or order of ODE can be used  

2.2.2 Disadvantages  

• The solution is only an exact solution at the chosen point; otherwise it 
is an approximation and becomes less accurate away from the point 

• Although linearizing is a quicker alternative, it takes time to initially 
learn the process (ex: using Mathematica)  

Another use for linearization of the equations that govern chemical processes is to 
determine the stability and characteristics of the steady states. Systems of linearized 
ODEs can be used to do this, and the methods of doing so can be found in Fixed Points, 
Eigenvectors and Eigenvalues, and Using eigenvalues and eigenvectors to find stability 
and solve ODEs  

2.3 General Procedure for Linearization 

Linearization is the process in which a nonlinear system is converted into a simpler linear 
system. This is performed due to the fact that linear systems are typically easier to work 
with than nonlinear systems. For this course, the linearization process can be performed 
using Mathematica. The specific instructions on how to do this can be found below.  

1. Choose a relevant point for linear approximation, two options available are:  

• Steady state‐ points where system does not change  
• Current location‐ given where you are now  

2. Calculate the Jacobian matrix at that point. The Jacobian is essentially a Taylor series 
expansion.  

3. Solve to find unknown constants using algebraic methods.  

2.4 Linearization by Hand 

In order to linearize an ordinary differential equation (ODE), the following procedure can 
be employed. A simple differential equation is used to demonstrate how to implement 
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this procedure, but it should be noted that any type or order of ODE can be linearized 
using this procedure.  

 
1. Use a Taylor series expansion (truncating after the linear terms) to approximate 
the right-hand side of the ODE.  

Let’s say we start with the following ODE: . This ODE 
describes the behavior of some variable, x, with respect to time.  

A Taylor series is a series expansion of a function about a point. If x= a, an expansion of 
a real function is given by:  

 

 

When x=0, the function is also known as Maclaurin series. Taylor’s theorem states that 
any function satisfying certain conditions can be expressed as a Taylor series.  

For simplicity’s sake, only the first two terms (the zero- and first-order) terms of this 
series are used in Taylor approximations for linearizing ODEs. Additionally, this 
truncation (ie. "chopping" off the n=2 and higher terms from the polynomial shown 
above) assures that the Taylor Series is a linear polynomial. If more terms are used, the 
polynomial would have (x − a)2 and higher order terms and become a nonlinear equation. 
The variable ‘a’ in the Taylor series is the point chosen to linearize the function around. 
Because it is desired that most processes run at steady state, this point will be the steady 
state point. So, our differential equation can be approximated as:  

 

Since a is our steady state point, f(a) should always be equal to zero, and this simplifies 
our expression further down to:  

 



 22 

 

The graph shown above shows the approximation of f(x) at (x,f(x)). As mentioned 
previously, linearization is only an approximation for any given function near a 
continuous point. When working with a system of ODEs, the Jacobian is written as a 
matrix. It is the matrix of constants needed to describe a system's linearity. The Jacobian 
may be thought of as how much a system is distorted to take on a linear identity. A 
jacobian matrix will always be a square(#rows = #columns) and it shows how each 
equation varies with each variable. The Jacobian matrix is defined as:  

 

And is used as such:  
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Example  

Lets say you have the following set of equations and you want to find its jacobian matrix 
around the point A=3,B=2.  

 

 

We find the jacobian by taking the derivative of each equation with respect to each 
variable.  

 

 

These are the equations in the matrix. The values of the variables from whatever point we 
are linearizing are then put into these equations and calculated out to get the Jacobian.  
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2. Change the approximation by linearizing around a steady state point in order to 
describe how the process deviates from steady state.  

The following substitution can be made:  

 

 

This substitution is allowed because ‘a’ is a constant, and the derivative of a constant is 
zero.  

Substituting (x-a) for x signifies that our differential equation now shows how our 
function, x, deviates away from the steady state value, a, with respect to time. This 
deviation, (x-a), is commonly expressed as x′. It should also be noted that the quantity 
‘6a’ is a constant, and thus will be further recognized as ‘A’.  

Our final linearized equation becomes:  

 

The once nonlinear ODE, , has now been simplified into a 
linear differential equation.  

The procedure of linearization typically occurs around the steady state point or points of a 
specified process. Engineers anticipate a certain change in output for the particular steady 
state point, and may proceed to linearize around it to complete their approximation. 



  25 

Please follow the graphic below for further detail. Note that a steay state point occurs 
when dx / dt = 0  

 

As can be seen, moving farther away from the steady state point results in significantly 
larger deviation, and thus error (actual-linearization).  

Occasionally, for very unique operating conditions, plant management may decide to 
momentarily run a process outside of strict steady state conditions (perhaps a unique 
start-up procedure, shut-down recovery, etc.). To reinforce the concept of linearization 
around an unsteady state point (arbitrarily chosen in this example), please consider the 
following visual representation. Note that a=50 and C=7500 in the first plot.  
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The second plot is a magnification of a small section of the first plot. As one can readily 
notice, both the linear approximation and the actual graph overlap almost exactly over 
this small range. This illustrates how this particular linearization could be used to 
approximate this region of the function and can describe its behavior quite accurately. 
This approximating technique using the linearization of ODE can be performed around 
different points (different values of a) using the same method in order to model the 
behavior of the rest of the dx/dt vs x function. Note: frequent recalculation of the 
integration constant, C, permits for increased accuracy in approximation.  

2.5 Example of a Simple Linearization Process in Use 

Provided a circumstance in which developing a rigorous analytical solution is unfeasible 
due to time, access to computing resources, or mathematical ability, the linearization 
process offers a convenient and swift alternative.  
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An appropriate introduction to linearization application is featured in section 5.3 of the 
Bequette reading and has been described below.  

The following model describes the behavior of tank height as a function of time (t), faced 
with a steady- state incoming liquid flowrate. dh/dt represents the change in height of the 
fluid contained within the tank as a function of time, h indicates the height (or level) or 
the fluid contained within the tank, F represents the magnitude of incoming flow. The 
following model describes the tank level/height fluctuation as function of both the current 
height (h) and flow (F). Fluid enters the tank as flow per area of the inlet(F/A), and leaves 
as a function of a corrective proportional term, β, also per area of the outlet, multiplied by 
the square root of the current height.  

Instead of fluid leaving through this term, we may also consider it a form of feedback 
control, which subsequently reduces the amount of inlet fluid instead ( depends on the 
application, the final result is identical). Therefore:  

 

Important note about the relevance of the provided variables:  

Fs indicates the initial flow rate for the described system and is important in calculating 
the intercept and subsequently the calculative corrective term for the linearization (if the 
linearization is not performed at steady-state, as in this example). hs describes the tank 
height for the specified flow rate, Fs. Upon plugging in the value of hs into the linearized 
formula, you will notice that f(h,Fs) = 0, the point on the plot where both the linearization 
and the characteristic equation coincide (i.e. are tangent).  

h remains a variable for the derivation so that students may notice that it is a dependant 
variable (dependent upon the flowrate). Bequette must (and does) provide both the values 
for Fs, hs so that a linearization may proceed (otherwise we will simply have an equation 
describing the slope with no characteristic point to pass through).  

System Parameters (Fs is an example flow rate at steady state, this information is used to 
determine the intercept of the linearized formula):  

 

Rewriting the system with the input variables:  
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To linearize around a certain point, simply evaluate the derivative of the desired function 
and add in a corrective constant, C, represented by the value of the function at the initial 
(specified) condition.  

 

 

Selecting, h=5 to linearize around, we present an adapted version of the text example 
(linearization is in red):  

 

 

 

f(h,1)approx. = − 0.1 * (h − 5) 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The physical significance of this example:  

The model describes a situation where a tank maintains the steady state set point, a level 
(height) of 5 feet, by regulating the input (and/or output) flow rate(s). A height above the 
preferred level of 5 ft. results in a negative height change per time; conversely, a height 
below the preferred level of 5 ft. results in a positive height change per time, so as to 
always approach the steady state level.  

Also, please note that the linearized system responds relatively slower than the 
characteristic equation system (non- linear)when tank level falls below 5 ft. and faster 
than the characteristic equation system when the tank level is above 5 ft.  

Please read on below to learn a step-by-step technique on how to complete this method 
for most equations.  

2.6 Linearization using Mathematica 

Most ODEs are not as simple as the example worked out above. For those that can be 
solved analytically, the 'by-hand' method from the previous section can be used, although 
the math becomes tricky and tedious when one is dealing with systems of ODEs. For 
those that cannot be solved analytically and can only be approximated numerically, it is 
sometimes impossible to do the numerical analysis by hand. For these ODEs, powerful 
computational tools such as Mathematica can be used to perform linearization.  

The following Mathematica file contains a worked out example (CSTR w/ heat 
exchange). This example contains multiple ODEs and multiple types of variables. When 
dealing with ODEs, there are three main type of variables: state, input, and output. State 
variables describes the system at any given time (ie. Ca, Cb, T, etc.). Input variables are 
simply inputs into the system. Output variables are those that are not directly related to 
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the inputs, but are dependent on the state variables (ie. k, the reaction constant). You will 
discover in the CSTR example that it is necessary to linearize state variables and output 
variables separately.  

Before proceeding to the Mathematica file we will first present some of the Mathematica 
commands that will be necessary to linearize the CSTR example.  

Note that you need to press shift+enter (shift+return on Mac) after a command to 
evaluate the expression.  

Example:  

In[1]= ((0.04587*54.32497+4.59058433734947^7)/48700043)^131.94564  

Out[1]= 0.000411241  

Another thing to note is the use of assignment and equality operators.  

= is called immediate assignment operator and := is called delayed assignment 
operator. When immediate assignment operator is used, the right hand side of the 
operator is evaluated every time an assignment is made. However, when delayed 
assignment operator is used, the right hand side is evaluated only when the value of the 
expression on the left hand side is requested.  

     lhs=rhs      rhs is intended to be the "final value" of 
lhs (e.g., f[x_]=1-x^2)      lhs:=rhs      rhs gives a 
"command" or "program" to be executed whenever you ask for                       
the value of lhs (e.g., f[x_]:=Expand[1-x^2])  

p := x^3 - 6 x^2 + 11 x - 6  

This input, which produces no output, assigns the polynomial expression to the variable 
p. The assignment is done because this polynomial may be used again later, so the 
assignment saves retyping it. The equality operator ==, which is used here to form the 
equation we are asking Mathematica to solve:  

In[2]:= Solve[p == 0]  

Out[2]= {{x -> 1}, {x -> 2}, {x -> 3}}  

When solving nonlinear ODEs using Mathematica, it is necessary to form a matrix and 
there are several commands that can be used to create matrices.  

D[X,Y]  
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This command takes the partial derivative of an expression (X) with respect to a variable 
(Y) defined by the user. The first term in the square brackets is the experession you wish 
to differentiate, the second is the variable you wish to differentiate with respect to.  

AppendRows[column1,column2]  

This command creates a matrix by combining two columns. In order to use this command 
you must first load the Matrix Manipulation package using the command 
<<LinearAlgebra`MatrixManipulation`  

M = {{x1,x2,x3},{y1,y2,y3},{z1,z2,z3}}  

This command creates a matrix, in this case a 3x3 matrix.  

MatrixForm[X]  

This command displays a specified matrix in matrix form.  
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These commands will allow us to proceed with the linearization of the CSTR problem 
shown below. 

 

The first three commands input the equations that govern the behavior of the 
concentration, Ca, the temperature, T, and the rate of reaction, k. Once the equations have 
been entered into Mathematica a matrix, M, with one column and two rows containing 
the equations for Ca and T is created. Next two new matrices are created by taking the 
derivative of matrix M is with respect to both Ca and T. These matrices, called column1 
and column2 respectively, together form the Jacobian of the system and is then displayed 
in matrix form. The Jacobian matrix is the matrix of all first-order partial derivatives of 
a vector-valued function. Its importance lies in the fact that it represents the best linear 
approximation to a differentiable function near a given point. For example, given a set 
y=f(x) of n equations in variables x1, x2,...,xn, the Jacobian matrix is defined as following:  
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Now that we have the Jacobian we need to create a matrix containing the deviation from 
steady state for each of the variables. This matrix, SS, contains the actual concentration 
and temperature, C and T, minus the steady state concentration and temperature, Cas and 
Ts. The matrix is then displayed in matrix form. We now have both the Jacobian and the 
deviation matrix for the state variables. The next four commands create the Jacobian and 
deviation matrix for the output variable, k. The first command creates the Jacobian matrix 
by taking the derivative of the k equation with respect to Ca and T. The Jacobian is then 
shown in matrix form. Finally the deviation matrix for k is created in the same manner as 
above and then displayed in matrix form. Note that because k is defined above, this 
expression is substituted in for k in the deviation matrix. The following Mathematica file 
contains the code shown above with extra comments explaining why each step is 
performed Media:cstr_example.nb. It may be useful to downolad this file and run the 
program in Mathematica yourself to get a feel for the syntax. Downloading the file will 
also allow you to make any changes and edits to customize this example to another 
example of interest.  

Note: This file needs to be saved to your computer, and then opened using Mathematica 
to properly run.  
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To see another example lets linearize the first 4 differential equations given in the 
introduction section.  

Non-linear system of equations:  

 

 

 

 

 

 
After linearization (around the steady state point {-0.47,-0.35,0.11,0.23}:  
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The 4 differential equations above are added into a Mathematica code as “eqns” and “s1” 
is the fixed points of the differentials. The steady state values found for “a, b, c, and d” 
are called "s1doubleBrackets(7)” After the steady state values are found, the Jacobian 
matrix can be found at those values.  

To find “k1, k2, k3, and k4” the constants of the Linearization matrix equation, “m1” 
must be defined, which is the 2nd matrix on the right-hand side of the Linearization 
matrix equation.  

To determine the k values (in matrix form), execute the dot product of "m1" and the “Jac” 
matrix, which is done by the "." operator. Therefore it should look like "Jac.m1"  

To obtain the k values, determing the "Jac.m1" at the steady state values, which is done 
by the "/." operator. Therefore it should look like “Jac.m1/.s1doubleBrackets(7)”  

2.7 Worked out Example 1 

Let's say you have a system governed by the following system of equations: 
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In this case, Xa and Xb are state variables (they describe the state of the system at any 
given time), Fo is an input variable (it enters the system and is independent of all of the 
state variables), and Y is the output of the system and is dependent on both the state and 
input variables. Please linearize this system using Mathematica.  

The solution to this Example can be found in the following Mathematica 
notebook:Media:Example 1.nb  

2.8 Worked out Example 2 

Use the Mathematica file presented in the article to linearize the CSTR example 
presented in the ODE & Excel CSTR model with heat exchangewiki around the steady 
state (T = 368.4K and Ca = 6.3mol/L). Use the constants presented in their example. Use 
the linearization to approximate Ca at 369K.  

Solution: The linear approximation gives concentration of a (Ca) of 7.13 mol/L. The 
Mathematica file used to solve this problem can be downloaded here. 
Media:LinearizationExample.nb If you are having trouble running the Mathematica file 
try right clicking the link and using the Save Target As option.  

2.9 Multiple Choice Question 1 

In an ODE linearization, what point in the process is the linearization generally centered 
around? 

a. Starting point 
b. Ending point 
c. Steady-state point 
d. Half-way point 

Answer: c  

2.10 Multiple Choice Question 2 

What does the D[] function in Mathematica do? 
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a. Find the determinant of a matrix 
b. Finds the partial derivative a function or functions 
c. Find the dot product of two matrices 
d. Integrate a matrix or function 

Answer: b  

 

2.11 Sage's Corner 
Linearization of Differential Equations of a PID Controller  
http://video.google.com/googleplayer.swf?docId=-9126622911731373374 
You will most likely need to download the powerpoint to see the fine details of the 
equations. 
 
Media:linearizingODEnoaud.ppt  

Linearizing O to the D to the E's  

http://video.google.com/googleplayer.swf?docId=3810028888296877515 

 
 
Media:Anchor2PIDmodel.xls 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Section 3. Eigenvalues and Eigenvectors 

Note: Video lecture available for this section!  

Authors: (October 19, 2006) Tommy DiRaimondo, Rob Carr, Marc Palmer, Matt Pickvet  

Stewards: (October 22, 2007) Shoko Asei, Brian Byers, Alexander Eng, Nicholas James, Jeffrey Leto  

• First round reviews for this page  
• Rebuttal for this page  

3.1 What are Eigenvectors and Eigenvalues? 

Eigenvectors( ) and Eigenvalues(λ) are mathematical tools used in a wide-range of 
applications. They are used to solve differential equations, harmonics problems, 
population models, etc. In Chemical Engineering they are mostly used to solve 
differential equations and to analyze the stability of a system.  

 
Defintion of Eigenvector and Eigenvalues:  

An Eigenvector is a vector that maintains its direction after undergoing a linear 
transformation.  

An Eigenvalue is the scalar value that the eigenvector was multiplied by during the linear 
transformation.  

 

Eigenvectors and Eigenvalues are best explained using an example. Take a look at the 
picture below.  
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In the left picture, two vectors were drawn on the Mona Lisa. The picture then under 
went a linear transformation and is shown on the right. The red vector maintained its 
direction; therefore, it’s an eigenvector for that linear transformation. The blue vector did 
not maintain its director during the transformation; thus, it is not an eigenvector. The 
eigenvalue for the red vector in this example is 1 because the arrow was not lengthened 
or shortened during the transformation. If the red vector, on the right, were twice the size 
than the original vector then the eigenvalue would be 2. If the red vector were pointing 
directly down and remained the size in the picture, the eigenvalue would be -1.  

 

 

 
Now that you have an idea of what an eigenvector and eigenvalue are we can start talking 
about the mathematics behind them.  

 
Fundamental Equation  
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The following equation must hold true for Eigenvectors and Eigenvalues given a square 
matrix A:  

 

 
Where:  

is a square matrix  

is the Eigenvector  

λ is the Eigenvalue  

 

Let's go through a simple example so you understand the fundamental equation 
better.  

Question:  

Is an eigenvector with the corresponding λ = 0 for the matrix 

?  

Answer:  
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Therefore, it is true that v and λ are an eigenvector and eigenvalue respectively, for A. 
(See section on Matrix operations, i.e. matrix multiplication)  

3.2 Calculating Eigenvalues and Eigenvectors 

Calculation of the eigenvalues and the corresponding eigenvectors is completed using 
several principles of linear algebra. This can be done by hand, or for more complex 
situations a multitude of software packages (i.e. Mathematica) can be used. The 
following discussion will work for any nxn matrix; however for the sake of simplicity, 
smaller and more manageable matrices are used. Note also that throughout this article, 
boldface type is used to distinguish matrices from other variables.  

3.2.1 Linear Algebra Review 

For those who are unfamiliar with linear algebra, this section is designed to give the 
necessary knowledge used to compute the eigenvalues and eigenvectors. For a more 
extensive discussion on linear algebra, please consult the references.  

Basic Matrix Operations 

An m x n matrix A is a rectangular array of mn numbers (or elements) arranged in 
horizontal rows (m) and vertical columns (n): 

 

To represent a matrix with the element aij in the ith row and jth column, we use the 
abbreviation A = [aij]. Two m x n matrices A = [aij] and B = [bij] are said to be equal if 
corresponding elements are equal.  

Addition and subtraction  

We can add A and B by adding corresponding elements: A + B = [aij] + [bij] = [aij + bij] 
This will give the element in row i and column j of C = A + B to have cij = aij + bij.  

More detailed addition and subtraction of matrices can be found in the example below. 

 

Multiplication  
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Multiplication of matrices are NOT done in the same manner as addition and subtraction. 
Let's look at the following matrix multiplication: 
A * B = C 
A is an mxn matrix, B is an nxp matrix, and C is an mxp matrix. Therefore the resulting 
matrix, C, has the same number of rows as the first matrix and the same number of 
columns as the second matrix. Also the number of columns in the first is the same as the 
number of rows in the second matrix. 
The value of an element in C (row i, column j) is determined by the general formula: 

 
Thus, 

 
It can also be seen that multiplication of matrices is not commutative (A B ≠B A). 
Multiplication of a matrix by a scalar is done by multiplying each element by the scalar. 
cA = Ac =[caij]  

 

Identity Matrix 

The identity matrix is a special matrix whose elements are all zeroes except along the 
primary diagonal, which are occupied by ones. The identity matrix can be any size as 
long as the number of rows equals the number of columns.  

 

Determinant 

The determinant is a property of any square matrix that describes the degree of coupling 
between equations. For a 2x2 matrix the determinant is: 
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Note that the vertical lines around the matrix elements denotes the determinant. For a 3x3 
matrix the determinant is: 

 
Larger matrices are computed in the same way where the element of the top row is 
multiplied by the determinant of matrix remaining once that element’s row and column 
are removed. Terms where the top elements in odd columns are added and terms where 
the top elements in even rows are subtracted (assuming the top element is positive). For 
matrices larger than 3x3 however; it is probably quickest to use math software to do these 
calculations since they quickly become more complex with increasing size.  

3.2.2 Solving for Eigenvalues and Eigenvectors 

The eigenvalues (λ) and eigenvectors (v), are related to the square matrix A by the 
following equation. (Note: In order for the eigenvalues to be computed, the matrix must 
have the same number of rows as columns.) 

 
This equation is just a rearrangement of the equation that was seen 
above. To solve this equation, the eigenvalues are calculated first by setting det(A-λI) to 
zero and then solving for λ. The determinant is set to zero in order to ensure non-trivial 
solutions for v, by a fundamental theorem of linear algebra.  
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For each of these eigenvalues, an eigenvector is calculated which will satisfy the equation 
(A-λI)v=0 for that eigenvalue. To do this, an eigenvalue is substituted into A-λI, and then 
the system of equations is used to calculate the eigenvector. For λ = 6 

 
Using multiplication we get a system of equations that can be solved. 

 

 

 
Equating (1) and (3) ...  

 
 

 
Plugging this into (2)... 

 
There is one degree of freedom in the system of equations, so we have to choose a value 
for one variable. By convention we choose x = 1 then 
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A degree of freedom always occurs because in these systems not all equations turn out to 
be independent, meaning two different equations can be simplified to the same equation. 
In this case a small number was chosen (x = 1) to keep the solution simple. However, it is 
okay to pick any number for x, meaning that each eigenvalue potentially has an infinite 
number of possible eigenvectors that are scaled based on the initial value of x chosen. 
Said another way, the eigenvector only points in a direction, but the magnitude of this 
pointer does not matter. For this example, getting an eigenvector that is 

is identical to getting an eigenvector that is or an 
eigenvector that is scaled by some constant, in this case 2.  

Finishing the calcualtions, the same method is repeated for λ = 0 and λ = 9 to get their 
corresponding eigenvectors. 

For λ = 0,  

For λ = 9,  

In order to check your answers you can plug your eigenvalues and eigenvectors back into 

the governing equation . For this example, λ = 6 and 

was double checked. 
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Therefore, λ = 6 and are both an eigenvalue-eigenvector pair for the 

matrix .  

3.3 Calculating Eigenvalues and Eigenvectors using Numerical Software 

3.3.1 Eigenvalues in Mathematica 

For larger matrices (4x4 and larger), solving for the eigenvalues and eigenvectors 
becomes very lengthy. Therefore software programs like Mathematica are used. The 
example from the last section will be used to demonstrate how to use Mathematica. First 
we can generate the matrix A. This is done using the following syntax: 

• A = {{4,1,4},{1,7,1},{4,1,4}} 

It can be seen that the matrix is treated as a list of rows. Elements in the same row are 
contained in a single set of brackets and separated by commas. The set of rows are also 
contained in a set of brackets and are separated by commas. A screenshot of this is seen 
below. (Note: The "MatrixForm[]" command is used to display the matrix in its standard 
form. Also in Mathematica you must hit Shift + Enter to get an output.) 
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Next we find the determinant of matrix A-λI, by first subtracting the matrix λI from A 
(Note: This new matrix, A-λI, has been called A2). 

 
The command to find the determinant of a matrix A is: 

• Det[A] 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For our example the result is seen below. By setting this equation to 0 and solving for λ, 
the eigenvalues are found. The Solve[] function is used to do this. Notice in the syntax 
that the use of two equal signs (==) is used to show equivalence whereas a single equal 
sign is used for defining a variable. 

• Solve[{set of equations},{variables being solved}] 

 
Alternatively the eigenvalues of a matrix A can be solved with the Mathematica 
Eigenvalue[] function: 

• Eigenvalues[A] 

Note that the same results are obtained for both methods. 

 
 
To find the eigenvectors of a matrix A, the Eigenvector[] function can be used with the 
syntax below. 

• Eigenvectors[A] 

The eigenvectors are given in order of descending eigenvalues. 
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One more function that is useful for finding eigenvalues and eigenvectors is 
Eigensystem[]. This function is called with the following syntax. 

• Eigensystem[A] 

In this function, the first set of numbers are the eigenvalues, followed by the sets of 
eigenvectors in the same order as their corresponding eigenvalues. 

 

The Mathematica file used to solve the example can be found at this link.Media:Eigen 
Solve Example.nb  

3.3.2 Microsoft Excel 

Microsoft Excel is capable of solving for Eigenvalues of symmetric matrices using its 
Goal Seek function. A symmetric matrix is a square matrix that is equal to its transpose 
and always has real, not complex, numbers for Eigenvalues. In many cases, complex 
Eigenvalues cannot be found using Excel. Goal Seek can be used because finding the 
Eigenvalue of a symmetric matrix is analogous to finding the root of a polynomial 
equation. The following procedure describes how to calculate the Eigenvalue of a 
symmetric matrix in the Mathematica tutorial using MS Excel.  

(1) Input the values displayed below for matrix A then click menu INSERT-NAME-
DEFINE “matrix_A” to name the matrix.  

 

(2) Similarly, define identity matrix I by entering the values displayed below then naming 
it “matrix_I.”  
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(3) Enter an initial guess for the Eigenvalue then name it “lambda.”  

 

(4) In an empty cell, type the formula =matrix_A-lambda*matrix_I. Highlight three cells 
to the right and down, press F2, then press CRTL+SHIFT+ENTER. Name this matrix 
“matrix_A_lambda_I.”  

 

(5) In another cell, enter the formula =MDETERM(matrix_A_lambda_I). This is the 
determinant formula for matrix_A_lambda_I.  

 

(6) Click menu Tools-Goal Seek… and set the cell containing the determinant formula to 
zero by changing the cell containing lambda.  
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(7) To obtain all three Eigenvalues for matrix A, re-enter different initial guesses. Excel 
calculates the Eigenvalue nearest to the value of the initial guess. The Eigenvalues for 
matrix A were determined to be 0, 6, and 9. For instance, initial guesses of 1, 5, and 13 
will lead to Eigenvalues of 0, 6, and 9, respectively.  
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The MS Excel spreadsheet used to solve this problem, seen above, can be downloaded 
from this link: Media:ExcelSolveEigenvalue.xls.  

3.4 Chemical Engineering Applications 

The eigenvalue and eigenvector method of mathematical analysis is useful in many fields 
because it can be used to solve homogeneous linear systems of differential equations with 
constant coefficients. Furthermore, in chemical engineering many models are formed on 
the basis of systems of differential equations that are either linear or can be linearized and 
solved using the eigenvalue eigenvector method. In general, most ODEs can be linearized 
and therefore solved by this method. Linearizing ODEs For example, a PID control 
device can be modeled with ODEs that may be linearized where the eigenvalue 
eigenvector method can then be implemented. If we have a system that can be modeled 
with linear differential equations involving temperature, pressure, and concentration as 
they change with time, then the system can be solved using eigenvalues and eigenvectors:  

 

 

 

Note: This is not a real model and simply serves to introduce the eigenvalue and 
eigenvector method.  

A is just the matrix that represents the coefficients in the above linear differential 
equations. However, when setting up the matrix, A, the order of coefficients matters and 
must remain consistent. Namely, in the following representative matrix, the first column 
corresponds to the coefficients of P, the second column to the coefficients of T, and the 
third column corresponds to the coefficients of C. The same goes for the rows. The first 

row corresponds to , the second row corresponds to , and the third row 

corresponds to :  



  53 

 

It is noteworthy that matrix A is only filled with constants for a linear system of 
differential equations. This turns out to be the case because each matrix component is the 
partial differential of a variable (in this case P, T, or C). It is this partial differential that 
yields a constant for linear systems. Therefore, matrix A is really the Jacobian matrix for 
a linear differential system.  

Now, we can rewrite the system of ODE's above in matrix form.  

 

Where  

We guess trial solutions of the form  

 

since when we substitute this solution into the matrix equation, we obtain  

 

After cancelling the nonzero scalar factor eλt, we obtain the desired eigenvalue problem.  

 

Thus, we have shown that x=veλt will be a nontrivial solution for the matrix equation as 
long as v is a nonzero vector and λ is a constant associated with v that satisfies the 
eigenvalue problem.  
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In order to solve for the eigenvalues and eigenvectors, we rearrange the equation Av=λv 
to obtain the following: 

 

For nontrivial solutions for v, the determinant of the eigenvalue matrix must equal zero, 

. This allows us to solve for the eigenvalues, λ. You should 
get, after simplification, a third order polynomial, and therefore three eigenvalues. (see 
section on Solving for Eigenvalues and Eigenvectors for more details) Using the 
calculated eignvalues, one can determine the stability of the system when disturbed (see 
following section).  

Once you have calculated the three eigenvalues, you are ready to find the corresponding 

eigenvectors. Plug the eigenvalues back into the equation and 
solve for the corresponding eigenvectors. There should be three eigenvectors, since there 
were three eigenvalues. (see section on Calculating Eigenvalues and Eigenvectors for 
more details)  

The solution will look like the following:  

 
 
Where 
x1, x2, x3, y1, y2, y3, z1, z2, z3 are all constants from the three eigenvectors. The general 
solution is a linear combination of these three solution vectors because the original 
system of ODE's is homogeneous and linear. It is homogeneous because the derivative 
expressions have no cross terms, such as PC or TC, and no dependence on t. It is linear 
because the derivative operator is linear. To solve for c1, c2, c3 there must be some given 
initial conditions (see Worked out Example 1).  
 
This Wiki does not deal with solving ODEs. It only deals with solving for the eigenvalues 
and eigenvectors. In Mathematica the Dsolve[] function can be used to bypass the 
calculations of eigenvalues and eigenvectors to give the solutions for the differentials 
directly. See Using eigenvalues and eigenvectors to find stability and solve ODEs for 
solving ODEs using the eigenvalues and eigenvectors method as well as with 
Mathematica. 
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This section was only meant to introduce the topic of eigenvalues and eigenvectors and 
does not deal with the mathematical details presented later in the article.  

3.5 Using Eigenvalues to Determine Effects of Disturbing a System 

Eigenvalues can help determine trends and solutions with a system of differential 
equations. Once the eigenvalues for a system are determined, the eigenvalues can be used 
to describe the system’s ability to return to steady-state if disturbed.  

The simplest way to predict the behavior of a system if disturbed is to examine the signs 
of its eigenvalues. Negative eigenvalues will drive the system back to its steady-state 
value, while positive eigenvalues will drive it away. What happens if there are two 
eigenvalues present with opposite signs? How will the system respond to a disturbance in 
that case? In many situations, there will be one eigenvalue which has a much higher 
absolute value than the other corresponding eigenvalues for that system of differential 
equations. This is known as the “dominant eigenvalue”, and it will have the greatest 
effect on the system when it is disturbed. However, in the case that the eigenvalues are 
equal and opposite sign there is no dominant eigenvalue. In this case the constants from 
the initial conditions are used to determine the stability.  
 
Another possible case within a system is when the eigenvalue is 0. When this occurs, the 
system will remain at the position to which it is disturbed, and will not be driven towards 
or away from its steady-state value. It is also possible for a system to have two identical 
eigenvalues. In this case the two identical eigenvalues produce only one eigenvector. 
Because of this, a situation can arise in which the eigenvalues don’t give the complete 
story of the system, and another method must be used to analyze it, such as the Routh 
Stability Analysis Method. 
 
Eigenvalues can also be complex or pure imaginary numbers. If the system is disturbed 
and the eigenvalues are non-real number, oscillation will occur around the steady state 
value. If the eigenvalue is imaginary with no real part present, then the system will 
oscillate with constant amplitude around the steady-state value. If it is complex with a 
positive real part, then the system will oscillate with increasing amplitude around the 
function, driving the system further and further away from its steady-state value. Lastly, 
if the eigenvalue is a complex number with a negative real part, then the system will 
oscillate with decreasing amplitude until it eventually reaches its steady state value again.  
 
Below is a table of eigenvalues and their effects on a differential system when disturbed. 
It should be noted that the eigenvalues developed for a system should be reviewed as a 
system rather than as individual values. That is to say, the effects listed in the table below 
do not fully represent how the system will respond. If you were to pretend that 
eigenvalues were nails on a Plinko board, knowing the location and angle of one of those 
nails would not allow you to predict or know how the Plinko disk would fall down the 
wall, because you wouldn't know the location or angle of the other nails. If you have 
information about all of the nails on the Plinko board, you could develop a prediction 
based on that information. More information on using eigenvalues for stability analysis 
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can be seen here, Using eigenvalues and eigenvectors to find stability and solve 
ODEs_Wiki.  
 

 

 

The above picture is of a plinko board with only one nail position known. Without 
knowing the position of the other nails, the Plinko disk's fall down the wall is 
unpredictable.  
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Knowing the placement of all of the nails on this Plinko board allows the player to know 
general patterns the disk might follow.  

3.5.1 Repeated Eigenvalues 

A final case of interest is repeated eigenvalues. While a system of N differential 
equations must also have N eigenvalues, these values may not always be distinct. For 
example, the system of equations:  
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May yield the eigenvalues: {-82, -75, -75, -75, -0.66, -0.66}, in which the roots ‘-75’ and 
‘-0.66’ appear multiple times. Repeat eigenvalues bear further scrutiny in any analysis 
because they might represent an edge case, where the system is operating at some 
extreme. In mathematical terms, this means that linearly independent eigenvectors cannot 
be generated to complete the matrix basis without further analysis. In “real-world” 
engineering terms, this means that a system at an edge case could distort or fail 
unexpectedly.  

However, for the general solution:  

 

If λ < 0, as t approaches infinity, the solution approaches 0, indicating a stable sink, 
whereas if λ > 0, the solution approaches infinity in the limit, indicating an unstable 
source. Thus the rules above can be roughly applied to repeat eigenvalues, that the system 
is still likely stable if they are real and less than zero and likely unstable if they are real 
and positive. Nonetheless, one should be aware that unusual behavior is possible. This 
course will not concern itself with resultant behavior of repeat eigenvalues, but for further 
information, see:  

http://en.wikipedia.org/wiki/Edge_case 
http://math.rwinters.com/S21b/supplements/newbasis.pdf 
http://www.sosmath.com/diffeq/system/linear/eigenvalue/repeated/repeated.html  

3.6 Worked out Example 1 

Your immediate supervisor, senior engineer Captain Johnny Goonewadd, has brought 
you in on a project dealing with a new silcone-based sealant that is on the ground level of 
research. Your job is to characterize the thermal expansion of the sealant with time given 
a constant power supply. Luckily, you were given a series of differential equations that 
relate temperature and volume in terms of one another with respect to time (Note: T and 
V are both dimensionless numbers with respect to their corresponding values at t=0). 
Solve the system of differentials and determine the equations for both Temperature and 
Volume in terms of time.  

You are given the initial condition at time t=0, T=1 and V=1  
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By defining a matrix for both the coefficients and dependant variables we are able to 
rewrite the above series of differentials in matrix form  

 

 

 

Lambda is inserted into the A matrix to determine the Eigenvalues  

 

 

 
 

 

For each eigenvalue, we must find the eigenvector. Let us start with λ1 = 4 − 3i  

 

 
 
 

 

Now we find the eigenvector for the eigenvalue λ2 = 4 + 3i  
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The general solution is in the form  

 

 

 

A mathematical proof, Euler's formula, exists for transforming complex exponentials into 
functions of sin(t) and cos(t)  

 

Thus  

 

Simplifying  
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Since we already don't know the value of c1, let us make this equation simpler by making 
the following substitution  

 
 

Thus, we get have our solution in terms of real numbers  

 

Or, rewriting the solution in scalar form  

 

 

Now that we have our solutions, we can use our initial conditions to find the constants c3 
and c4  

First initial condition: t=0, T=1  

 

 

 
 

First initial condition: t=0, V=1  

 

 

 
 

We have now arrived at our solution  
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See Using eigenvalues and eigenvectors to find stability and solve ODEs_Wiki for 
solving ODEs using the eigenvalues and eigenvectors. 

3.7 Worked out Example 2 

Process Engineer, Dilbert Pickel, has started his first day for the Helman's Pickel Brine 
Factory. His first assignment is with a pre-startup team formulated to start up a new plant 
designed to make grousley sour pickle brine. Financial constraints have demanded that 
the process begin to produce good product as soon as possible. However, you are forced 
to reflux the process until you reach the set level of sourness. You have equations that 
relate all of the process variable in terms of one another with respect to time. Therefore, it 
is Dill Pickles job to characterize all of the process variables in terms of time 
(dimensionless Sourness, Acidity, and Water content; S, A, & W respectively). Below is 
the set of differentials that will be used to solve the equation.  

 

Thus the coefficient matrix  
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Using mathematica it is easy to input the coefficients of the system of equations into a 
matrix and determine both the eigenvalues and eigenvectors. 

 

The eigenvectors can then be used to determine the final solution to the system of 
differentials. Some data points will be necessary in order to determine the constants.  

 

See Using eigenvalues and eigenvectors to find stability and solve ODEs_Wiki for 
solving ODEs using the eigenvalues and eigenvectors.  

 

3.8 Worked Out Example 3 

It is possible to find the Eigenvalues of more complex systems than the ones shown 
above. Doing so, however, requires the use of advanced math manipulation software 
tools such as Mathematica. Using Mathematica, it is possible to solve the system of 
ODEs shown below.  
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Obviously, this system of ODEs has 4 variables and only 3 equations.  

Obviously, this is a more complex set of ODEs than the ones shown above. And even 
though they will create a more complex set of Eigenvalues, they are solved for in the 
same way when using Mathematica.  

Using the code shown below:  

 

 
The equations can be entered into Mathematica. The equations are shown again in the 
output  

Then, using the next bit of code:  
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The it is possible to find where the equations are equal to 0 (i.e. the fixed points). The 
results of this is also shown in the image above. It's notable that 3 solutions are found. 
This makes sense as the system is 3 ODEs.  

The Jacobian can then be found by simply using the code shown below.  
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The ersults of finding the Jacobian are shown in the equation above.  

Finally, to find one of the Eigenvalues, one can simply use the code shown below.  

 

 
This gives the Eigenvalue when the first fixed point (the first solution found for "s") is 
applied. The other two solutions could be found by simply changing the fixed blade that 
is referred to when finding t1. The other Eigenvalues are not shown because of their large 
size.  

3.9 Multiple Choice Questions 

3.9.1 Question 1 

What are the eigenvalues for the matrix A? 

 
a)  
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b)  

c)  

d)  

3.9.2 Question 2 

When a differential system with a real negative eigenvalue is disturbed, the system is... 
 
a) Driven away from the steady state value  
b) Unchanged and remains at the disturbed value 
c) Driven back to the steady state value  
d) Unpredictable and the effects can not be determined  

 

3.10 Multiple Choice Answers 

3.10.1 Question 1 Answer 

 

a.  

#Calculating Eigenvalues and Eigenvectors using Numerical Software  

 

3.10.2 Question 2 Answer 

c. A real negative eigenvalue is indicative of a stable system that will return to the steady 
state value after it is disturbed.  
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#Using Eigenvalues to Determine Effects of Disturbing a System  

 

3.11 Sage's Corner 
http://video.google.com/googleplayer.swf?docId=5005666994126795748 
Click here for an electronic version of the slideshow PDF 
of slides from Presentation 1  
 
http://video.google.com/googleplayer.swf?docId=-3334285703170917951 
PDF Eigenvalues Presentation  

Also here is a lecture on eigenvalues and eigenvectors from Spring 2005 from MIT. Note 
that this lecture is in real media requiring a player.  
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Section 4. Using eigenvalues and eigenvectors to find stability 
and solve ODEs 

Title: Using eigenvalues and eigenvectors to find stability and solve ODEs  

Note: Video lecture available for this section!  

Authors: Daniel Katzman, Jessica Moreno, Jason Noelanders, and Mark Winston-Galant  

• First round reviews for this page  
• Rebuttal for this page  

4.1 Introduction 

Eigenvalues and eigenvectors are very useful in the modeling of chemical processes. 
When designing the controls for a process it is necessary to create a program to operate 
these controls. Differential equations are used in these programs to operate the controls 
based on variables in the system. These equations can either be solved by hand or by 
using a computer program. The solutions for these differential equations will determine 
the stability of the system. After finding this stability, you can show whether the system 
will be stable and damped, unstable and undamped (so that there is constant fluctuation in 
the system), or as an unstable system in which the amplitude of the fluctuation is always 
increasing. For the first case, a stable and damped system, if there is a change, the system 
will adjust itself properly to return to steady state. For the other two cases, the system will 
not be able to return to steady state. For the undamped situation, the constant fluctuation 
will be hard on the system and can lead to equipment failure. The final situation, with the 
ever increasing amplitude of the fluctuations will lead to a catastrophic failure.  

There are a couple ways to develop the differential equation used to determine stability. 
First, you can create a differential equation to guide the system where the variables are 
the readings from the sensors in the system. A second method would be using actual data 
found from running the system. You could fit a differential equation to this data and use 
that equation for stability determination.  

In this section on Eigenvalue Stability, we will first show how to use eigenvalues to solve 
a system of linear ODEs. Next, we will use the eigenvalues to show us the stability of the 
system. After that, another method of determining stability, the Routh stability test, will 
be introduced. For the Routh stability test, calculating the eigenvalues is unnecessary 
which is a benefit since sometimes that is difficult. Finally, the advantages and 
disadvantages of using eigenvalues to evaluate a system's stability will be discussed.  
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4.2 Solving ODEs 

Eigenvalues and eigenvectors can be used as a method for solving linear systems of 
ordinary differential equations (ODEs). The method is rather straight-forward and not too 
tedious for smaller systems. See The Eigenvector Eigenvalue Method for solving systems 
by hand and Linearizing ODEs for a linear algebra/Jacobian matrix review. When trying 
to solve large systems of ODEs however, it is usually best to use some sort of 
mathematical computer program. Mathematica is a program that can be used to solve 
systems of ordinary differential equations when doing them by hand is simply too 
tedious. Once one overcomes the syntax of Mathematica, solving enormous systems of 
ordinary linear differential equations becomes a piece of cake!  

4.2.1 Using Eigenvalues to Solve a System 

A linear system will be solve by hand and using Eigenvalues[ ] expression in 
Mathematica simultaneously. Note that, in the Mathematica inputs below, "In[]:=" is not 
literally typed into the program, only what is after it. The syntax needed to be typed is the 
line following "In[]=" . The term is used here to more accurately demonstrate coding in 
Mathematica. To find a general solution of the linear system of ordinary differential 
equation:  

 

 

We first put the system in matrix form:  

 

Where we can see that  

In mathematica, we can use the following code to represent A: 
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In[1]:= MatrixForm [{{4,8},{10,2}}]  

Out[1]:=  

The eigenvalues λ1 and λ2, are found using the characteristic equation of the matrix A, 
det(A- λI)=0.  

 

 

 

 

 

Therefore, λ1 = 12 and λ2 = − 6 

We can use Mathematica to find the eigenvalues using the following code:  
 
In[2]:= Eigenvalues[{{4,8},{10,2}}]  
Out[2]:={12,-6}  

 
Now, for each eigenvalue (λ1=12 and λ2=-6), an eigenvector associated with it can be 

found using , where is an eigenvector such that 

 

 
i) For λ1=12  
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This will lead to the equations (1) &(2):  

(1)  

(2)  

The Mathematica input is:  

In[3]:= eqn1= -8x+8y==0  
In[4]:= eqn2= 10x-10y==0  

In[5]:= Solve[{eqn1,eqn2},{x,y}]  

Out[5]:= {{ }}  

Equations (1) & (2) lead to the solution  

 
ii) For λ2=-6,  

 

 

 

This will lead to the equations (3) & (4):  

(3)  

(4)  

The Mathematica input is:  

In[6]:= eqn3= 10x+8y==0  
In[7]:= eqn4= 10x+8y==0  
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In[8]:= Solve[{eqn3,eqn4},{x,y}]  

Out[8]:= {{ }}  

Equations (3) & (4) lead to the solution .  

 

Recall that the direction of a vector such as is the same as the vector or any 
other scalar multiple. Therefore, to get the eigenvector, we are free to choose for either 
the value x or y.  

i) For λ1 = 12  
We have arrived at y = x. As mentioned earlier, we have a degree of freedom to choose 

for either x or y. Let’s assume that x=1. Then, y=1 and the eigenvector associated 

with the eigenvalue λ1 is  

ii) For λ2 = − 6 

We have arrived at . Let’s assume that x = 4. Then, y = -5 and the 

eigenvector associated with the eigenvalue λ2 is .  

These two eigenvalues and associated eigenvectors yield the solution:  

 

Hence a general solution of the linear system in scalar form is:  
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4.2.2 Solving a System Using DSolve 

Using the same linear system of ordinary differential equations:  

 

 

We input the differential equations to Mathematica with the following command:  

In:= ODEs={x'[t]==4x[t]+8y[t],y'[t]==10x[t]+2y[t]}  

where x'[t] = and y'[t] =  

After entering the equations, we use the DSolve function:  

In:= DSolve[ODEs, {x[t], y[t]}, t]  

Mathematica will output the solution:  

Out:= {{

, 

}}  

This set of equations, although looks more complicated than the first one, is actually the 
same.  
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4.3 Stability 

Eigenvalues can be used to determine whether a fixed point (also known as an 
equilibrium point) is stable or unstable. A stable fixed point is such that a system can be 
initially disturbed around its fixed point yet eventually return to its original location and 
remain there. A fixed point is unstable if it is not stable. To illustrate this concept, 
imagine a round ball in between two hills. If left alone, the ball will not move, and thus 
its position is considered a fixed point. If we were to disturb the ball by pushing it a little 
bit up the hill, the ball will roll back to its original position in between the two hills. This 
is a stable fixed point. Now image that the ball is at the peak of one of the hills. If left 
undisturbed, the ball will still remain at the peak, so this is also considered a fixed point. 
However, a disturbance in any direction will cause the ball to roll away from the top of 
the hill. The top of the hill is considered an unstable fixed point.  

The eigenvalues of a system linearized around a fixed point can determine the stability 
behavior of a system around the fixed point. The particular stability behavior depends 
upon the existence of real and imaginary components of the eigenvalues, along with the 
signs of the real components and the distinctness of their values. We will examine each of 
the possible cases below.  

4.3.1 Imaginary (or Complex) Eigenvalues 

When eigenvalues are of the form , where and are real scalars and is 

the imaginary number , there are three important cases. These three cases are 
when the real part is positive, negative, and zero. In all cases, when the complex part 
of an eigenvalue is non-zero, the system will be oscillatory.  

 

Positive Real Part 

When the real part is positive, the system is unstable and behaves as an unstable 
oscillator. This can be visualized as a vector tracing a spiral away from the fixed point. 
The plot of response with time of this situation would look sinusoidal with ever-
increasing amplitude, as shown below.  

This situation is usually undesirable when attempting to control a process or unit. If there 
is a change in the process, arising from the process itself or from an external disturbance, 
the system itself will not go back to steady state.  
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Zero Real Part 

When the real part is zero, the system behaves as an undamped oscillator. This can be 
visualized in two dimensions as a vector tracing a circle around a point. The plot of 
response with time would look sinusoidal. The figures below should help in 
understanding.  

Undamped oscillation is common in many control schemes arising out of competing 
controllers and other factors. Even so, this is usually undesirable and is considered an 
unstable process since the system will not go back to steady state following a disturbance.  

 

 
 

Negative Real Part 

When the real part is negative, then the system is stable and behaves as a damped 
oscillator. This can be visualized as a vector tracing a spiral toward the fixed point. The 
plot of response with time of this situation would look sinusoidal with ever-decreasing 
amplitude, as shown below.  

This situation is what is generally desired when attempting to control a process or unit. 
This system is stable since steady state will be reached even after a disturbance to the 
system. The oscillation will quickly bring the system back to the setpoint, but will over 
shoot, so if overshooting is a large concern, increased damping would be needed.  
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While discussing complex eigenvalues with negative real parts, it is important to point 
out that having all negative real parts of eigenvalues is a necessary and sufficient 
condition of a stable system.  

 
 

 
Complex Part of Eigenvalues 

As previously noted, the stability of oscillating systems (i.e. systems with complex 
eigenvalues) can be determined entirely by examination of the real part. Although the 
sign of the complex part of the eigenvalue may cause a phase shift of the oscillation, the 
stability is unaffected.  

4.3.2 Real Eigenvalues 

We've seen how to analyze eigenvalues that are complex in form, now we will look at 
eigenvalues with only real parts.  

 

Zero Eigenvalues 

If an eigenvalue has no imaginary part and is equal to zero, the system will be unstable, 
since, as mentioned earlier, a system will not be stable if its eigenvalues have any non-
negative real parts. This is just a trivial case of the complex eigenvalue that has a zero 
part.  

Positive Eigenvalues 

When all eigenvalues are real, positive, and distinct, the system is unstable. On a gradient 
field, a spot on the field with multiple vectors circularly surrounding and pointing out of 
the same spot (a node) signifies all positive eigenvalues. This is called a source node.  
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Graphically, real and positive eigenvalues will show a typical exponential plot when 
graphed against time.  

 

 

Negative Eigenvalues 

When all eigenvalues are real, negative, and distinct, the system is unstable. Graphically 
on a gradient field, there will be a node with vectors pointing toward the fixed point. This 
is called a sink node.  
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Graphically, real and negative eigenvalues will output an inverse exponential plot.  

 

 

Positive and Negative Eigenvalues 

If the set of eigenvalues for the system has both positive and negative eigenvalues, the 
fixed point is an unstable saddle point. A saddle point is a point where a series of 
minimum and maximum points converge at one area in a gradient field, without hitting 
the point. It is called a saddle point because in 3 dimensional surface plot the function 
looks like a saddle.  
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4.3.3 Repeated Eigenvalues 

If the set of eigenvalues for the system has repeated real eigenvalues, then the stability of 
the critical point depends on whether the eigenvectors associated with the eigenvalues are 
linearly independent, or orthogonal. This is the case of degeneracy, where more than one 
eigenvector is associated with an eigenvalue. In general, the determination of the system's 
behavior requires further analysis. For the case of a fixed point having only two 
eigenvalues, however, we can provide the following two possible cases. If the two 
repeated eigenvalues are positive, then the fixed point is an unstable source. If the two 
repeated eigenvalues are negative, then the fixed point is a stable sink.  

4.3.4 Summary of Eigenvalue Graphs 

Below is a table summarizing the visual representations of stability that the eigenvalues 
represent.  
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Note that the graphs from Peter Woolf's lecture from Fall'08 titled Dynamic Systems 
Analysis II: Evaluation Stability, Eigenvalues were used in this table.  

4.4 Another method of determining stability 

The process of finding eigenvalues for a system of linear equations can become rather 
tedious at times and to remedy this, a British mathematician named Edward Routh came 
up with a handy little short-cut.  

First, recall that an unstable eigenvalue will have a positive or zero real part and that a 
stable eigenvalue will have a negative real part.  

The first test is to take an n-th degree polynomial of interest:  
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and look to see if any of the coefficients are negative or zero. If so, there is at least one 
value with a positive or zero real part which refers to an unstable node.  

The way to test exactly how many roots will have positive or zero real parts is by 
performing the complete Routh array. Referring to the previous polynomial, it works as 
follows:  

 

Row   
1   
2   
3   
4   

  
n‐1   
n   
n+1   

 
An array of n+1 rows and the coefficients placed as above. After the first two rows, the 
values are obtained as below:  

 

 
Routh’s theorem says:  

1.For all of the roots of the polynomial to be stable, all the values in the first column of 
the Routh array must be positive.  

2.If any of the values in the first column are negative, then the number of roots with a 
positive real part equals the number of sign changes in the first column.  
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So considering the following example,  

 

Preliminary test: All of the coefficients are positive, however, there is a zero coefficient 
for x2 so there should be at least one point with a negative or zero real part.  

Routh array:  

Row   

1   
2   
3   
4   
5   

Since Row 3 has a negative value, there is a sign change from Row 2 to Row 3 and again 
from Row 3 to Row 4. Thus, there are 2 roots with positive or zero real part.  

4.5 Stability Summary 

The following image can work as a quick reference to remind yourself of what vector 
field will result depending on the eigenvalue calculated.  
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The table below gives a complete overview of the stability corresponding to each type of 
eigenvalue.  

Eigenvalue Type  Stability  Oscillatory Behavior  Notation  

All Real and +  Unstable  None  Unstable Node  

All Real and ‐  Stable  None  Stable Node  

Mixed + & ‐ Real  Unstable  None  Unstable saddle point  

+a + bi  Unstable  Undamped  Unstable spiral  

‐a + bi  Stable  Damped  Stable spriral  

0 + bi  Unstable  Undamped  Circle  

Repeated values  Depends on orthogonality of eigenvectors  

4.6 Advantages and Disadvantages of Eigenvalue Stability 

There are several advantages of using eigenvalues to establish the stability of a process 
compared to trying to simulate the system and observe the results. However, there are 
situations where eigenvalue stability can break down for some models.  

4.6.1 Advantages 

1. High accuracy for linear systems.  
2. General method that can be applied to a variety of processes.  
3. Can be used even if all variables are not defined, such as control parameters.  

4.6.2 Disadvantages 

1. Only applicable for linear models.  
2. Linear approximations of nonlinear models break down away from the fixed 

point of approximation.  

4.7 Worked out Example 1 

For the system described by:  
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Find the fixed points and determine their stability.  

4.7.1 Solution 

Step 1. Determining the fixed points  

At the fixed points, nothing is changing with respect to time. Therefore, set the 
derivatives to zero to find the fixed points.  

 

 

Solving these two equations simultaneously, we see that we have one fixed point at {0,0}  

 
Step 2. Determine the eigenvalue of this fixed point  

First, let us rewrite the system of differentials in matrix form.  

 

Next, find the eigenvalues by setting  

 

 

 

Using the quadratic formula, we find that and  

Step 3. Determine the stability based on the sign of the eigenvalue  
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The eigenvalues we found were both real numbers. One has a positive value, and one has 
a negative value. Therefore, the point {0, 0} is an unstable saddle node.  

The stability can be observed in the image below. The fixed point is seen at (0,0). All 
solutions that do not start at (0,0) will travel away from this unstable saddle point. The 
solution was found by using the two-dimensional system in PPlane 2005.10 PPlane.  

 

4.8 Worked out Example 2 

Determine the Routh array and the number of positive or zero roots of the following 
equation.  
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4.8.1 Solution 

Routh Array:  

Row   

1   
2   
3   
4   
5   
6   

Since you go from a positive value in row three, to a negative value in row four, and back 
to a positive value in row five, you will have a positive or zero real part for two of your 
roots.  

4.9 Worked out Example 3 

Use Mathematica to find the eigenvalues of the system defined by:  
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And comment on the stability of this system  

 

4.9.1 Solution 

The matrix that corresponds with this system is the square matrix:  

 

 
Using the Eigenvalues[ ] function in Mathematica the input is:  

 

    In[1]:= Eigenvalues[{{8, 15, -3, 7, 2}, {-22, -21, 3, -
12, 11}, {10, 6, 24, 3, -6}, {0, -2, 21, 0, 4}, {4, 9, 1, -
22, -7}}]  

 

    In[2]:= N[%]        This step produces numerical 
results  

 
The output contains the 5 eigenvalues:  

 

    out[2]:=  {27.0612, -10.7653 + 10.0084 , -10.7653 - 

10.0084 , -0.765272 + 7.71127 , -0.765272 - 7.71127 }  

So the five eigenvalues are:  

 
27.0612  
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-10.7653 + 10.0084   

-10.7653 - 10.0084   

-0.765272 + 7.71127   

-0.765272 - 7.71127   

 
Looking at these eigenvalues it is clear that the system as a whole is unstable. This is 
because one of the eigenvalues has a positive real part.  

4.10 Multiple Choice Question 1 

A system is stable if and only if all of the system's eigenvalues:  

a. are real  

b. are complex  

c. have negative real parts  

d. have negative imaginary parts  

 

Answer: c  

4.11 Multiple Choice Question 2 

What would the following set of eigenvalues predict for the system's behavior?  

 

 

 
a. An unstable oscillation  

b. A damped oscillation  

c. An undamped oscillation  

d. A source  
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e. A saddle point  

 

Answer: d  

4.12 Sage's Corner 

Eigenvalues & Eigenvectors: Math That Happens in Vegas, Stays in Vegas  

http://video.google.com/googleplayer.swf?docId=2359424877194610618 

File:EigenvaluesAndEigenvectors.ppt Slides Without Narration  

4.13 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5.1 Introduction to Attractors, Spirals and Limit Cycles 

We often use differential equations to model a dynamic system such as a valve opening 
or tank filling. Without a driving force, dynamic systems would stop moving. At the 
same time dissipative forces such as internal friction and thermodynamic losses are 
taking away from the driving force. Together the opposing forces cancel any 
interruptions or initial conditions and cause the system to settle into typical behavior. 
Attractors are the location that the dynamic system is drawn to in its typical behavior. 
Attractors can be fixed points, limit cycles, spirals or other geometrical sets.  

Limit cycles are much like sources or sinks, except they are closed trajectories rather than 
points. Once a trajectory is caught in a limit cycle, it will continue to follow that cycle. 
By definition, at least one trajectory spirals into the limit cycle as time approaches either 
positive or negative infinity. Like a sink, attractive (stable) limit cycles have the 
neighboring trajectories approaching the limit cycle as time approaches positive infinity. 
Like a source, non-attractive (unstable) limit cycles have the neighboring trajectories 
approaching the limit cycle as time approaches negative infinity. Below is an illustration 
of a limit cycle [1].  
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Spirals are a similar concept. The attractor is a spiral if it has complex eigenvalues. If the 
real portion of the complex eigenvalue is positive (i.e. 3 + 2i), the attractor is unstable 
and the system will move away from steady-state operation given a disturbance. If the 
real portion of the eigenvalue is negative (i.e. -2 + 5i), the attractor is stable and will 
return to steady-state operation given a disturbance.  

Given the following set of linear equations we will walk through an example that 
produces a spiral:  

 

 

The Jacobian matrix would be the coefficients:  

 

Next we found the eigenvalues:  
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where I is the identity matrix  

 

Eigenvalues:  

The system is unstable because the real portion of the complex eigenvalues is positive.  

To find the first eigenvector we continue by plugging in 2 − 5i:  

 

 

 

let  

=  

We now have a system of equations which we can solve for x,y:  
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Dividing both equations by 5:  

 

 

Solution:  

Following the same procedure using the second eigenvalue of 2 + 5i, we find the second 
eigenvector to be:  

 

Now plugging both eigenvalues and eigenvectors into the characteristic equation:  

 

 

For more on this procedure, see: Eigenvalues and Eigenvectors  

 
The phase-plane plot is shown below:  
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5.2 Introduction to Pplane 

Phase-plane analysis is an important tool in studying the behavior of nonlinear systems 
since there is often no analytical solution for a nonlinear system model.  

PPlane is a JAVA applet for phase plane analysis of two-dimensional systems. It starts in 
your web browser and you can directly input your equations and parameter values. 
PPLANE plots vector fields for systems of differential equations. At each point, (x,y), of 
a grid, PPLANE draws an arrow indicating the direction and magnitude of the vector 
(x',y'). This vector equals dy/dt / dx/dt = dy/dx, and is independent of t; therefore, it must 
be tangent to any solution curve through (x,y).  

It allows the user to plot solution curves in the phase plane by simple clicking on them. It 
also enables the user to plot these solutions in a variety of plots. There are a number of 
advanced features, including finding equilibrium points, eigenvalues and nullclines, that 
you will find useful later.  
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5.2.1 How to use Pplane 

In the PPlane equation window you can enter a system of differential equations of the 
form dx/dt = f(x,y) and dy/dt = g(x,y), define parameters and resize the display window. 
Under the Gallery pull down from the menu, you can switch to a linear system.  

 

 

 
Note, if your differential equations contain constant parameters, you can enter them in the 
"Parameter Expressions" boxes below the differential equations as seen in the figure 
below (A, B, and C are used as example parameters). This is a convenient feature to use 
when considering the effect of changed parameters on the steady state of a system 
because it eliminates the redundancy of re-entering the parameter values multiple times 
within the differential equations.  
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In the PPlane Phase Plane window below you will see the vector fields for the system. By 
clicking on the field you will plot solution curves in the phase plane. If you are interested 
in a plot of your solution vs. time or a 3-D view, click on graph:  
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If you choose the x-t and y-t option, you have to pick a specific solution curve. The result 
will look like this:  
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Use the crop function to zoom in on a point of interest  

Choose Find Equillibrium Point under the Solution pull down menu. Then when you 
click on an orbit in the phaseplane, the Pplane Messages window will display the 
eigenvalues and possible equillibrium points.  

 
Additional Things you can Change in PPlane  

Changing the Slope Field  

By clicking on the "Options" tab, then by selecting "Direction Field Settings," you can 
change the number of rows and columns plotted, the way the field is made up, as well as 
the computational settings of PPlane.  

 
Erasing Made Orbits  

On the "Edit" tab, there are options that say "Delete Orbit" or "Delete All Orbits". These 
options act as their names imply.  

 
Changing the Direction of Graphing  

By clicking on the "Options" tab, then by selecting the "Solution Direction" option, you 
can then change the way that PPlane graphs a line when you click on the field. You can 



 100 

change the graphing to plot forwards (for values of t>0), backwards (for values of t<0) or 
in both directions of t.  

5.2.2 More Uses for PPLANE 

Of the many uses that PPLANE has to offer, some of the most helpful functions involve:  

Finding eigenvalues/eigenvectors for an equilibrium point.  

After graphing a series of differential equations, find a particular equilibrium point within 
the graphed data (“Find an Equilibrium Point,” under the Solution tab)  

 

Now, by selecting a point on the field that has ben graphed by pplane, pplane will find 
the closest equilibrium point on the graph, and highlight this point on the graph in red.  
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The PPLANE Messages box in the upper left hand corner of the screen should pop up 
with some new information. This information provides eigenvalues and the 
corresponding eigenvectors to the selected equilibrium value:  

 



 102 

 
Stability of a Equilibrium Point 

Similarly to before, the Messages Box will provide the stability features (ie: is it a nodal 
sink?) of the found equilibrium point, immediately after using the “Find an Equilibrium 
Point.”  

 

5.2.3 Other concepts of phase plane analysis 

Separatrix 

A separatrix is any line in the phase-plane that is not crossed by any trajectory. The 
unstable equilibrium point, or saddle point, below illustrates the idea of a separatrix, as 
neither the x or y axis is crossed by a trajectory. If you picture a topographic map, the 
seperatrix would be a mountain ridge; if you fall a little of the edge, you will never come 
back. Plotting your phase plane in Pplane would be useful to identify impossible set 
points, for example.  
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Nullclines 

A nullcline is a curve where x'=0 or y'=0, thus indicating where the phase plane is 
completely horizontal or completely vertical. The point at which two nullclines intersect 
is an equilibrium point. Nullclines can also be quite useful for visualization of a phase 
plane diagram as they split the phase plane into regions of similar flow. To display 
nullclines on the Phase Plane window, select Nullclines under the Solutions drop down 
menu. The screenshot below is an example.  

 

 

 
Notice that the red nullcline shows where the flow is completely vertical (x'=0) and the 
yellow nullcline shows where the flow is completely horizontal (y'=0).  

Limit Cycle 

Below you will find a solution curve for a limit cycle. The limit cycle contains the 
response in a set range, which is something you may want to take advantage for certain 
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engineering applications. On the other hand it is always rotating and may not be stable 
enough for your purposes.  

 

 

 

5.2.4 Taking Screen Shots to copy Pplane phase portraits 

With the introduction of Windows Vista, the Snipping Tool was introduced. This tool 
allows much greater flexibility with taking screen shots and editing them. This article will 
talk about the Snipping Tool as well as the Windows Print Screen key which can be used 
to take photos of your computer screen. When pressing the key, your computer copies the 
image of your screen and onto your computer’s clipboard. The image can then be pasted 
into multiple programs. There are many instances throughout the CHE 466 course in 
which taking a screen shot of your work will come in handy. Examples include copying 
phase portraits created in Pplane, graphs created in Mathematica, or your Mathematica 
code.  

To enable the Snipping Tool on your Vista computer go to the Windows button in the 
bottom left of your screen and click Accessories -> Snipping Tool.  
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Figure 1. How to enable the Snipping Tool 

 

A window will appear asking if you would like to add the Snipping Tool to your 
Quicklaunch. This provides a simple and quick way to take screenshots.  

To take a picture of your graph, just press the Snipping Tool button in the Quicklaunch 
area and a window like this will appear:  

Figure 2. The Snipping Tool Window 

 

Automatically, the Snipping Tool will default to a crosshair from which you can click 
and drag to make a selection of the section of the screen you would like represented by a 
red rectangle.  

WARNING: In the Options section you should uncheck "Show selection ink after snips 
are captured" in order to eliminate the red edge around your photos.  

 
Figure 3. Snipping Tool Option Menu (Uncheck the selection ink) 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The Snipping Tool will open up a new window with your selection and copy the image to 
your clipboard. Feel free to edit your image or save it where it is convenient.  

Figure 4. Snipping Tool Editing Window 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If not using Windows Vista you can still use Print Screen:  

Follow these simple steps to copy and paste your phase portrait into a Microsoft Word 
document:  

1. Pull up the window containing your phase portrait so that it is displayed on 
the screen.  

2. Find the Print Screen or PrtSc button in the upper‐right hand portion of your 
keyboard. (The key may appear slightly different depending on your 
Windows keyboard manufacturer).  

3. Open Microsoft Word to the document of your choice (i.e. CHE 466 
Homework 7).  

4. Paste the image into the Word document. Figure 1 below indicates how your 
phase portrait will look in Word.  

5. To crop or resize the image as you like, you may use the Picture toolbar (seen 
in Figure 2) by selecting View ‐> Toolbars ‐> Picture.  

If you prefer to take a screen shot of just your phase portrait rather than the entire 
computer screen, follow these simple steps:  
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1. Pull up the window containing your phase portrait so that it is displayed on 
the screen.  

2. Press Alt‐Print Screen to capture a photo of the window you selected.  
3. Open Microsoft Word to the document of your choice (i.e. CHE 466 

Homework 7).  
4. Paste the image into the Word document. Figure 3 below indicates how your 

phase portrait image will look.  

Figure 5. Initial screen shot 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Figure 6. Microsoft Word document containing the screen shot 

 

Figure 7. Screen shot of phase portrait window 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5.3 Worked Out Example 1 ‐ Linear System of Equations 

Problem statement 

Use PPLANE to calculate the following information of the system given below: location 
and type of equilbrium point, Jacobian matrix, eigenvectors, and eigenvalues.  

 

 

Solution 

Using PPLANE's "Find an Equlibrium Point" feature and clicking on the phase plane, the 
following equilibrium point will be indicated:  
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The location, and type of the equilibrium point is given in the "PPLANE Messages" 
window, along with the Jacobian matrix, eignvectors and eigenvalues.  

 

 

5.4 Worked Out Example 2 ‐ Nonlinear System of Equations 

For our second example problem we would like you to try a non-linear system of 
equations. Solve for the set of equations on PPlane. Consider the trends of change in rate 
of the differential equations and subsequently solve the equations on Mathematica to 
compare the trends.  

The Following two differential equations are going to be used to walk through the 
solutions on PPlane and Mathematica:  

 

 

 
The above equations were put in to the PPlane window and solved. The following two 
windows show the solution for the set of differential equations:  
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Looking at the phase-plane plot, at low values of x and y, t increases slowly. However at 
higher values of y, the increase in t is rapid. When x is high and y is low, however, t 
increases slowly. Mathematica will help us visualize the relative rates of change better.  

The following is the code used in Mathematica to solve and plot the set of differential 
equations:  

   ODEs = {x'[t] == (x[t] - 5*x[t]*y[t]),    y'[t] == (-
2*x[t]) + (2*y[t]),    x[0] == 9, y[0] == 370}    
numericalSol = NDSolve[ODEs, {x[t], y[t]}, {t, 1, 100}]    
Plot[y[t] /. numericalSol, {t, 1, 100}, PlotRange -> All]  

The graphs obtained on Mathematica for x versus t and y versus t are shown below. 
Please note the difference between the axes scales.  
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Also, for a closer look, here are the plots of the slopes of graphs above.  
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Comparing the increase in t with increase in x, we see a similar trend in the PPlane 
diagram. Mathematica shows a constantly increasing x' with t. At higher values of x, the 
value for t increases in the PPlane diagram. However, as seen clearly in the PPlane 
diagram and the graphs of the slope of x with respect to t and the slope of y with respect 
to t, the slope of x does not compare to the very large slope shown for y' versus t. 
Therefore the results using Mathematica and PPlane are consistant.  

This modeling system could be used to view trends of variables in a CSTR or any other 
system which can be modeled using differential equations.  
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5.5 Multiple Choice Questions 

5.5.1 Question 1 

Open PPLANE and enter the following equations into the PPLANE Equation Window:  

x '= sin(x)  

y' = cos(y)  

 
What does the resulting phase plane look like? (Note: Click on image to enlarge)  

 

A.  
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B.  
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C.  

 

D.  
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5.5.2 Question 2 

If you have a disturbance in your system and the system is driven right back to 
equilibrium, that fixed point's eigenvalue is most likely a:  

A. complex number with negative real number component 
B. 0 
C. negative real number 
D. positive real number 

 

 

5.6 Answers to the Multiple Choice Questions 

Question 1: C  

Question 2: A  

5.7 Sage's Corner 
Phase Plane Analysis Video  
http://video.google.com/googleplayer.swf?docId=-7542292834933597867 

slides for this talk  

Using PPlane  

http://www.youtube.com/v/CIY3iUbO94s 

5.8 References 

• "Limit-cycle." http://en.wikipedia.org/wiki/Limit_cycle. Last Updated 12 September 2007.  
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6.1 Introduction 

Root locus plots show the roots of the systems characteristic equation, (i.e. the 
Laplacian), as a function of the control variables such as Kc. By examining these graphs 
it is possible to determine the stability of different values of the control variable. A 
typical transfer function is of the form G(s) = Y(s)/U(s).  

Poles: U(s) = 0  

Zeros: Y(s) = 0  

In other words, after factorization the poles are the roots of the denominators and the 
zeros are the roots of the numerator. Stability only depends on the value of the poles. The 
system is stable for all values of the control variables that result in the value of the real 
part of every pole value being less than zero.The lines of a Root locus plot display the 
poles for values of the control variable(s) from zero to infinity on complex coordinate 
system. These plots will always have a line of symmetry at i = 0.  

 

6.1.1 Closed‐loop vs. Open‐loop 

A closed-loop system uses feedback control where the output has an effect on the input. 
With a closed-loop, oscillations are usually introduced, and therefore can become 
unstable. Unlike the open-loop systems, the closed-loop incorporates valves and 
controllers.  

In an open-loop system, the output is not compared with and has no effect on the input. In 
an open-loop system, oscillations are not introduced and therefore cannot become 
unstable. An open-loop system, however, can be inaccurate because it does not take into 
account the control dynamics. Open-loop systems will include feed forward control 
schemes or timed control schemes. The two diagrams below depict this difference when 
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trying to control the temperature in your apartment. (Click on images for increased 
resolution).  

 

 
In this diagram a thermostat presents feedback to the heater to turn it on or off.  
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Since the heater only turns on at 10 pm, it assumes that the amount of time you open the 
door will be the same each day. It is considered an open system since the temperature in 
the room is independent of the heater controller.  

Note that all the examples presented in this web page discuss closed-loop systems 
because they include all systems with feedback.  

6.1.2 Complex Coordinate Systems 

Root locus plots are a plot of the roots of a characteristic equation on a complex 
coordinate system. A complex coordinate system allows the plotting of a complex 
number with both real and imaginary parts. The real component is plotted on the x-axis 
and the imaginary component is plotted on the y-axis. When creating root locus plots 
imaginary roots must be solved for. These imaginary roots come in complex conjugate 
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pairs (this can be seen below in the section on "Plotting Poles on a Complex Coordinate 
System to make Root Locus Plot").  

 
For example a plot of the following complex numbers is shown below. These complex 
numbers can be broken into the real and imaginary components to make it easier to plot.  
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6.1.3 Developing a Characteristic Equation 

Although the focus of this article is to discuss root locus plots, it is necessary to mention 
briefly how to determine the characteristic equation for a system in order to obtain the 
root locus plot. In general, most chemical engineering processes can be described by a 
system of ordinary differential equations. Follow the following steps to determine the 
characteristic equation for the system (which will allow you to develop a root locus plot).  

1. If the ODEs are not linear, linearize them. (See this link for more information on 
linearizing ODEs <http://controls.engin.umich.edu/wiki/index.php/LinearizingODEs>)  

2. After linearizing the ODEs, use matrix algebra to find the eigenvalues of your system. 
Be careful here not to insert numerical values for your control parameters, (e.g. leave Kc 
as Kc, not Kc=1). (For more information on finding eigenvalues 
<http://controls.engin.umich.edu/wiki/index.php/EigenvaluesEigenvectors>)  
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3. The polynomial equation obtained for the eigenvalue should contain lambda and the 
control parameters. This equation is the characteristic equation. Obtain solutions to this 
equation by setting values for the control parameters and solving for the eigenvalues. The 
roots obtained will be used to create the root locus diagram.  

This 3-step process is valid to obtain a characteristic equation for any closed loop control 
system.  

 
A more traditional method to develop characteristic equations is by applying Laplace 
transforms.  

Laplace Transforms  

 
Laplace transforms are a method to change linear ordinary differential equations into 
transfer function. All transfer functions used in root locus plots are independent of time 
because the L[f(t)] ≣ F(s). Formally, the equation below shows that the time function is 
integrated, leaving only the variable s.  

 

s is a complex number, therefore allowing us to construct complex coordinate system 
graphs. The exact solution to most disturbances and controllers can be found in any 
controls book. Please always refer to your Ordinary differential equations mathematics 
book for more information on Laplace transforms.  

6.1.4 Example 

The stability of the series chemical reactors is to be determined. The reactors are well 
mixed and isothermal, and the reaction is first-order in component A. The outlet 
concentration of the second reactor is controlled with a PI feedback algorithm that 
manipulates the flow of the reactant, which is very much smaller than the flow of the 
solvent. The sensor and final element are assumed fast, and process data is as follows.  

Process  

V= 5m3  

Fs=5m3/min >> FA  

k = 1 min-1  
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vs= 50% open  

CA0 = 20 mole/m3  

CA0(s)/v(s) = Kv= 0.40 (mole/ m3) (%open)  

 
PI Controller Kc = ?? Tf = 1 min  

Formulation The transfer function for the process and controller are  

 

The individual transfer functions can be combined to give the closed-loop transfer 
function for a set point change, which includes the characteristic equation. (where CV= 
Control variable & SP = set-point signal)  

 

Characteristic equation  
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6.2 Root Locus Diagrams 

Root Locus plots are a method of evaluating the behavior of a control system. The 
creation of a root locus plot begins by determining the poles of the control system for a 
given set of control parameters. These poles are then plotted on a complex coordinate 
system as seen in the previous section and analyzed to determine the behavior of the 
system.  

6.2.1 Determining the Poles of a Control System 

The “poles” of a system are the roots of the demoninator of the transfer function. In other 
words the poles are the values of "s" when the transfer function go to infinity (when the 
demoninator equals zero). For a system of differential equations, poles are the 
eigenvalues of the equation system. Consider the following solution to a system of 
differential equations:  

 
f(s) = 48s3 + 44s2 + 12s + 1 (1)  

 
This equation is a third order polynomial, therefore it will have three poles (be aware that 
some of these poles may be imaginary numbers). These poles can be obtained by 
factoring the expression or using a computer program such as Maple. The three poles, or 
roots, of this equation are s = -0.167, -0.25, -0.5.  

 
For a system of differential equations, finding the eigenvalues can be time consuming and 
the use of Matlab, Maple, or Mathematica is more efficient. One method would be to use 
the Mathematica eigenvalues[] function to solve the system for you. This function is 
explained in Eigenvalues and Eigenvectors section of the wiki text.  

6.2.2 Plotting Poles on a Complex Coordinate System to make Root Locus Plot 

A root locus plot is created by plotting the resulting poles on a complex coordinate 
system. For system of P-only control, the governing differential equations will depend on 
the proportional gain, Kc. Consider the following solution to a system of differential 
equations:  

 
f(s) = 48s3 + 44s2 + 12s + 1 + 6Kc (2)  

 
Notice that Kc is a term in this equation. Therefore, there exists a set of poles for each 
value of Kc. If Kc = 0, then equation #2 reduces to equation #1, and poles are as listed 
above. Table 1 lists the three poles of the system for given values of Kc. These poles 
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were calculated using a computer algebra system because it is impractical to try and 
evaluate these functions with analytical methods.  

 
Table 1- Poles of Characteristic Equation  

 

 
To create a root locus plot, each pole is broken down into its real (x-axis) and imaginary 
(y-axis) component (Table 2):  

 
Table 2- Real and Imaginary Components of each Pole  
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These points can now be plotted to make the root-locus diagram (Figure 1):  
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Figure 1- Root Locus Diagram of the Characteristic Equation  

By convention, red arrows are drawn on the plot in the direction of increasing Kc values. 
They help to illustrate how the roots of the system vary by changing the Kc value. Also 
by convention, the points in which Kc = 0 are represented with ‘x’ marks instead of dots.  

6.2.3 Interpreting a Root Locus Diagram 

The primary use of a Root Locus Diagram is to evaluate how differing values of Kc 
affect the stability and behavior of a control system.  

 
The stability of the control system depends on the sign of the real component of the pole. 
If the real components of all poles are negative, then the system is said to be stable for 
that value of Kc. If the real component of the pole is positive, the system is unstable for 
that value of Kc, meaning the output signal will diverge from the set point.  

 
The behavior of the control system depends on the presence of an imaginary component 
of the pole. If any of the three poles contains an imaginary number component, then that 
value of Kc will cause the output signal to oscillate. If all of the poles are real (contain no 
imaginary components), the output signal will not oscillate at that Kc value.  
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Please refer back to the Root Locus diagram in Figure 1. The system becomes unstable 
(i.e. the real component of the poles becomes positive) for Kc > 1.67 and Kc < 0. Within 
the range of stability, no oscillations (i.e. no imaginary component) are observed when 0 
< Kc < 0.004.  

6.3 Root Locus Diagrams for PID Control 

Root Locus diagrams are much more difficult to create for PID control. The characteristic 
equation will contain unknown variables Kc, Ti, and Td. Therefore, each point on the 
Root Locus Diagram will represent a set of tuning parameters. In order to show the 
progression as each tuning parameter changes, the resulting diagram will be a three-
dimensional surface plot. Due to the complexity of this diagram, we will not create one, 
as it is beyond the scope of this text. However, stability analysis can still be applied to the 
characteristic equation. Take for example equation 3:  

 

(3)  

 
In this theoretical instance, equation 3 is the characteristic equation governing the same 
system mentioned above, only now with PID control. Notice the additional presence of 
the Ti and Td terms. Under P- only control, this system was stable for Kc values between 
0 and 1.67. Will the same be true if this system were tuned with PID control?  

 
Let’s suppose we want to test the conditions Kc = 1.0, Ti = 0.3 and Td = 0.1. These 
values were randomly chosen. Using a computer software package, the three roots were 
determined to be: r1 = -0.827, r2 = -0.044 + 0.417i, r3 = -0.044 – 0.417i. Therefore, since 
the real components are all negative, the system is still stable. Since complex roots are 
present, the response is expected to oscillate around the set point.  

 

6.4 Creating Root Locus Plots with Mathematica 

Mathematica allows you to develop root locus plots for polynomials since the math 
involved in solving for the solutions can become very tedious. Before you are able to 
obtain the root locus plot, you need to solve for the roots. We will use the same equation 
as was used in the “Determining the Poles of a Control System” section.  

 
f(s) = 48s3 + 44s2 + 12s + 1 + 6Kc  
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The Solve[ ] function can be used to determine the roots, both real and imaginary, for 
each corresponding Kc value. The syntax in Mathematica is shown below for the 
specified equation when Kc = 0. It is important to note that in order to obtain an output 
you must press “Shift Enter.”  

 

 

 
The following is just to show how Mathematica formats the output when Kc ≠ 0 and 
when there are imaginary roots. In this case, Kc = -0.167.  

 

 

 
This can be done for all Kc values to obtain the corresponding real and imaginary roots. 
After all of the roots have been calculated, a table can be made to format the real roots (x 
axis) verses imaginary roots (y axis). When the syntax, A={{x,y}{a,b}…}, is used, you 
are inputting all of the x and y values and naming those values A. When you call A in the 
TableForm[ ] function, the table will be made according to all of the x and y values input 
into A. The syntax and corresponding outputs are shown below.  



  133 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In order to produce the table shown above, you only need TableForm[A] and nothing 
else. The other descriptions (ie. TableAlignments and TableHeadings) are just used for 
formatting purposes.  

 
Once the real (x) and imaginary (y) roots have been determined and put into table format 
for your equation, the ListPlot[ ] function can be used to develop your root locus diagram 
by calling A.  

 

 

 
As you can see, the ListPlot[ ] function returned the same plot as shown in the “Complex 
Coordinate System to make Root Locus Plot” section (this plot was created in Excel). 
The arrows are not shown in this Mathematica plot; however the Excel plot shows the 
direction of increasing Kc values to show how the roots of the system vary by changing 
the Kc values.  

 
The Mathematica Help Browser is a very useful tool for understanding the syntax. For 
example, when using the ListPlot[ ] function you can search how to label the axes and 
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how to make the points larger (more visible) on the plot. The following examples are 
used to illustrate the use of root locus plots. Click the following link if you would like to 
access the actual Mathematica file: Media:RLPFinalaa.nb  

 

6.5 Second Plot Method Using Arrays 

The goal here is to be able to understand exactly what is happening with these 
Mathematica inputs in order to get a better grasp on the outputs. Basically, once you have 
found the Eigenvalues of the system, which examples can be found for in other areas of 
the wiki, we then want to solve explicitly for them. After we solve for the Eigenvalue in 
terms of the variables, we can create an array by varying this value and solving for the 
real and imaginary terms of the Eigenvalues.  

 
Eigenvalue Outputs in Mathematica  

The Eigenvalues can either be returned as a function of 'l', which is the designation of the 
Eigenvalue or simply as a complex function in terms of variables. When returned as a 
function of 'l' there will be a polynomial input that has to be simplified to find 'l' as a 
function of the variable. In this case: Kc.  

 

 

 
This example is taken directly from lecture 17 and its supplementary Mathematica file. 
What is happening here is that the Jacobian was inputted, and there were multiple 
eigenvalue arrays that were found. The last array has three complex polynomial functions 
that equal to 0. The last line is simplifying them, solving for 'l'. This is putting the 
simplified Eigenvalues into the array 'ss'.  

 
Another output of Eigenvalues is simply in the form of complex numbers themselves. 
Rather than worry about the simplification steps, these Eigenvalues can be directly 
inputted as a complex number into an array, again termed 'ss':  
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This is a variation of the sample in lecture 17.  

 
Plot Array Creation  

Now that we have seen the two ways of Eigenvalue array creation, we can use these to 
create another array that will be the points for the plot. Here we will be substituting in 
values of the variable Kc to find different values of the Eigenvalues, which will give us 
information on stability changes as Kc changes.  

 

 

 
This example is also taken directly from lecture 17 and its supplementary Mathematica 
file.  

In the example above, 'ss' is in the form : {{solution1} , {solution2}, {solution3}} Each 
solution in this array is in the form l -> a+bi. For example, ss[[2]] refers to solution2, 
which is the object in the second position in ss. Re[l/.ss[[2]]] applies solution2 to the 
variable l and then returns only the real part. Im[l/.ss[[2]]] applies solution2 to the 
variable l and then returns only the imaginary part. The effect of the Append function 
above is that the ordered pair {a,b} (from a solution of the form a+bi) is added to the 
array called 'a'.  

However, not all Eigenvalue arrays will have the same number of Eigenvalues. For 
example, as mentioned in the above paragraph, 'ss' is in the form : {{solution1}, 
{solution2}, {solution3}} There could be 2, or 3, or more separate 'solution' values in the 
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array. Depending on the number of the 'solution' values, there will be a different format 
for your 'append' function in Mathematica. For example, in the image below, there are 
only two eigenvalues in our arrat that we want to solve for. Thus, there should only be 
two rows of the addition to the array for the this method:  

 

 

These different methods both output arrays of numbers that act essentially as 'x' and 'y' 
values, or in this case Real and Imaginary, for the plot. The array 'a' is plotted as such:  

ListPlot[a, PlotStyle -> PointSize[0.02]]  

This is inputted directly to Mathematica, which creates the Root Locus Plot.  

6.6 Differential Equation Example of Root Locus Plots in Mathematica 

An example problem pulled from the Fall 2008 second exam:  

"You have just been put in charge of designing a large-scale bioreactor for the production 
of a blockbuster protein based drug. After some research, you have come up with the 
following model to describe the reactor system:"  

dX / dt = − 2X + (10 * X * S) / (S + 2)  

dS / dt = 4 * Fin − S − (3 * X * S) / (S + 2)  

dP / dt = 9 * X − 2 * P  

X is the cell concentration, S is the nutrient concentration, and P is the protein product. 
Fin is the flow rate of nutrient into the system.  

In this system there are two fixed points found by setting all the differential equations 
equal to zero and solving in Mathematica.  
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The two fixed points depend on the value of Fin and with that varying values of Fin will 
change eventual eigenvalues. Since this problem will eventually want root locus plots for 
both fixed points it is easier to save both points as parameters to be applied to general 
equations later. Overall it will help save the need for redundant code. The entire 
mathematica file being referenced in this example is available here: 
Media:Exam2Prob1.nb  

From this point a Jacobian matrix should be created to linearize the system around the 
fixed points (as applied to the Jacobian). Once created the stored fixed point values for X, 
S, and P can be applied. Once applied, the eigenvalues for each fixed point can be solved 
for. These will still contain a variable 'Fin' since Fin has not been defined yet.  

 

From here the Table[] function can be used to tabulate eigenvalues for various Fin values 
for visual sake of inspection. This is not necessary since the eigenvalue results have 
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already been solved for in terms of Fin. To create the root locus plots, values of Fin need 
to be defined and applied to the eigenvalue equations with the results stored. That step is 
next. In this table step it is for the user's sake to see with increasing Fin values what the 
eigenvalues look like. The tabulated eigenvalues are stored as a matrix and displayed as 
such with the function 'MatrixForm[
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These tables make it easy to see with increasing Fin (goes from 0 to 2 down the table) 
what the changes are in the stability of each fixed point. The first table is the first fixed 
point, the second table the second FP.  

Now, to make the root locus plots, a really long string of values needs to be created in 
order for the real and imaginary roots to be plotted. This is a long string of code that is 
basically brute force. The overall action occurring here is setting Fin to a value, 
evaluating that Fin through the eigenvalues, and saving the real portion separate from the 
imaginary portion by different columns. This is repeated for as many Fin values as you 
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desire. It is extremely repetitive, but works. After evaluating as many Fin values as you 
desired you can display the two columns through the ListPlot[] function. Example 
snippets of the code look like such:  

 

And the ListPlot[] function can look like this:  

 

And would make graphs like these (Fixed Point 1 on top and FP2 on bottom in this 
example):  
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Looking back at the tables of eigenvalues the plots can be interpreted. For FP1 the values 
start real negative and increase to real positive. There are no imaginary values. For FP2, 
increasing Fin values go from real positive to negative with imaginary values occurring 
in the transition from low to high Fin values.  
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6.7 Alternative Mathematica Method  

Some Mathematica 6 programs have an add-on or supplementary application known as 
ANALOG INSYDES which contains special options to create Root Locus Plots with 
ease. The Function is called RootLocusPlot. Enter the function that is to be analyzed, into 
Mathematica with the following format:  

 
RootLocusPlot[tfunc,{k,k_0 ,k_1}]  

 

tfunc is the transfer function in the frequency variable s and one real parameter k. k_0 and 
k_1 are the range for the real parameter k that is to be varied int he Root Locus Plot. 
Follow an example below.  

Example: Equation to make a Root Locus Plot with:  

 
H(s) = (a + 2 * s + s2) / (10 + 3 * a * s + 4 * s2 + s3)  

 
To make a Root Locus Plot follow the example code below:  

 
H4[s_, a_] := (a + 2*s + s^2)/(10 + 3*a*s + 4*s^2 + s^3)  

RootLocusPlot[H4[s, a], {a, 3, 5}]  

 

Image: Wolfram.com  

Other Mathematica forms for using RootLocusPlot[]:  
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RootLocusPlot[func] This form displays the a pole/zero diagram of a function i.e. func 
without parameters k and k_1.  

RootLocusPlot[rootloc] This form displays a root locus calculated with function 
RootLocusByQZ[].  

Refer to Mathematica link for further discuss about RootLocusByQZ  

Many options for the plot can be varied including the number of points, plot style, and 
plot color. All of these options and more can be viewed online with a Mathematica 
Tutorial  

6.8 Creating Root Locus Plots with Matlab 

Root Locus Generation in Matlab Three matlab files have been given to obtain the root 
locus plot and poles of the root locus plot at specified Kc values for a specific transfer 
function with relative ease. These three files are polesfunction.m, transferfunction.m, and 
Locusplotpoles.m .[1]. The transferfunction file is where the specific transfer function 
should be input. As written the only line needing variation is line 4 (Gs). The 
polesfunction file finds the poles of the given transfer function using built in matlab 
utilities and needs no variation, even after changing the transfer function. The 
Locusplotpoles file is what is called in matlab to generate the root locus plot as well as 
the value of the poles and integrates the two previous files. To use this file you type in the 
values of the specific Kc you require the pole values for as well as a single value of Kc 
for which you would like to see the root locus plot. An example of the inputs to and 
outputs of this file are given below.  

>> Locusplotpoles([0 50 100 200],0)  

ans =  

 1.0e+002 *  
 Columns 1 through 3  
       0            -0.0020            -0.0020 + 0.0000i   
0.5000            -0.0045            -0.0008 + 0.0022i   
1.0000            -0.0051            -0.0004 + 0.0027i   
2.0000            -0.0060            -0.0000 + 0.0034i  
 Columns 4 through 6  
 -0.0020 - 0.0000i          0                       0            
-0.0008 - 0.0022i      -0.0020                 -0.0020 + 
0.0000i  -0.0004 - 0.0027i      -0.0020 + 0.0000i       -
0.0020 - 0.0000i  -0.0000 - 0.0034i      -0.0020            
  -0.0020 + 0.0000i  
 Column 7  
            0            -0.0020 - 0.0000i  -0.0020            
-0.0020 - 0.0000i  
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The values inside the brackets are the specific Kc values for which poles are desired. The 
last value is the Kc which the root locus plot will be plotted for. Notice that the value of 
Kc for the root locus plot to be generated in this example is zero. This is so that the entire 
range of Kc can be examined using the interactive graph produced by matlab. If other 
specific Kc plots would like to be observed this value can be changed to generate these as 
well. The column lines give the values of Kc input and then value of the poles for each 
Kc. Note that the actual values are the values matlab gives multiplied by 100.  

Now that a basic understanding of root locus plots has been obtained here are a few 
websites which go further in depth into the underlying principles and generation of these 
plots.  

http://www.facstaff.bucknell.edu/mastascu/eControlHTML/RootLocus/RLocus1A.html  

This site gives animated examples which progress the value of the control variable 
through a root locus plot to better explain the fundamental function of these plots. It 
would be beneficial to go through a few of these examples to observe patterns of 
fluctuation of the control variable. The parameters for each animation are given to the left 
of the frame.  

http://www.engin.umich.edu/group/ctm/rlocus/rlocus.html  
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This page gives examples of how you generate a root locus plot of a given transfer 
function using matlab. While you go through the content on this page take special notice 
of the fact that none of the given transfer functions have an integrated Kc variable for 
which to generate a locus plot. To see how these plots can are generated when a value of 
Kc is specified see the code of Locusplotpoles.m. For clarification on the application of 
root locus plots see the given examples.  

 

6.9 Creating Root Locus plots with Excel and PPLANE 

Though this tactic may remain slightly more time consuming and work involved, there is 
a method in computing the Root Locus plot using PPLANE and Excel. This particular 
model really aids in better understanding of how to read and acknowledge a Root Locus 
Plot, and is also useful if alternative options for making a Root Locus Plot are not 
currently available.  

This method involves using PPLANE in order to find the eigenvalues for each 
equilibrium value, and then plotting these points with Excel software. In order to do this, 
suppose that you have the following differential equations that represent a reactor:  

(dX/dt) = -X+((2+X+Y)/(Y+3))  

(dY/dt) = Y*Fin+7-(2X)  

Graphing the following differential equations provides something similar to the following 
chart (a few lines were drawn, just to better show the graphs flow):  
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Using the ability to “Find an Equilibrium Point” in PPLANE (if you need help with 
PPLANE, click PhasePlaneAnalysis), one can select a particular equilibrium point on the 
field, and be able to provide the following results:  
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This window “pops up” in the higher left corner of the screen, when the equilibrium point 
is found. This window provides the eigenvalues for this equilibrium point.  

Depending what you are varying (in this case, Fin), all you would have to do is enter 
various values of this Fin into PPLANE, and plot the new set of differential formulas. 
After this is done, just find the same equilibrium point, and record the new given 
eigenvalues in excel. These values should be entered with an x-component (in one 
column) and a y-component (in another column) into excel, with the following rules:  

 
• Assuming the example 3+3i, 3-3i were given as eigenvalues.  

• For any given eigenvalue, the x-value of a particular eigenvalue is the real part of that 
number (ie: the “3” part).  

• For any given point, the y-value of a particular eigenvalue is the imaginary part of that 
number (ie: the “3i” part). If there is an imaginary component, ignore the “i,” though the 
number should be recorded in the y-component. If there is no imaginary number, the y 
component is zero.  

• For both cases, a positive is a positive, and a negative is a negative. Remember: 
imaginary numbers have 2 parts, a positive and negative “i” value.  

 
These points are simply recorded according to these rules, then the points are plotted 
against each other, with x components on the x-axis, and the y in the y-axis. Here is an 
example of an excel diagram, taken from the proposed diagram:  
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And, the excel data is then plotted, x against y, and is shown below:  
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As you can see, this particular model did not have any imaginary data. The root locus plot 
has been formed, and for all accounts of Fin, the eigenvalues are along the x-axis for the 
root locus plot.  

6.10 Practical Application 

In the past, it was necessary for engineers to master the techniques requred to efficiently 
construct root locus diagrams. In today's engineering world, this is not the case for one of 
two reasons. In many instances, root locus diagrams are not used industrially because 
they require models of the system which are generally not avaiable. If a model is 
available to develop a root locus diagram, there are computer applications that can 
develop the diagrams much faster than a person. Thus, energy and effort should be placed 
on understanding and interpreting a root locus diagram and understanding the general 
rules of stability for a root of the characteristic equation.  

 

6.11 Problems 

6.11.1 Example 1 

Given the following table of roots to the characteristic equation for a system:  

 

1) Construct a root locus plot (Making the plot by hand initially may give some a better 
understanding of what is going on as you will see the changes in the plot as you add each 
set of roots).  
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2) Determine the ranges of Kc that would lead to the following system responses: no 
oscillations, dampened oscillations, stable oscillations & unstable oscillations. Also, 
sketch what the output response would look like for a given step change in input for each 
range of Kc.  

3) How would the roots to the characteristic equation be different if this were PI control?  

 

Solution  

1) Root locus plot:  

First, we break the roots into their imaginary and real components:  

 

Then, we plot each point on a complex coordinate system (x-axis = real componebt, y-
axis = imaginary component).  
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Also, it is useful to add lines tracing the path of increasing Kc. These lines are added 
below. Also, the points where Kc= zero are generally labeled with an x. This has also 
been done in the figure below.  
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2) Ranges of Kc with explanations:  

We know that the range where there will be no oscillatory response is when Kc provides 
all real roots. This occurs when Kc is between 0 and 0.66. (Sketch will look like figure a 
in the "interpreting a root locus diagram" section above).  

Also, Kc yields dampened oscillations when the two of the roots of the characteristic 
equation are complex with negative real components. This occurs when Kc is greater than 
0.66 but less than 2.33. (Sketch will look like figure b in the "interpreting a root locus 
diagram" section above).  

Unstable oscillations are achieved when two of the roots yield complex numbers with 
positive real components. This occurs when Kc is greater than 2.33. Graphically, we see 
that when the points move past the dashed line, we will have unstable oscillations. This is 
represented in the figure below. (Sketch will look like figure c in the "interpreting a root 
locus diagram" section above).  

Based on the data provided, our best assumption is that at a Kc just below 2.33, we will 
be able to achieve stable oscillations. When Kc = 2.33 the real component of the complex 
root is 0.02 (slightly greater than zero). Ideally, we will achieve stable oscillations when 
the real component of the complex number is zero. (Oscillations should be consistent in 
magnitude).  
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Lastly, it is a good idea to label some values of Kc on the root locus plot. This will help 
orient the reader when they are trying to determine which point correspond to different 
values of Kc.  

 

 

3) If this were PI control, each root to the characteristic equation would be accompanied 
by not only a Kc value but also a value for integral control parameter, KI.  

6.11.2 Example 2 

You've been recently hired at MichChem Controls. In your first week at the company, a 
virus spreads through the computer network, effectively disabling most of the 
computational programs. Fortunately, the virus was halted before it was able to disable 
Mathematica. Shortly after the chaos from the virus subsides, your boss needs to know 
how to use Mathematica to create a root locus plot for several new Proportional only 
level control systems that are being tested. Being the highly skilled engineer that you are, 
he doesn't want you to waste time developing the root locus plots, rather, he wants you to 
write out example code, with a brief description that someone else could use to develop 
the root locus plot.  

The general characteristic equation for the new level control systems is:  
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f(s) = Ax^3 + Bx^2 - Cx + D +EKc  

Please, provide your boss with an example of the exact script that would need to be 
entered into Mathematica in order to develop the root locus plot. You should also brief 
descriptions explaining what the code does and what steps would need to be repeated to 
develop the plot.  

 
SOLUTION  

First, the user should develop a table of roots for the characteristic equation. This can be 
done using the solve function in Mathematica. The code would appear like this for Kc = 
0.  

(note: the In[#] appears for each new line of code. This will not be typed in by the user.)  

 
In[1]:= Solve[Ax^3 +Bx^2-Cx+D+E*(0)==0,x]  

 
This should be repeated for Kc = 0.1, 0.15, 0.225, 0.5, 0.75, 1.5, etc. (until the roots of 
the equation begin to yield two complex solutions whose real components are positive). 
After a sufficient number of roots have been obtained for the characteristic equation at 
different values of Kc, these will need to be tabulated. To develop a table of data in 
Mathematica input the following code:  

 
In[2]:= A = {{real component 1, imaginary component 1}, {real component 2,imaginary 
component 2},...,{real component n, imaginary component n}}  

 
This tabulates the real components and the imaginary components at each value of Kc. 
Once all of the values are tabulated, the root locus plot can be developed using the 
ListPlot function.  

 
In[3]:= ListPlot[A, PlotStyle -> PointSize[0.02]  

 
This will plot all of the tabulated data in In[2] which is the root locus plot.  

6.11.3 Multiple Choice 1 

1. A root locus plot is used to:  

A) Identify the solutions to the characteristic transfer function.  
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B) Show the response time of the feedback system to a disturbance.  

C) Graphically illustrate the effect of Kc on the dynamic characteristics of the feedback 
system.  

D) Choose the optimal Kc for the feedback system.  

 
Ans: C  

6.11.4 Multiple Choice 2 

2. When a root is complex with positive real parts, the oscillations are:  

A) Decreasing  

B) Increasing  

C) Unstable  

D) A & C  

E) B & C  

 

Ans: E  

6.12 Sage's Corner 

A brief narration for a better understanding of root locus plots.  
 

http://video.google.com/googleplayer.swf?docId=384325950654949015 

To view slides [[2]]  

A narration about the basics of root locus plots and an example for a P-only control 
system.  

http://video.google.com/googleplayer.swf?docId=1650144670328879934 

If you have problems viewing the google version of the video, you can also view it on 
Youtube by clicking here.  

For the unnarrated version of the powerpoint, please click here.  
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7.1 Introduction 

The stability of a process control system is extremely important to the overall control 
process. System stability serves as a key safety issue in most engineering processes. If a 
control system becomes unstable, it can lead to unsafe conditions. For example, 
instability in reaction processes or reactors can lead to runaway reactions, resulting in 
negative economic and environmental consequences.  

The absolute stability of a control process can be defined by its response to an external 
disturbance to the system. The system may be considered stable if it exists at a consistent 
state or setpoint and returns to this state immediately after a system disturbance. In order 
to determine the stability of a system, one often must determine the eigenvalues of the 
matrix representing the system’s governing set of differential equations. Unfortunately, 
sometimes the characteristic equation of the matrix (the polynomial representing its 
eigenvalues) can be difficult to solve; it may be too large or contain unknown variables. 
In this situation, a method developed by British mathematician Edward Routh can yield 
the desired stability information without explicitly solving the equation.  

Recall that in order to determine system stability one need only know the signs of the real 
components of the eigenvalues. Because of this, a method that can reveal the signs 
without actual computation of the eigenvalues will often be adequate to determine system 
stability.  

To quickly review, negative real eigenvalue components cause a system to return to a 
steady state point (where all partial derivatives equal zero) when it experiences 
disturbances. Positive real components cause the system to move away from a stable 
point, and a zero real component indicates the system will not adjust after a disturbance. 
Imaginary components simply indicate oscillation with a general trend in accordance 
with the real part. Using the method of Routh stability, one can determine the number of 
each type of root and thus see whether or not a system is stable. When unknown variables 
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exist in the equation, Routh stability can reveal the boundaries on these variables that 
keep the roots negative.  

7.2 The Routh Array 

The Routh array is a shortcut to determine the stability of the system. The number of 
positive (unstable) roots can be determined without factoring out any complex 
polynomial.  

7.2.1 Generating the Array 

The system in question must have a characteristic equation of a polynomial nature. as 
shown below:  

 

In order to examine the roots, set P(S)=0, which will allow you to tell how many roots are 
in the left-hand plane, right hand plane, and on the j-omega axis. If the system involves 
trigonometric functions it needs to be fit to a polynomial via a Taylor series expansion. 

One necessary condition for stability is that . (If , all coefficients 
may be multiplied by -1 before checking). The other condition is that all values in column 
1 of the Routh array must be positive for the system to be stable.  

 

This flow diagram shows the generation of a Routh array for an idealized case with m,n 
representing the location in the matrix.  

 
The coefficients of the polynomial are placed into an array as seen below. The number of 
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rows is one more than the order of the equation. The number of sign changes in the first 
column indicate the number of positive roots for the equation.  

  
Row 1   
Row 2   
Row 3   
Row 4   

  
Row 5   
Row 6   
Row 7   

In the array, the variables b1,b2,c1,c2,etc. are determined by calculating a determinant 
using elements from the previous two rows as shown below:  

 

 

 
The general expression for any element x after the first two rows with index (m,n) is as 
follows:  

For  

 

Note, that if the Routh array starts with a zero, it may still be solved (assuming that all the 
other values in the row are not zero), by replacing the zero with a constant, and letting 
that constant equal a very small positive number. Subsequent rows within that column 
that have this constant will be calculated based on the constant choosen.  
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Once the array is complete, apply the following theorems to determine stability:  

1) If all of the values in the fist column of the Routh array are >0, then P(S) has all 
negative real roots and the system is stable.  

2) If some of the values in the first column of the Routh array are <0, then the number of 
times the sign changes down the first column will = the number of positive real roots in 
the P(S) equation.  

3) If there is 1 pair of roots on the imaginary axis, both the same distance from the origin 
(meaning equidistant), then check to see if all the other roots are in the left hand plane. If 
so, then the imaginary roots location may be found using AS2 + B = 0, where A and B are 
the elements in the Routh array for the 2nd to last row.  

To clarify even further, an example with real numbers is analyzed.  

7.2.2 Example Array 

The following polynomial was generated from a sample system.  

 

The preceding polynomial must be investigated in order to determine the stability of the 
system. This is done by generating a Routh array in the manner described above. The 
array as a result of this polynomial is,  

  

Row 1   
Row 2   
Row 3   
Row 4   

In the array shown above, the value found in the third row is calculated as follows. 

The array can now be analyzed. When looking 
down the first column, it can be seen that 5 is positive in magnitude, then the sign 
changes in the -10 entry, and the sign changes a second time to positive 17. This counts 
as two changes in sign, which corresponds to two positive roots, making the system 
unstable.  
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7.3 Finding Stable Control Parameter Values 

Often, for a unit operation, a PID parameter such as controller gain (Kc), the integral time 
constant (Ti), or the derivative time constant (Td) creates an additional variable in the 
characteristic equation. This can be carried through the computations of the Routh array 
to indicate which values of the variable will provide stability to the system through by 
preventing positive roots from occuring in the equation. For example, if a controller 
output is governed by the function:  

 

The stable values of Td can be found via a Routh array:  

  
Row 1   
Row 2   
Row 3   
Row 4   

We reveal in order to keep the first column elements positive, so 
this is the stable range of values for this parameter.  
If multiple parameters were in the equation, they would simply be solved for as a group, 
yielding constraints along the lines of "Ti + Kc > 2" etc, so any value chosen for one 
parameter would give a different stable range for the other.  

7.4 Special Cases 

There are a few special cases that one should be aware of when using the Routh Test. 
These variances can arise during stability analysis of different control systems. When a 
special case is encountered, the traditonal Routh stability solution methods are altered as 
presented below.  

7.4.1 One of the coefficients in the characteristic equation equals zero 

If the power of the 0*Sn is , replace the zero with a quantity, ε, which would be 
positive and will approach zero. Then continue with your analysis as normal. Essentially 
this gives the limit of the roots as that coefficient approaches zero. (If the power = 0, see 
Case 3). For example,  

Equation:  
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Working Equation:  

 

Row 1   
Row 2   

Row 3  
 

Row 4   

 

Since ε is positive we know that in the first column row 2 will be positive, row 4 will be 
positive, and row 3 will be negative. This means we will have a sign change from 2 to 3 
and again from 3 to 4. Because of this, we know that two roots will have positive real 
components. If you actually factor out the equation you see that 

, showing that we do have 2 positive roots. Both of 
these roots are equal to 2, so there is technically only one root, but in any case we know 
the system is unstable and must be redesigned.  

7.4.2 One of the roots is zero 

This case should be obvious simply from looking at the polynomial. The constant term 
will be missing, meaning the variable can be factored from every term. If you added an ε 
to the end as in case 1, the last row would be ε and falsely indicate another sign change. 
Carry out Routh analysis with the last zero in place.  

Equation:  

Row 1   
Row 2   
Row 3   
Row 4   

As you can see in column one we have row 1 positive, row 2 and 3 negative, and row 4 
zero. This is interpreted as one sign change, giving us one positive real root. Looking at 
this equation in factored form,  
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we can see that indeed we have only one positive root equal which equals 2. The zero in 
the last row indicates an additional unstable root of zero. Alternatively, you may find it 
easier to just factor out the variable and find the signs of the remaining eigenvalues. Just 
remember there is an extra root of zero.  

 

7.4.3 A row full of zeros 

When this happens you know you have either a pair of imaginary roots, or symmetric real 
roots. The row of zeros must be replaced. The following example illustrates this 
procedure.  

Equation:  

Row 1   
Row 2   
Row 3   
Row 4   

Row 4 contains all zeros. To determine its replacement values, we first write an auxiliary 
polynomial A determined by the entries in Row 3 above.  

 

Notice that the order decreases by 1 as we go down the table, but decreases by 2 as we go 
across.  

We then take the derivative of this auxiliary polynomial.  

 

The coefficients obtained after taking the derivative give us the values used to replace the 
zeros. From there, we can proceed the table calcuations normally. The new table is  

Row 1   
Row 2 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Row 3   
Row 4   
Row 5   

In fact, the purely imaginary or symmetric real roots of the original polynomial are the 
same as the roots of the auxiliary polynomial. Thus, we can find these roots.  

 

 

Because we have two sign changes, we know the other two roots of the original 
polynomial are positive.  

In fact, after factoring this polynomial, we obtain  

 

Therefore, the roots are , where in this case, the root 3 has multiplicity 
2.  

7.5 Limitations 

Routh arrays are useful for classifying a system as stable or unstable based on the signs of 
its eigenvalues, and do not require complex computation. However, simply determing the 
stability is not usually sufficient for the design of process control systems. It is important 
to develop the extent of stability as well as how close the system is to instability. Further 
stability analysis not accounted for in the Routh analysis technique include finding the 
degree of stability, the steady state performance of the control system, and the transient 
response of the system to disturbances.  

More involved techniques, such as those discussed in Eigenvalues and Eigenvectors, 
must be used to further characterize the system stability (with the exception of system 
polynomials resulting in pure imaginary roots). Another limitation of the Routh method 
occurs when the polynomial in question becomes so large that Routh stability is too 
computationally time consuming (a personal judgment). For this situation another 
method, such as a root locus plotmust be used.  

Note that for defining stability, we will always start out with a polynomial. This 
polynomial arises from finding the eigenvalues of the linearized model. Thus we will 
never encounter other functions, say exponenential functions or sin or cos functions in 
general for stability analysis in control theory.  



  167 

7.6 Advantages Over Root Locus Plots 

Routh stability evaluates the signs of the real parts of the roots of a polynomial without 
solving for the roots themselves. The system is stable if all real parts are negative. 
Therefore unlike root locus plots, the actual eigenvalues do not need to be calculated for a 
Routh stability analysis. Furthermore, sometimes the system has too many unknowns to 
easily construct and interpret a root locus plot (e.g. with two PID controllers there are the 
variables Kc1, Kc2, τi1, τi2, τd1, and τd2).  

7.7 Example 1 

Assume the following polynomial describes the eigenvalues of a linearized model of your 
process. For this polynomial, complete a Routh array and determine the system's 
stability?  

 

Answer  
Since P(X) is a fourth-order polynomial, the Routh array contains five rows.  

Row 1   

Row 2   

Row 3   

Row 4   

Row 5   

 
Rows 1 and 2 correspond to the coefficients of the polynomial terms:  

Row 1   

Row 2   

 
Rows 3, 4, and 5 contain the determinants using elements from the previous two rows.  

Row 3
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Row 4

  

Row 5   

 
Therefore,  

Row 3   

Row 4   

Row 5   

 
The complete Routh array:  

Row 1   

Row 2   

Row 3   

Row 4   

Row 5   

 
Since all the values in the first column are positive, the equation P(x) has all negative 
roots and the system is stable.  

7.8 Example 2 

Consider a system with the following characteristic equation:  
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Using a P-only controller, find the range of controller gain that will yield a stable system.  

Answer  

Since the equation is a third-order polynomial, the Routh array has four rows. Routh 
Array:  

  
Row 1   
Row 2   

Row 3  
 

Row 4   

For the system to be stable, all the elements of the first column of the Routh array have to 
be positive.  

The first column will contain only positive elements if:  

•  

 

•  

 

 

Acceptable stable range  

7.9 Example 3 

Consider a system with the following characteristic equation:  
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Determine the stability of this system.  

 
Answer  
 
One of the coefficients in the characteristic equation equals 0. We replace the zero with a 
quantity which would be positive (approach zero from the right-hand side) and continue 
with the analysis as normal.  
 

Working equation:  

Row 1   
Row 2   

Row 3  
 

Row 4  
 

Row 5  
 

Row 6   

 
Since ε is positive, in the first column, there are two sign changes, from row 1 to row 2 
and from row 2 to row 3. Thus, we know that the roots will have two positive real 
components. If you actually factor out the equation you will see that, 

, showing that we do have two positive 
roots, both equal to 2.  
 
Additional complication exists because at row 5, as ε goes to zero, the term also goes to 
zero, which means that for row 5, we are getting a row full of zeros. This means that we 
have a pair of imaginary roots, and this situation can be solved using the equation, 

.  

 

In this case, the working equation is,  
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The imaginary roots are,  

7.10 Example 4 

You are an engineer at an icecream factory. There is a storage vat with a cooling system 
that has a PI controller scheme. It has the following characteristic equation:  

 
 
Your job is to determine the constraints on the values Kc and Ti such that the system is 
stable.  

 
Answer  
 
The goal is to make the matrix such that the first column has no sign changes. Since the 
first two entries in the first column are numbers and positive, therefore all other values in 
this column must be positive.  
 

Working equation:  

Row 1   
Row 2   
Row 3   

Row 4  

 
Row 5   

 

Since is in the first column, it gives the constraint . 

Likewise, must be positive, giving the constraint . Which 

brings the final entry of . By dividing by three and 
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rearrangement of the terms, it is seen that . The terms are then 

rearranged to arrive at the inequality: .  

Thus the stable conditions for the constants are:  

 
 

 

 

7.11 Sage's Corner 

Routh Stability Anaylsis Example  

http://video.google.com/googleplayer.swf?docId=-2205168127672510812 

Routh Stability Analysis Example Slides without narration  

 

http://video.google.com/googleplayer.swf?docId=2535630044259965045 

Routh Stability Slides  
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1.1 Introduction 

There are many different control mechanisms that can be used, both in everyday life and 
in chemical engineering applications. Two broad control schemes, both of which 
encompass each other are feedback control and feed-forward control. Feedback control is 
a control mechanism that uses information from measurements to manipulate a variable 
to achieve the desired result. Feed-forward control, also called anticipative control, is a 
control mechanism that predicts the effects of measured disturbances and takes 
corrective action to achieve the desired result. The focus of this article is to explain 
application, advantages, and disadvantages of feedback control.  

Feedback control is employed in a wide variety of situations in everyday life, from 
simple home thermostats that maintain a specified temperature, to complex devices that 
maintain the position of communication satellites. Feedback control also occurs in natural 
situations, such as the regulation of blood-sugar levels in the body. Feedback control was 
even used more than 2,000 years ago by the Greeks, who manufactured such systems as 
the float valve which regulated water level. Today, this same idea is used to control water 
levels in boilers and reservoirs.  

1.2 Feedback Control 

In feedback control, the variable being controlled is measured and compared with a target 
value. This difference between the actual and desired value is called the error. Feedback 
control manipulates an input to the system to minimize this error. Figure 1 shows an 
overview of a basic feedback control loop. The error in the system would be the Output - 
Desired Output. Feedback control reacts to the system and works to minimize this error. 
The desired output is generally entered into the system through a user interface. The 
output of the system is measured (by a flow meter, thermometer or similar instrument) 
and the difference is calculated. This difference is used to control the system inputs to 
reduce the error in the system.  
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Figure 1. Feedback control loop (Adapted from Lee, Newell, and Cameron 1998: 6) 

 

 
cookies 
 
To understand the principle of feedback control, consider Figure 2. In order to bake 
cookies, one has to preheat an electric oven to 350°F. After setting the desired 
temperature, a sensor takes a reading inside the oven. If the oven is below the set 
temperature, a signal is sent to the heater to power on until the oven heats to the 
desired temperature. In this example, the variable to be controlled (oven 
temperature) is measured and determines how the input variable (heat into oven) 
should be manipulated to reach the desired value.  

 

 

Figure 2. Feedback control in an electric oven (Adapted from Lee, Newell, and 
Cameron 1998: 6) 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Feedback control can also be demonstrated with human behavior. For example, if a 
person goes outside in Michigan winter, he or she will experience a temperature drop in 
the skin. The brain (controller) receives this signal and generates a motor action to put on 
a jacket. This minimizes the discrepancy between the skin temperature and the 
physiological set point in the person. The example is illustrated below:  

 

 
There are two types of feedback control: negative and positive. Negative feedback is the 
most useful control type since it typically helps a system converge toward an equilibrium 
state. On the other hand, positive feedback can lead a system away from an equilibrium 
state thus rendering it unstable, even potentially producing unexpected results. Unless 
stated explicitly, the term feedback control most often refers to negative feedback.  

1.2.1 Negative Feedback 

By definition, negative feedback is when a change (increase/decrease) in some variable 
results in an opposite change (decrease/increase) in a second variable. This is 
demonstrated in Figure 3 where a loop represents a variation toward a plus that triggers a 
correction toward the minus, and vice versa. Negative feedback leads to a tight control 
situation whereby the corrective action taken by the controller forces the controlled 
variable toward the set point, thus leading the system to oscillate around equilibrium.  
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Figure 3. Negative Feedback: Maintenance of equilibrium and convergence 

 

Figure 4 shows the negative feedback mechanism between Duck Population and Duck 
Death Rate. For a given flock, we say that if the death rate increases, the duck flock will 
decrease. On the contrary, if the duck flock increases, the death rate of the flock will 
decrease.  

 

 
Figure 4. Duck population negative feedback loop 

1.2.2 Positive Feedback 

As opposed to negative feedback, positive feedback is when a change (increase/decrease) 
in some variable results in a subsequently similar change (increase/decrease) in a second 
variable. In some cases, positive feedback leads to an undesirable behavior whereby the 
system diverges away from equilibrium. This can cause the system to either run away 
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toward infinity, risking an expansion or even an explosion, or run away toward zero, 
which leads to a total blocking of activities (Figure 5).  

 

 
Figure 5. Positive Feedback: Exponential Growth and divergent behavior, no 

intermediate situation 

 

Figure 6 shows the feedback mechanism responsible for the growth of a duck flock via 
births. In this example, we consider two system variables: Duck Births and Ducks 
Population. For a given flock, we state that if the birth rate increases, the duck flock will 
increase. Similarly, if the duck flock increases, the birth rate of the flock will increase.  

 
Figure 6. Duck population positive feedback loop 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1.3 Applications 

Control mechanisms are used to achieve a desired output or operating condition. More 
specifically, feedback control is a useful mechanism in numerous applications across 
many engineering fields. In chemical engineering, feedback control is commonly used to 
manipulate and stabilize the conditions of a CSTR. Figure 7 shows how feedback control 
can be effectively used to stabilize the concentrations of reactants in a CSTR by adjusting 
the flow rates.  

1.3.1 CSTR with Feedback Control 

Several types of feedback control can be used to manipulate the conditions in a CSTR: 
positive feedback, negative feedback, or a combination of both. Figure 7 illustrates each 
of these possible situations. As depicted below, each CSTR is equipped with two 
electrodes that measure the voltage of the solution contained inside the reactor. A 
computer adjusts the flow rates of the pump(s) in response to any changes in the voltage.  
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Figure 7. CSTR with feedback control: equipment and control configuration (Dolnik et 
al. 1997)  

• (a) All of the reagents are pumped into the reactor by the same pump. The 
flow rate through the pump is adjusted constantly by a negative feedback 
mechanism; when level of the iodide solution is low, the computer detects 
the insufficiency and increases the flow rate of all the reactants.  

• (b) The iodide solution is pumped into the reactor by one pump, while the 
other two reactants are pumped in at a constant flow rate. The flow rate of 
the iodine solution is controlled by a negative feedback mechanism; when 
the computer detects an insufficient amount of iodine in the CSTR, it signals 
the pump. The flow rate of iodine into the CSTR is therefore increased. 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• (c) Two pumps are used to feed the reactor: one pump for the iodine solution 
and one for the ClO2 and H+ solutions. The flow of the iodine solution is 
controlled by a negative feedback mechanism; if the computer detects an 
iodine deficiency, it signals Pump 2 to increase the flow rate of the iodide 
solution. The flow rate of the ClO2 and H+ solutions is controlled by a positive 
feedback mechanism; if the computer detects an iodide deficiency, it will 
signal Pump 1 to decrease the flow rates of ClO2 and H+,thereby increasing 
the concentraion of iodide.  

It is easy to see that by combining feedback controls, such as in Figure 7 (c), output 
concentrations and operating conditions can be maintained at the desired state much more 
effectively than by only using one type of feedback control.  

1.4 Advantages and Disadvantages 

The unique architecture of the feedback control provides for many advantages and 
disadvantages. It is important to look at the exact application the control will be used for 
before determining which type of control will be the best choice (see Cascade Control 
Systemsand Feed Forward Control).  

Advantages  

The advantages of feedback control lie in the fact that the feedback control obtains data at 
the process output. Because of this, the control takes into account unforeseen 
disturbances such as frictional and pressure losses. Feedback control architecture ensures 
the desired performance by altering the inputs immediately once deviations are observed 
regardless of what caused the disturbance. An additional advantage of feedback control is 
that by analyzing the output of a system, unstable processes may be stabilized. Feedback 
controls do not require detailed knowledge of the system and, in particular, do not require 
a mathematical model of the process. Feedback controls can be easily duplicated from 
one system to another. A feedback control system consists of five basic components: (1) 
input, (2) process being controlled, (3) output, (4) sensing elements, and (5) controller 
and actuating devices. A final advantage of feedback control stems from the ability to 
track the process output and, thus, track the system’s overall performance.  

Disadvantages  

Time lag in a system causes the main disadvantage of feedback control. With feedback 
control, a process deviation occurring near the beginning of the process will not be 
recognized until the process output. The feedback control will then have to adjust the 
process inputs in order to correct this deviation. This results in the possibility of 
substantial deviation throughout the entire process. The system could possibly miss 
process output disturbance and the error could continue without adjustment. Generally, 
feedback controllers only take input from one sensor. This may be inefficient if there is a 
more direct way to control a system using multiple sensors. Operator intervention is 
generally required when a feedback controller proves unable to maintain stable closed-
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loop control. Because the control responds to the perturbation after its occurrence, perfect 
control of the system is theoretically impossible. Finally, feedback control does not take 
predictive control action towards the effects of known disturbances.  

1.5 Closed Loop Control versus Open Loop Control 

Although there are various types of controllers, most of them can be grouped into one of 
the two broad categories: closed loop and open loop controllers. The subsections below 
summarize the differentiation.  

Closed Loop System  

In a closed loop control system, the input variable is adjusted by the controller in order to 
minimize the error between the measured output variable and its set point. This control 
design is synonymous to feedback control, in which the deviations between the measured 
variable and a set point are fed back to the controller to generate appropriate control 
actions.The controller C takes the difference e between ther reference r and the output to 
change the inputs u to the system. This is shown in figure below. The output of the 
system y is fed back to the sensor, and the measured outputs go to the reference value  

 

Open Loop System  

On the other hand, any control system that does not use feedback information to adjust 
the process is classified as open loop control. In open loop control, the controller takes in 
one or several measured variables to generate control actions based on existing equations 
or models. Consider a CSTR reactor that needs to maintain a set reaction temperature by 
means of steam flow (Figure 8): A temperature sensor measures the product temperature, 
and this information is sent to a computer for processing. But instead of outputting a 
valve setting by using the error in temperature, the computer (controller) simply plugs the 
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information into a predetermined equation to reach output valve setting. In other words, 
the valve setting is simply a function of product temperature.  

 
Figure 8. Example of CSTR open loop controller. (A) System diagram. (B) Open 

control loop. 

Note that the open loop controller only uses the current state of the measured variable 
(product temperature) and a model to generate its control output (valve setting), as 
opposed to monitoring errors that have already taken place. As the result, the quality of 
the control system depends entirely upon the accuracy of the implemented model, which 
is challenging to develop. For this reason, feedback, or closed loop, controllers are 
generally recognized as the more reliable control system.  

Short Summary on Closed and Open Loop Controllers  

Feedback Controller = Closed Loop Controller  

Non-Feedback Controller = Open Loop Controller  

1.6 Worked Out Example 1 

Your company is designing a plant to produce biodiesel. Several of the unit processes 
require heated water that is under tight temperature control. The desired temperature of 
the water is 65°C ± 1°C. To accomplish this, steam will be used in a shell and tube heat 
exchanger to heat the incoming water.  

A member on the project team suggests the following feed forward control system to 
regulate the temperature of the water stream. Temperature and flow rate data for the 
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incoming steam and water streams will be used along with energy balance calculations to 
determine the flow rate of steam required to keep the exiting water stream at the 
appropriate temperature.  

 

You on the other hand suggest a feedback control system. Place the appropriate sensors, 
actuators, and controllers to implement a feedback control system that will allow for the 
control of the exiting water temperature.  

What are some of the advantages and disadvantages of using a feedback control system 
over a feed forward control system?  

 
Solution  

In the feedback control system, the temperature of the variable to be controlled is 
measured directly. If the exiting water temperature is too high, the controller will 
decrease the amount of steam entering the shell side of the heat exchanger. Likewise, if 
the exiting water temperature is too low, the controller will increase the amount of steam 
entering the shell side of the heat exchanger. This is an example of negative feedback at 
work to keep the exiting temperature at the setpoint.  
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Advantages  

• Effective regardless of the origin of the disturbance.  
• Relatively simple to implement. A mathematical model of the exiting water 

temperature is not needed.  

 
Disadvantages  

• Corrective action taken only after there is a deviation in the output from the 
set point.  

• Can cause instability if incorrectly tuned  

1.7 Worked Out Example 2 

Of the following two scenarios, which would be the best to use a feedback control?  

• An aqueous acidic waste stream from a process must be neutralized before it 
is discharged from the plant. If the stream goes below pH 6.0, your company 
will be assessed a minimum $10,000 fine by the EPA for Clean Water Act 
violations. A relatively inexpensive source of lime slurry, suitable for acid 
neutralization purposes, is available. The pH of the acidic waste stream and 
the concentration of the lime slurry are both subject to fluctuations. It is 
desirable to maintain the pH of the waste stream as close to pH 6.0 as 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reasonably possible (neutralizing the waste stream to a higher pH will use 
more lime and therefore be more expensive).  

• You work for a company that uses concentrated red wine to make a steak 
sauce. The wine is concentrated by passing it through an evaporator, which 
evaporates some of the water and alcohol present in the wine. The amount of 
steam delivered to the evaporator can be controlled. Your objective is to 
obtain a set concentration (quantified as density) of the concentrated wine 
effluent from the evaporator. Different wines may be used so the initial 
concentration is not always known. Small fluctuations in the concentration of 
the reduced wine are acceptable, as these will not cause perceptible effects 
on the flavor or consistency of the steak sauce.  

 
Solution  

• A feed‐forward control or feed‐forward/feedback system would most 
appropriate for the first scenario. In this situation, it is critical that the pH of 
the waste stream not drop below the setpoint of pH 6. It is also desirable to 
minimize the use of lime, since this reduces the cost of the waste treatment. 
Therefore very tight process controls are desired, for which a feed‐forward 
or feed forward/feedback system would be most appropriate. A feed‐
forward system can adjust to changes in inputs before they cause deviations 
in the output stream. Additionally, since there are important fluctuations two 
process inputs (pH variations in both the lime slurry and the acidic waste), 
feed‐forward controls would be favored over feedback control.  

• A feedback control would be most useful for the second scenario. There is 
only one monitored variable (concentration of reduced wine) and only one 
manipulated variable (steam). Since minor fluctuations about the wine 
concentration set point are not critical, the performance of a typical feedback 
control system would be acceptable. It would be hard to implement a feed‐
forward control system since the concentration of the wine feed to the 
evaporator may fluctuate and is not monitored.  

 

1.8 Worked Out Example 3 

Using a shell and tube heat exchanger, a fuel stream is pre-heated using a steam stream 
from the utilities part of the plant. The plant is located in Ann Arbor, Michigan. 
Originally, a feedback controller is implemented to control the amount of steam coming 
into the shell and tube exchanger based on the temperature of the flow out of the 
exchanger. This is depicted below.  
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Upon implementation in the process, it was found that the feed temperature was not the 
only factor in the variance of the outlet stream. Because the plant is operated in 
Michigan, the steam temperature varies between seasons, colder in the winter and warmer 
in the summer. Propose a control scheme to account for both of these variances.  

 
Solution  

Here a cascade control scheme would be optimal to control the outlet temperature of the 
stream to a desired temperature, not just a feedback controller. The scheme is depicted 
below.  

 

 
The feedback control previously used to control the system is still implemented, however 
it is now reporting to the flow controller before the steam control valve. Also, there is a 
temperature controller now incorporated in the control scheme. This is a feed forward 
controller that also controls the flow controller for the steam control valve. Thus the 
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primary control loops, the feed forward and feedback control loops, comprise the 
secondary control loop in the cascade control. This incorporates both the temperature of 
the incoming feed stream, which is controlled by feedback control via the temperature 
sensor after the exchanger. This is because the temperature of the outlet stream would 
vary with the temperature of the inlet stream if the steam stream were not accounted for. 
But accounting for the temperature of the steam stream, via a feed forward controller that 
is based on a temperature sensor before the control valve, will give a better 
approximation and more control over the temperature of the outlet stream. This is also a 
very good example of combining several control architectures and how they function in a 
real-world application, and why a feedback controller in not necessarily the most accurate 
control.  

1.9 Worked Out Example 4 

A blending system is used to mix a process stream (Stream 1, pure A) with liquid catalyst 
(Stream 2, pure B). The mixture then flows into a reactor. The flowrate of stream 1 (f1) 
can vary but it is possible to manipulate the flowrate of stream 2 (f2). The outflow rate 
from the reactor (f3) also can be manipulated via a pump. The level in the measures by a 
level transmitter that sends its signal to a level controller. All three flow rates can be 
measured, but measuring the composition of the streams is impossible. In order to control 
the level of the tank, and engineer has two options:  

• (i) manipulate f2 while holding f3 constant  
• (ii)manipulate f3 while holding f2 constant  

Could method (i) utilize feedforward or feedback control of the level? If so, explain how 
it can be done.  

Could method (ii) utilize feedforward or feedback control of the level? If so, explain how 
it can be done.  
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Answer For configuration (i)  

• Feedback: If you measure h, when it goes up, you can reduce f2, and when it 
goes down, you can increase f2  

• Feedforward: If you measure f1, when it goes up, you can reduce f2, and and 
when it goes down, you can increase f2. You are indirectly controlling h due 
to the mass balance.  

For configuration (ii)  

• Feedback: If you measure h, when it goes up, you can increase f3, and when it 
goes down, you can decrease f3.  

• Feedforward: If you measure f1, when it goes up, you can reduce f3, and 
when it goes down, you can reduce f3.  

This problem was meant to explore different strategies for both feedback and feedforward 
control configurations. Additionally, it demonstrates how controlling the manipulated 
variables (either f2 for configuration (i) or f3 for configuration (ii)) affects the desired 
outcome (maintaining consistent tank height).  

1.10 Sage's Corner 

Powerpoint Slides from the example  
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you must click on this link below to view the video:  

• http://video.google.com/videoplay?docid=‐8096439316697651765 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Section 2. Feed forward control: 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When 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2.1 Introduction 

Feed-forward control is a useful tool in the field of chemical engineering when there is a 
known set of deviations occurring upstream of the system. This would allow engineers to 
account for that particular deviation within the controller and reduce the effects of the 
deviation on the system. An example would be a car's cruise-control system. If it has 
feedback control, when there is a slope and therefore a speed reduction, the feedback 
controller would compensate by applying additional throttle to the engine. If it uses a 
feed-forward controller instead, the controller would calculate the slope beforehand and 
throttle the engine before any speed reduction occurs. In this sense, the controller predicts 
the incoming deviation and compensates for it.  

The following block diagram shows a feed-forward controller implimented on a idealized 
process with a setpoint R and load U:  

Where:  

represents the process operator, represents the measurement operator, 

represents the controller operator, and FF is the feed-forward controller.  
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The perfect feed-forward controller is the inverse of the process operator,  

For example:  

In General:  

(in the language of operator or state space).  

[Note: this needs some expansion and checking == RZ]  

2.2 Feed‐Forward Control 

The objective of feed-forward control is to measure disturbances and compensate for 
them before the controlled variable deviates from the setpoint. Feed-forward control 
basically involves a control equation which has certain corrective terms which account 
for predicted disturbances entering the system. The equation is only effective for gains in 
a steady state process. Dynamic compensation should be used in the control equation if 
there are any dynamic deviations with the process response to the control action. This 
dynamic compensation ability will be discussed further in the next section.  

One form of a feed-forward control would be a Derivative (D) control which calculates 
the change in error and compensates proportionately. But a D-control can’t perform by 
itself and usually requires working in conjunction with a Proportional (P) or Proportional 
Integral (PI) control. More information can be found in the PID Intro article.  
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Simulated below is a typical shell and tube heat exchanger which heats up liquid water 
using steam. 
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Adding a feed-forward control into the system manipulates the amount of steam required 
to compensate for the varying amounts of liquid feed coming in. 

 

Overall heat balance:  

Heat into the system is equal to the heat leaving the system.  

Heat gained by liquid:  

(1)  

Where:  

-- mass flow rate of the liquid  

-- the heat capacity of the liquid  

-- the input temperature of the liquid 

-- the desired temperature setpoint for the liquid  
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Heat lost by steam:  

(2)  

Where:  

-- heat of vaporization 
-- mass flow rate of the steam 

 
Therefore:  

(3)  

To compensate for a deviation from the desired inlet temperature of the liquid water, the 
amount of steam must be adjusted. Equation (3) acts as the control equation for the feed-
forward controller. This controller actuates the inlet valve of the steam and acquires 
temperature and flow rate data from the inlet streams. Based on the desired temperature 
setpoint, T2, and the actual input temperature, T1, we can use this equation to calculate 
the mass flow rate of the steam required to compensate for the temperature deviation.  

2.2.1 Accounting for System Non‐Idealities 

Often, one of the most difficult tasks associated with created a functional feed forward 
controller is determining the necessary equations that govern the system. Even more 
complexities arise when the system is not, and cannot be treated as, ideal. This is the case 
with many real and practical systems. There is simply too much heat lost or too many 
unforeseen effects to safely assume ideal conditions. The pure math of the example above 
does not account for these effects.  

The equations will output a value to a control valve (often in voltage). That voltage will 
be derived from some previously determined relationship between voltage, valve %open, 
and steam flow rate. A very simple way to begin managing the issue of non-ideality is by 
including a "non-ideality constant". This can be an additive or a multiplicative constant 
that adjusts the voltage output determined by the equations.  

Voltage output is some function of the calculated required steam flow  
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or Voltage output is adjusted 
by some constant  

 
This non-ideality constant often must be determined by trial. One way to accomplish 
this is to use manual control to determine the output voltage needed at various inlet 
conditions. Using the data from the manual trials, and the resulting voltage that your 
unadjusted feed forward controller would output, it is possible to determine by what 
factor your feed forward voltage needs to be adjusted. For example, if by manual control 
you determine that for inlet conditions X the required voltage is 300mV and your feed 
forward controller is only outputting 270mV for conditions X, you need some factor to 
adjust.  

It may also happen that your "non-ideality constant" will not turn out to be constant when 
you begin to look at the data. In this situation, consider using a linear relationship 
between the non-ideality factor and some inlet condition or implementing CASE or IF 
statements covering discrete ranges of inlet conditions and giving different constants.  

2.3 Dynamic Compensation 

Dynamic compensation is a method to account for factors such as lead and lag times 
when using feed-forward control. For instance, in the example above, when the feed 
forward controller monitors a temperature decrease in the liquid feed, it will increase the 
steam flow rate - the manipulated variable - to compensate and thus maintain the 
temperature of the exiting liquid flow - the controlled variable. However, the steam may 
enter the heat exchanger faster than the liquid feed and this will cause a transient increase 
in the controlled variable from the setpoint. In an ideal case the steam and liquid feed 
would enter the heat exchanger at the same time and no deviation from the set exiting 
temperature would be observed. Therefore, dynamic compensation involves predicting 
non-ideal behavior and accounting for it. While perfect feed-forward control is nearly 
impossible, dynamic compensation is one step closer.  

2.4 Open Loop System 

Feed-forward control is a open loop system. In an open loop system, the controller uses 
current, or live, information of the system to generate appropriate actions by using 
predetermined models. The sensor providing the reference command to the closed loop 
actuator is not an error signal generated from a feedback sensor but a command based on 
measurements. This is the defining characteristic of an open loop system, in which the 
controller does not manipulate the system by trying to minimize errors in the controlled 
variable.  

Because a feed-forward controller listens to the system and calculates adjustments 
without directly knowing how well the controlled variable is behaving (if it does, it is 
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getting feedback), it is open loop in nature. In other words, the controller operates on 
"faith", that its mathematical models are able to accurately generate responses (valve 
setting, motor speed, etc.) that lead to expected results. Therefore, it is critical to 
implement good models in feed-forward systems. This is often the most difficult part of a 
feed-forward design, as mentioned previously.  

However, not all open loop systems are feed-forward. Open loop simply means the 
system is not getting feedback information, in which the controlled variable tells the 
controller how well it is doing compared to its set point (i.e. error). Feed-forward control, 
on the other hand, takes an extra step by using non-feedback information to produce 
predictive actions.  

This simple open loop system is an example of a open loop system that is not feed-
forward. The controller simply takes the current state of the controlled variable to 
generate a valve setting. It is not getting a feedback, because the product temperature is 
not compared to a set pont. It is not feed-forward either, because there is no mechanism 
that produces actions that may yield expected results in the future.  

2.5 Feed‐forward applications 

Feed-forward control is used in many chemical engineering applications. These include 
heat exchangers, CSTRs, distillation columns and many other applications. A typical 
furnace, shown below, is heating up an input fluid using fuel gas.  
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One possible disturbance is the flow rate of the incoming fluid. For example: If the fluid 
input rate was increased by 10%, then the required heat duty should also be increased by 
approximately 10%. This feed-forward control strategy immediately changes the fuel gas 
flow rate and therefore the heat duty. The performance of feed-forward controls is limited 
by model uncertainty, and in practice feed-forward control is combined with feedback 
control in order to ensure better control of the system. Feed-forward control will 
compensate for fluid input disturbances while feedback control will compensate for other 
disturbances—such as the fuel gas flow rate or the temperature of the furnace—and 
model uncertainty. This system can also be represented by the following block diagram.  

 

 

 

2.5.1 Pros & Cons of Feed‐Forward Control 

Different applications require different types of control strategies. Sometimes feed-
forward solutions are required for proper system control; sometimes only feedback 
solutions are necessary. Feedback systems don’t always maintain the setpoint as well 
because of the lag that comes with waiting for the disturbance to propagate through the 
system. As a result, many control systems use a combination of feed-forward and 
feedback strategies, such as PID controllers. PID controllers use the Proportional-Integral 
control for feedback and the Derivative control for feed-forward control. This forms a 
system with multiple loops, otherwise known as a cascading system. A critical advantage 
of running both forward and backward controls is that the system is still somewhat able 
to adjust a variable if one mechanism fails since the two loops use different sensors. As a 
result, PID controllers are great for controlling processes, however, they require a number 
of equations to determine feed-forward and feedback correction. 

Feed-forward systems work by checking the conditions of an incoming stream and 
adjusting it before the system is adversely affected. If the controller is told the traits of an 
acceptable incoming stream, then it can compare that standard to whatever is coming 
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down the pipe. The feed-forward controller can look at this error and send a corrective 
signal to the automatic valve responsible for that pipe (or any other control device). In 
order to have this kind of predictive ability, the controller must have explicitly defined 
equations that account for the effects of a disturbance on the system. In addition, these 
equations must also then prescribe action to counter-act the disturbance. This can become 
even more difficult when there are several incoming stream traits that are being observed. 
When there are multiple inputs, the feed-forward system will require non-linear 
equations, leading to the development of neural networks. 
Neural networks are based on “neurons”, which are representations of non-linear 
equations. This concept is based on the brain's use of neurons to process and transmit 
information. The neuron is actually comprised of a set of sigmoidal equations relating 
inputs to outputs. Sigmoid functions are non-linear equations that take inputs and apply 
constants, or weights, to transform the value to make an output. Below is a picture that 
illustrates the function that these neurons serve. 

 

 

The picture above shows a multiple input-output system. Most feed-forward systems 
have to deal with more than one input. 

 
Neurons can be “connected” in ways that allow the inputs to be transformed any number 
of times. Neurons that are connected indicate that one sigmoidal function's output 
becomes the input of another one. Although the concept of neurons is easily 
understandable, the difficulty lies in the potential complexity of real systems. For 
example: the number and type of inputs go to which neurons, the initial weights be, the 
number of neurons needed, etc. As you can see, there are a lot of design questions that 
make developing the neural network difficult.  
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Coupled with an expected set of upstream conditions, the feed-forward system can 
continually adjust the method it uses to control an output variable. The system is capable 
of doing this by measuring sensor inputs coming into the controller, using neurons to 
transform the data, and comparing the resulting output(s) to a set of known or desired 
outputs. If the actual output is different from the desired output, the weights are altered in 
some fashion and the process repeats until convergence is achieved. This is how a 
controller is able to "learn". Learning is just discovering the weighting factors that allow 
the transformed ouputs to match the desired outputs.  

 
The following table shows a list of feed-forward pros and cons:  
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A CSTR with a given volume with heat-exchange capability has a coolant water system 
to maintain a specific system temperature (368K). To maintain this temperature, the flow 
of coolant water oscillates. Let a temperature disturbance of 100K be introduced over a 
period of 10 minutes. For this simulation, the Excel spreadsheet from PID-Tuning 
Optimization was used to create feed-forward and feed-backward data. In the following 
plot, observe the difference between using feed-forward control versus feed-backward 
control in an example.  

 

 

As shown, the feed-forward strategy works more effectively than the feed-backward 
strategy at nullifying the disturbance (over the time frame). The temperatures reached in 
feedback mode vary more than the ones seen in feed-forward mode. However, the 
controller response is solely defined by the parameters used in the Excel spreadsheet. If 
one assumes that the PID parameters used by the PID-optimization group were 
optimized, then we can say feed-forward would be the best option here.  
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2.6 Feed‐Forward Design Procedure 

This section provides an outline of the different steps for designing a feed-forward 
control strategy. The steps pay close attention to designing a feed-forward controller 
where there are multiple disturbances. Feed-forward design can be broken down into 
eight steps (Corripio,1990).  

 
Step 1. State the control objective. This step includes defining which variable needs to be 
controlled and what the set point is. The setpoint should be adjustable by the operator.  

Step 2. List the possible measured disturbances. This step includes identifying which 
disturbances are easily measured and how fast each disturbance should be expected to 
vary.  

Step 3. State which variable is going to be manipulated by the feed-forward controller.  

Step 4. The feed-forward controller consists of two parts: steady-state and dynamic 
compensators. Develop the steady-state compensator first. The compensator should be an 
equation where the manipulated variable, identified in step 3, can be calculated from the 
measured disturbances, identified in step 2, and the control objective (set point), 
identified in step 1.  

Step 5. Reevaluate the list of disturbances. The effect of a disturbance on the controlled 
variable can be calculated from the equation. Three criteria will be used to determine 
which disturbance the feed-forward controller will correct: the effect the disturbance has 
on the controlled variable, the frequency and magnitude of variation, and the capital cost 
and maintenance of the sensor.  

Step 6. Introduce the feedback compensation. This depends on the physical significance 
assigned to the feedback signal.  

Step 7. Decide whether dynamic compensation, lead/lag, and/or dead time is required, 
and decide how to introduce it to the design.  

Step 8. Draw the instrumentation diagram from the feed forward control strategy. The 
details of the diagram depend largely on the control system being used.  

2.7 Worked out Example 1 

For the first example, a water stream enters an evaporator. A discrete amount of the water 
stream is to be evaporated. Below is the design diagram for the evaporator. The incoming 
stream is being used as the input to the feed forward control box.  
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Determine what additional input will be needed to regulate the amount of steam produced 
and draw this on the design diagram.  

2.7.1 Solution 

By regulating the heating coil, we can regulate how much water will boil off in 
accordance with any change of the feed stream.  
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2.8 Worked out Example 2 

For the second example, a particular process liquid from a previous reaction will be 
heated before proceeding to the next phase of reactions. A shell and tube heat exchanger 
has been installed for this purpose with steam providing the heat duty. A feedback 
controller is used to control the output temperature of the process liquid stream, but the 
flowrate and the temperature of the input liquid stream vary too much for the feedback 
controller to be effective.  
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What sort of controller would be appropriate in addition to the feedback controller to 
account for the deviations of the input liquid stream? How would this controller be 
implemented? For simplicity it is assumed that all the steam condenses.  

2.8.1 Solution 

The solution is to implement a feed-forward controller that gathers the input temperature 
and flowrate data from TC1 and FC2 and adjusts the steam valve V1 in order to account 
for any deviation that may occur in the input liquid stream. This sort of feedback feed-
forward combination is a typical setup for the majority of control systems. The feed-
forward controller accounts for any upstream disturbances while the feedback controller 
accounts for the disturbances within the system.  
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2.9 Worked out Example 3 

Using the P&ID shown below, write out the feed-forward controller expressions for v3. 
List any assumptions used in your controller expression.  
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2.9.1 Solution 

To maintain LC1 by measuring FC1 and FC2 and preemptively adjust v3, we must use 
the controller expression below.  

 

The controller expression above assumes that the valve is linear. Also, it assumes that 
FC1, FC2, and the model are infinitely accurate.  

2.10 Sage's Corner 

A summary and example of Feed Forward Control:  
http://video.google.com/googleplayer.swf?docId=-2914206783288486300  

A copy of the slides can be found here: [[1]]  

Another summary and example of Feed Forward Control:  

http://video.google.com/googleplayer.swf?docId=6443635005819064435  

A copy of these slides can be found here: [2]  
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3.1 Introduction 

In the previous chapters, only single input, single output (SISO) systems are discussed. 
SISO involves a single loop control that uses only one measured signal (input). This 
signal is then compared to a set point of the control variable (output) before being sent to 
an actuator (i.e. pump or valve) that adjusts accordingly to meet the set point. Cascade 
controls, in contrast, make use of multiple control loops that involve multiple signals for 
one manipulated variable. Utilizing cascade controls can allow a system to be more 
responsive to disturbances.  

Before venturing further into the topic of cascade controls, the terms 'manipulated 
variables', 'measured variables' and 'control variables' should be clarified. The definitions 
of these terms commonly found in literature are often interchangeable; but, they typically 
refer to either the input or output signal. For the purpose of this article, 'control variables' 
will refer to inputs like flow rates, pressure readings, and temperature readings. 
'Manipulated variables' and 'measured variables' will refer to the output signals which are 
sent to the actuator.  

The simplest cascade control scheme involves two control loops that use two 
measurement signals to control one primary variable. In such a control system, the output 
of the primary controller determines the set point for the secondary controller. The output 
of the secondary controller is used to adjust the control variable. Generally, the secondary 
controller changes quickly while the primary controller changes slowly. Once cascade 
control is implemented, disturbances from rapid changes of the secondary controller will 
not affect the primary controller.  

3.2 Cascade Control 

To illustrate how cascade control works and why it is used, a typical control system will 
be analyzed. This control system is one that is used to adjust the amount of steam used to 
heat up a fluid stream in a heat exchanger. Then an alternative cascade control system for 
the same process will be developed and compared to the typical single loop control. The 
figure below shows the performance of cascade control vs. single-loop control in CST 
heater  
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Cascade control gives a much better performance because the disturbance in the flow is 
quickly corrected  
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3.2.1 Example of Cascade Control 

 
Figure 1. Single loop control for a heat exchanger  
 
In the above process, the fluid is to be heated up to a certain temperature by the steam. 
This process is controlled by a temperature controller (TC1) which measures the 
temperature of the exiting fluid and then adjusts the valve (V1) to correct the amount of 
steam needed by the heat exchanger to maintain the specified temperature. Figure 2 
shows the flow of information to and from the temperature controller.  
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Figure 2. Flow of information when single loop feedback control is used for a heat 
exchanger  
 
Initially, this process seems sufficient. However, the above control system works on the 
assumption that a constant flow of steam is available and that the steam to the heat 
exchanger is solely dependent on opening the valve to varying degrees. If the flow rate of 
the steam supply changes (i.e. pipeline leakage, clogging, drop in boiler power), the 
controller will not be aware of it. The controller opens the valve to the same degree 
expecting to get a certain flow rate of steam but will in fact be getting less than expected. 
The single loop control system will be unable to effectively maintain the fluid at the 
required temperature.  
 
Implementing cascade control will allow us to correct for fluctuations in the flow rate of 
the steam going into the heat exchanger as an inner part of a grander scheme to control 
the temperature of the process fluid coming out of the heat exchanger. A basic cascade 
control uses two control loops; in the case presented below (see Figure 3), one loop (the 
outer loop, or master loop, or primary loop) consists of TC1 reading the fluid out 
temperature, comparing it to TC1set (which will not change in this example) and changing 
FC1set accordingly. The other loop (the inner loop, or slave loop, or secondary loop) 
consists of FC1 reading the steam flow, comparing it to FC1set (which is controlled by the 
outer loop as explained above), and changing the valve opening as necessary.  
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Figure 3. Cascade control for a heat exchanger  
 
The main reason to use cascade control in this system is that the temperature has to be 
maintained at a specific value. The valve position does not directly affect the temperature 
(consider an upset in the stream input; the flow rate will be lower at the same valve 
setting). Thus, the steam flow rate is the variable that is required to maintain the process 
temperature.  

The inner loop is chosen to be the inner loop because it is prone to higher frequency 
variation. The rationale behind this example is that the steam in flow can fluctuate, and if 
this happens, the flow measured by FC1 will change faster than the temperature measured 
by TC1, since it will take a finite amount of time for heat transfer to occur through the 
heat exchanger. Since the steam flow measured by FC1 changes at higher frequency, we 
chose this to be the inner loop. This way, FC1 can control the fluctuations in flow by 
opening and closing the valve, and TC1 can control the fluctuations in temperature by 
increasing or decreasing FC1set .  

Thus, the cascade control uses two inputs to control the valve and allows the system to 
adjust to both variable fluid flow and steam flow rates. The flow of information is shown 
in figure 4. 
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Figure 4. Flow of information when cascade control is used for a heat exchanger  
 
In order to accomplish this, relationships between the primary and secondary loops (see 
definitions below) must be defined. Generally, the primary loop is a function of the 
secondary loop. A possible example of such relations is: 

 

3.2.2 Primary and Secondary Loops 

In Figure 3, there are two separate loops. Loop 1 is known as the primary loop, outer 
loop, or the master, whereas loop 2 is known as the secondary loop, inner loop, or the 
slave. To identify the primary and secondary loops, one must identify the control variable 
and the manipulated variable. In this case, the control variable is the temperature and the 
reference variable is the steam flow rate. Hence, the primary loop (loop 1) involves the 
control variable and the secondary loop (loop 2) involves the reference variable. The 
information flow for a two loop cascade control system will typically be as shown in 
Figure 5. Please note that the user sets the set point for loop 1 while the primary 
controller sets the set point for loop 2. 
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Figure 5: Information flow of a two loop cascade control  

 
In addition to this common architecture, cascade control can have multiple secondary 
loops; however, there is still one primary loop and a main controlled variable. 
Unfortunately, with multiple inner loops, tuning the PID becomes even more challenging, 
making this type of cascade less common. The secondary loops can be either independent 
of each other, or dependent on each other, in which case each secondary loop affects the 
set point of the other secondary loop. When tuning such controller, the inner most loop 
should be tuned first. The loop that manipulates the set point of the inner-most loop 
should be tuned next and so for. The figure below shows an example of using two 
secondary loops, independent of each other, in a fuel combustion plant. In this 
combustion furnace, the master controller controls the temperature in the furnace by 
changing the set point for the flow of fuels A and B. The secondary loops correspond to 
the change in the set point for the flow, by opening or closing the valves for each fuel.  
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Cascade control is generally useful when  

• A system error affects the primary control variable only after a long period of 
time as it propagates through dead time and lag time.  

• A system has long dead times and long lag times.  
• Multiple measurements with only one control variable are required for 

better response to a disturbance of a system.  
• Variance occurs in multiple streams  

 

3.3 General Cascade Control Schematic 

The reactor below needs to be cooled during continuous-feed operation of an exothermic 
reaction. The reactor has been equipped with a cooling water jacket with the water flow 
rate being controlled by cold water valve. This valve is controlled by two separate 
temperature controllers. An “inner-loop” or “slave” (highlighted in orange) temperature 
transmitter communicates to the slave controller the measurement of the temperature of 
the jacket. The “outer-loop” or “master” (green) temperature controller uses a master 
temperature transmitter to measure the temperature of the product within the reactor. The 
output from the slave controller is fed into the master controller and used to adjust the 
cold water valve accordingly.  
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The cascade control loop used to control the reactor temperature can be generalized with 
the schematic below. We will use this main diagram to go through the formal derivation 
of the equations describing the behavior of the system when there are changes in the 
loads U1 and U2 but with no change in the set point, R1(t). The general equations derived 
below can be used to model any type of process (first, second, third order differential 
equations, ect.) and use any type of control mechanism (proportional-only, PI, PD, or PID 
control). See wiki pages titled “first-order differential equations” and “P, I, D, PI, PD, 
PID Control” for more details.  
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Step 1: Write down all the equations for each stage of the control loop  

 
Master Loop  

 

Slave Loop  
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Gp1 and Gp2 are the process operators and are usually of the form:  

 

Where n is a natural number.  

Gc1 and Gc2 are the control operators and depend on the type of controller used. For PID 
controllers, they would be:  

 

Gm1 and Gm2 are the measurement operators and usually are just equal to 1. Note that 
there are no equations for the "intersections" A and B shown on the diagram.  

 
Step 2: Simplify the equations for the slave loop  
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Solve for Y2(t)  

 

 
Step 3: Simplify the equations for the master loop  
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Solve for Y1(t)  

 

(Note: here the G's are written as operators rather than Laplace transforms, and as such 
they shouldn't be divided. Thus, expressions in the denominator should be interpreted as 
inverse operators in the numerator.)  

3.4 Conditions for Cascade Control 

In order to have a smooth flow of information throughout the control system, a hierarchy 
of information must be maintained. In a double loop cascade system, the action of the 
secondary loop on the process should be faster than that of the primary loop. This ensures 
that the changes made by the primary output will be reflected quickly in the process and 
observed when the primary control variable is next measured. This hierarchy of 
information can be preserved by applying the following conditions when setting up the 
cascade controls.  

1. There must be a clear relationship between the measured variables of the 
primary and secondary loops.  

2. The secondary loop must have influence over the primary loop.  
3. Response period of the primary loop has to be at least 4 times larger than the 

response period of the secondary loop.  
4. The major disturbance to the system should act in the primary loop.  
5. The primary loop should be able to have a large gain, Kc.  

Cascade control is best when the inner loop is controlling something that happens at 
fairly high frequency. Cascade control is designed to allow the master controller to 
respond to slow changes in the system, while the slave controller controls disturbances 
that happen quickly. If set up in reverse order, there will be a large propagation of error. 
Hence, it is important to maintain the hierarchy of information. In summary, the master 
controller responds to SLOW changes in the system, while the slave controller responds 
to the high frequency, or FAST changes in the system. This also requires that the inner 
control scheme be tuned TIGHTLY so error is not allowed to build. Commonly, the inner 
loops controls a flow controller, which will reduce the effect of changes such as 
fluctuations in steam pressure.  

3.5 Cascade Control Design Considerations 

Open Loop and Closed Loop  

Although cascade control generally incorporates information from several secondary 
loops, the system overall does not automatically become a closed loop or an open loop 
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process. For a cascade control to be open loop, all control loops in the system should be 
open loop in nature. On the other hand, if any of the control loops in the system is 
feedback-based, the system overall is considered as closed loop. This is due to the fact 
that the system is getting some sort of feedback, no matter how little the “fedback” 
variable influences the system.  

Cascade with Feed-Forward and Feedback Controls  

Cascade controllers have a distinct advantage over other kinds of controller due to its 
ability to combine both feedback and feed-forward controls. While feed-forward loops 
have the potential to adjust the controlled variables to the ideal states, the feedback loops 
in a mixed system check deviations to make sure the system is on track. The figure below 
is an example of a mixed cascade control:  

 
Figure 6. Cascade control with both feed‐forward and feedback controls 

An endothermic reaction takes place in a jacketed CSTR, in which the reactor is heated 
by steam. A reactant stream feeds into the CSTR, which serves as the wild stream for the 
ratio controller to predict a required steam flow rate (feed-forward). On the product 
stream side, a temperature controller manipulates the ratio setting of the ratio controller in 
order to minimize the product temperature errors (feedback). The temperature controller 
is the primary loop, whereas the ratio controller is the secondary loop.  

3.6 Advantages and Disadvantages of Cascade Control 

The following table shows a list of cascade control pros and cons:  
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3.7 Starting up a Cascade System 

A cascade system needs to be set up properly in order to function. The inner loop should 
be tuned before the outer loop. The following are the suggested steps for starting up a 
cascade system (both controllers start in automatic mode):  

1. Place the primary controller in manual mode. This will break the cascade and 
isolate the secondary controller so that it can be tuned.  

2. Tune the secondary controller as if it were the only control loop present.  
3. Return the secondary controller to the remote set point and/or place the 

primary controller in automatic mode. This will isolate the primary 
controller so that it can be tuned.  

4. Tune the primary control loop by manipulating the set point to the secondary 
controller. If the system begins to oscillate when the primary controller is 
placed in automatic, reduce the primary controller gain.  

Cascade control systems can be tuned using conventional methods. Ziegler-Nichols 
tuning method can be used to tune the secondary controller. Then the parameters 
(depending on the system, it can be P, PI, or PID) need to be fine tuned by introducing 
disturbances to the system and changing the parameters accordingly. The secondary 
controller must be tuned tightly (no oscillations when disturbance is added), otherwise 
the primary controller will be responding to oscillations due to the secondary controller 
as well as from disturbances to the system. This will cause the parameters for the primary 
controller to be inaccurate, which will cause a high controller effort. This is undesirable 
because it will wear down the controller. The primary controller often utilizes internal 
model control (IMC), which allows for improved performance by incorporating the 
process model into the controller setup. Another way to tune the primary controller is by 
using trial and error. For example, if the system has a PID primary controller, the integral 
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and derivative gains should be set at small values. Then a small proportional gain should 
be introduced. The proportional gain should be tuned first then the integral and derivative 
gains can be added. For more information about the trial and error method refer to PID 
Tuning Classical section.  

3.7.1 Startup Example 

A simple example of starting up a cascade system is shown using the heat exchange 
system seen in Figure 3. To begin startup the temperature controller (primary) is set to 
manual mode. The flow controller (secondary) is then tuned by adjusting the set point of 
the flow controller. This is shown in Figure 6 below.  

 
Figure 6: Automatic mode for secondary controller (manual mode for primary controller)  

Now the temperature controller is set to automatic mode and the flow controller is set to 
manual mode. In this system the temperature controller outputs a set point to the flow 
controller just like it would in regular cascade mode. The temperature controller is then 
tuned by adjusting the output to the valve. This is shown in Figure 7 below.  
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Figure 7: Manual mode for secondary controller (automatic mode for primary controller)  

3.7.2 Developing the Structure of a Cascade Algorithm 

Below is a step-by-step method through which the basic structure of a Cascade Algorithm 
can be developed. The examples in each step refer to Figure 3.  

1 – Determine the goal of your algorithm. That is, which ultimate output you would 
like to ultimately end up changing. Also determine what “tool” (or aspect of the system) 
will most directly and physically allow you to accomplish this desired change.  

This “tool” can be any physical property of the system: temperature, pressure, surface 
area, flow regime, flow rate, etc. of any part of any physical component of the system. 
The “tool” doesn’t need to be something read by a sensor, though it can be (as it is in this 
example, the temperature of the heated fluid leaving the heat exchanger is read by sensor 
TC1).  

For instance, the end goal of the process of Figure 3 is to regulate the temperature of the 
fluid leaving a heat exchanger. In this case, the only way to physically accomplish this is 
to change the flow rate of the steam through the heat exchanger (this flow rate just so 
happens to be read by the sensor FC1).  
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2 – Determine how the “tool” physically affects the ultimate output.  

For instance, an increased flow rate of steam (read by FC1) will physically increase the 
temperature of the fluid leaving the heat exchanger, TC1.  

 

 

3 – Determine how the ultimate output needs to affect the “tool” to achieve the 
desired ultimate output change.  

For instance, we presume that we would like to, in general, resist any change in TC1 (i.e. 
we don’t want an increase in TC1 to further increase the value of TC1, that would be 
bad!). For this reason, we want an increase in TC1 to decrease FC1, which will then 
decrease TC1 (negative feedback).  

 

 

4 – Determine which valve or sensor’s output will most directly affect the “tool”. 
Also, determine how the sensor and “tool” are related.  

For instance, the setting of valve V1 will most directly affect the flow rate of steam 
entering the heat exchanger (it is the "closest" controllable component of the process to 
the "tool", the steam flow rate). An increase in V1 will increase flow rate.  
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5 – Determine all valves/sensors in between the ultimate output and valve/sensor 
that will directly affect the “tool”.  

For instance, between the ultimate output (TC1) and the valve (V1) that will directly 
affect the “tool”, there is only the FC1 sensor.  

 

 

6 – Make an incidence graph. Make sure that you use the set points of the 
valves/sensors that directly affect the “tool”, because you cannot control what these 
sensors read (you can only control their set points). Confirm that the relationship between 
the “tool” and the ultimate output is consistent with the incidence graph!  
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7 – Use this incidence graph to construct the algorithm. The incidence graph is 
particularly helpful in determining what “sign” changes in one component should result 
in a the “sign” in another component. If we use incidence diagrams, and the equations for 
the cascade controller, we can determine a relationship between the components of the 
system.  

For instance, if TC1 were to increase, we would want the steam flow rate to decrease, 
which ultimately results in a decreased temperature. An increase (a “sign” of +) in TC1 
should result in a decrease in FC1set (a “sign of -). This can be seen from equation 2, 
where if TC1set decreases, the difference between TC1set and TC1 will be smaller. This 
causes FC1set to decrease relative to its previous set point. A decrease (a “sign” of -) in 
FC1set should result in a decrease in V1 (a “sign of -). This is shown by equation 1, where 
if FC1set decreases while FC1 is the same, V1 will decrease relative to its previous 
position. A decrease (a “sign” of -) in V1 should result in a decreased flow rate (a “sign 
of -). A decrease (a “sign” of -) in steam flow rate should result in a decreased TC1 (a 
“sign of -), completing the negative-feedback mechanism initially desired.  

 
(1) 

 

 
(2) 

3.8 Failure 

A cascade system is not to be confused with a fail-safe system. The sole purpose of 
implementing a cascade control system is to make the system more responsive, not more 
robust.  
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In a cascade system, if the master controller fails, the entire system will fail too. Just like 
for any other design, one should anticipate failure and build in redundancy. An example 
of redundancy could be having multiple controllers to be the master controller and then 
using selectors to choose which reading to use.  

Alternatively, if the cascade system fails and has no built-in redundancy, there are a 
couple of ways to keep the cascade system running while the controller is being repaired. 
For example, the controller can be operated manually by an employee, or an average of 
previous readings can be used to temporarily send a constant signal to the system.  

3.9 Worked out Example 1 

The diagram below shows the top portion of a distillation column used to separate the 
components of the inlet liquid mixture. Reflux is used for the column to improve the 
separation efficiency, as the desired product stream must have a mass fraction of 
component C that is greater than 0.8. At the top of the distillation column the temperature 
is 200oC. Components A, B, and C, which are gases at that temperature, accumulate and 
flow out of the top of the distillation column through the total condenser. The total 
condenser cools the gas stream to 150oC, causing A, B, and C to liquefy. The liquid 
mixture is collected in a distillate receiver. Finally, the liquid stream exits the receiver 
and is either collected as product or sent back to the column. A control valve is in place 
on the product stream to ensure that the necessary purity is attained.  
 
On the diagram, draw the necessary controllers and valves required to implement a 
cascade control for the exiting stream. Also, describe the cascade control that you have 
implemented.  
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Note that this is only one possible solution to the example question. Alternatives to this 
solution would be to only use a composition controller with a flow controller or a 
temperature controller but the below solution was chosen to give an example of a 
multiple cascade control.  

3.9.1 Solution 

 

 
The system can most effectively be controlled with a cascade scheme. A composition 
controller can be installed to control the composition of the product stream. However, the 
composition controllers are typically slow to react since it takes time to analyze the 
samples to obtain compositions. In order to correct for the time lag of the composition 
controller, a temperature controller, located at the top of the distillation column, measures 
the temperature of the product stream giving a rough idea of the product composition. 
Additionally, a flow controller is needed on the reflux stream.  

The input from the composition controller measures the composition of the product 
stream and sends a signal to the temperature controller at the top of the column. The 
temperature controller compares the set point to the measured temperature of the stream 
and outputs a signal to the flow controller on the recycle stream. The flow controller 
compares this set point to the measured flow rate and adjust the control valve on the 
recycle stream accordingly. This cascade control allows the system to react to 
disturbances quickly and to more effectively control the reflux process.  
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3.10 Worked out Example 2 

You just graduated from the University of Michigan and escaped the cold winter of Ann 
Arbor for a sweet full-time position in Orange County. Your company manufactures a 
specialty drug to cure an epidemic in the penguin population in Antarctica.  

The endothermic reaction A + B --> C is run in a CSTR. A and B are toxic in even dilute 
concentrations. Therefore, a conversion above 99.95% has to be maintained in order to 
ensure the safety of the process output.  

Steam from a boiler is utilized to maintain the optimum reaction temperature of 100C. A 
PID cascade control scheme is used to maintain this temperature.  

This morning, your plant manager came to you with a problem. He explained that 
production has been delayed because the conversion dropped below the acceptable level. 
He noticed that the reactor temperature was well below 100C, even though the steam 
valve (V2) is open completely.  

As can be seen in the diagram below, a cascade control is already present in the system, 
but it isn't set up properly. Can you fix the problem and save the penguins?  

Hint: The boiler also supplies steam to other equipment. You can increase its steam 
output by adding more fuel to the boiler (assume that water supply is unlimited).  
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3.10.1 Solution 

Before: TC is cascaded with FC1, which controls V2. (TC-->FC1-->V2) Even when V2 
is open all the way, there is not enough steam to maintain the reaction at optimum 
temperature.  

In this situation the controller surpasses the saturation limit of the actuator (V2). In other 
words, the controller is demanding more steam from the boiler than it can supply. A 
likely cause of this is a disturbance in the steam supply from the boiler because of 
increased steam demand from other processes. A possible solution is to increase the 
steam output from the boiler by adding more fuel (controlled by FC2 and V4). A side 
effect of this control situation would be that the I- part of a PID controller would also 
windup, preventing the system from responding.  

An additional control loop can be added to enable the boiler output to communicate with 
the fuel input. In addition to controlling V2, FC1 also controls FC2, which in turn will 
control V4. This additional controller is shown in the figure below.  

Congratulations, you just saved the penguins!  
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3.11 Worked Out Example 3 

You have a holding tank for a warm process fluid that is cooled by a water-filled jacket. 
The process stream enters at 75-85 C and should be cooled to 60 C. The temperature of 
the cooling water also varies, since it comes from another process, but its average 
temperature is about 29 C. You have thermocouples inside the holding tank and on the 
cooling water jacket exit stream. Unfortunately, the tank is not well mixed, so the 
thermocouple reading inside the tank lags behind the actual temperature of the outlet 
stream. When the cooling jacket is first turned on, the tank contents are initially at 70 C. 
Examine the dynamics of a feedback control stream versus a cascade control scheme for 
this system.  

 

3.11.1 Solution 

One setup for this system is given in the following Excel file: Media:Cascade.xls  

Under the feedback control scheme, the flow rate of coolant is adjusted based on the 
temperature inside the holding tank. The system overshoots setpoints more significantly, 
because of the lag time before disturbances are recognized.  
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In cascade control, the temperature sensor in the process fluid outputs a setpoint for the 
jacket outlet (based on a knowledge of the process fluid setpoint and the average 
temperature of the cooling fluid). The signal from the temperature controller on the jacket 
outlet controls the flow rate of cooling fluid. Since the temperature in the cooling fluid 
has a shorter time lag, the process remains closer to its setpoint.  

3.12 Worked Out Example 4 

We have a P&ID as shown below. Write out the equations necessary to connect LC1 to 
FC1 to adjust v1. Which equation is the slave and which one is the master? 

 

3.12.1 Solution 

The first equation is the slave and the second equation is the master. We have to use the 
FC1set to determine what V1 should be set as. And these are both based on the level in the 
tank.  

 
(1) 

 
(2) 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3.13 Worked Out Example 5 

Write the general equation that describes the behavior of the cascade control system 
shown below. Include changes in U1 and U2.  

 

 

Hint: Start by writing the inner loop and outer loop equations separately.  

3.13.1 Solution 

For inner cycle: 
 
ε1 = Z1 + GM2Y2 
 
Z2 = Z1GC2 − Y2GC2GM2 
 
X2 = U2 + Z2 = U2 + Z1GC2 − Y2GC2GM2 
 
Y2 = GP2X2 = U2GP2 + Z1GP1GC2 − Y2GC2GM2GP2 
 

 

 
 

 
For outer cycle: 
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Z1 = R1GC1 − Y1GM1GC1 
 
Y1 = U1GP1 + Y2GP1 

 

Combining Z1 from outer cycle with Y2 from inner cycle: 
 

 

 
 

Combining Y2 above with Y1 from outer cycle: 
 
 

 

 
 

Rearranging and solving explicitly for Y1: 

 

 
 

3.14 Practice Quiz 

Answer the five questions below with the most appropriate solution. There is one correct 
answer for each question. Correct answers are awarded 4 points, whereas a loss of 2 
points occurs for incorrect answers. Good luck!  

 
1. Which of the following is never true in a process controlled by a cascade control 
scheme?  

a) Changes in the secondary control variable affect the primary measured variable.  
b) Disturbances in the secondary loops propagate at least four times faster than 
disturbances in the primary loop.  
c) One control variable is used to influence the primary and secondary measured 
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variables.  
d) Major disturbances in the process are detected in the primary loop.  

 
2. Which of the following in not an advantage of cascade control?  

a) The system reacts to disturbances more quickly.  
b) More efficient control of the primary variable.  
c) It is a cheap control scheme to implement.  
d) The effects of dead time and phase lag time are reduced in the system.  

 
3. True or False: During start-up of a cascade control system, after the primary and 
secondary controllers are turned and placed in automatic mode, the primary controller 
gain should be increased to reduce system oscillations.  

 
4. The primary loop, or outer loop, involves which of the following variables?  

a) Control variable  
b) Temperature variable  
c) Reference variable  
d) I love penguins (variable)  

 
5. True or False: The primary loop is generally a function of the secondary loop.  

3.14.1 Answers 

Based on your selections, calculate your score on this quiz.  

1. C- Cascade control schemes use multiple control variables for one manipulated 
variable.  

2. C- Increased amounts of equipment and instrumentation may drive up the cost of the 
process.  

3. False- The controller gain (Kc) should be reduced to reduce system oscillations  

4. A- The best answer is (a) since the control variable may or may not be temperature. 
The reference variable is involved in the secondary loop. Penguins are really cute.  

5. True- The output of the primary controller is the set point for the secondary controller. 
The output of the secondary controller adjusts the control variable.  
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3.14.2 Scoring 

If you got…  
20 points: CONGRATULATIONS! You are a cascade genius!  
13-19 points: Make a list of confusing topics and bring your questions to a cascade 
control sage.  
0-12 points: You may want to re-read this article and try again…  
-10 points: Choose a new major. You may be better off in LS&A.  

3.15 Sage's Corner 

An example of the use of cascade control architecture and troubleshooting this control 
system:  

http://video.google.com/googleplayer.swf?docId=-1187011704040411738 
This is a link to the unnarrated PowerPoint slides. 
File:Cascade Control Unnarrated.ppt  

 
An example of the implementation of a cascade control system to solve a process issue.  

http://video.google.com/googleplayer.swf?docId=697386144658402357 
Unnarrated slides can be found below. File:Cascade- 
Control-1.ppt  
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Section 4. Ratio control: What is it? When useful? When not? 
Common usage. 

Note: Video lecture available for this section!  

Authors: Stephanie Fraley, Michael Oom, Benjamin Terrien, John Zalewski  

Date Presented: October 31, 2006; Revised: November 20, 2006  

• First round reviews for this page  
• Rebuttal for this page  

4.1 Introduction 

Ratio control architecture is used to maintain the relationship between two variables to 
control a third variable. Perhaps a more direct description in the context of this class is 
this: Ratio control architecture is used to maintain the flow rate of one (dependent 
controlled feed) stream in a process at a defined or specified proportion relative to that of 
another (independent wild feed stream) (3) in order to control the composition of a 
resultant mixture.  

As hinted in the definition above, ratio control architectures are most commonly used to 
combine two feed streams to produce a mixed flow of a desired composition or physical 
property downstream (3). Ratio controllers can also control more than two streams. 
Theoretically, an infinite number of streams can be controlled by the ratio controller, as 
long as there is one controlled feed stream. In this way, the ratio control architecture is 
feedfoward in nature. In this context, the ratio control architecture involves the use of an 
independent wild feed stream and a dependent stream called the controlled feed.  

Ratio Control is the most elementary form of feed forward control. These control systems 
are almost exclusively applied to flow rate controls. There are many common usages of 
ratio controls in the context of chemical engineering. They are frequently used to control 
the flows on chemical reactors. In these cases, they keep the ratio of reactants entering a 
reaction vessel in correct proportions in order to keep the reaction conditions ideal. They 
are also frequently used for large scale dilutions.  

4.2 Ratio Control based upon Error of a Variable Ratio 

The first type of ratio control architecture uses the error of a variable ratio (Ractual) from 
a set ratio (Rset) to manipulate y (the controlled stream). Ractual is a ratio of the two 
variables wild stream and controlled stream. The controller adjusts the flow rate of 
stream y (controlled stream) in a manner appropriate for the error (Ractual - Rset).  
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The error in this system would be represented using the following equation:  

 

This error would be input to your general equation for your P, PI, or PID controller as 
shown below.  

 

NOTE: Vy is used instead of y, because y is not directly adjustable. The only way to 
adjust y is to adjust the valve (V) that affects y.  

4.2.1 Diagram of Ratio Dependant System 

 

Image taken from Svreck et al.  
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4.3 Ratio Control based upon Error of the Controlled Stream 

The second type of ratio control architecture uses the error of a setpoint (yset, setpoint of 
the control variable) from y (controlled variable) to control, once again, y. The controller 
adjusts the flow rate of stream y in a manner appropriate for the error (y-yset).  

 
The error in this system would be represented using the following equation:  

 

This error would be input to your general equation for your P, PI, or PID controller as 
shown below.  
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4.3.1 Diagram of Flowrate Dependant System 

 

Image taken from Svreck et al.  

4.4 Comparing the Two Types of Ratio Control 

The main difference between the two aforementioned types of ratio control architecture is 
that they respond to changes in the monitored variable (Ractual or y - the variables 
through which the error is determined) differently.  

The first method mentioned that defines error as Ractual-Rset (monitored variable of 
Ractual) responds sluggishly when y is relatively large and too quickly when y is 
relatively small. This is best explained by examining the equations below.  

 

Unlike the first method, the second method mentioned that defines error as y-yset 
(monitored variable of y) does not respond differently depending upon the relative 
amounts of y (or anything else, for that matter). This is best explained by examining the 
equations below.  
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4.5 Difficulties with Ratio Controllers 

4.5.1 Steady State Issues 

A common difficulty encountered with ratio controllers occurs when the system is not at 
steady state. Unsteady state conditions can cause a delay in the adjustment of the 
manipulated flow rate and thus the desired state of the system cannot be met.  

Blend Stations 

To overcome the difficulty with steady state, a Blend station can be used, which takes 
into account both the set ratio and the wild stream. As can be seen by the diagram below, 
the Blend station takes in the wild stream flow rate, the set ratio, and the initial set point 
for the wild stream (r1) as inputs. Using a weighting factor, called gain, the Blend station 
determines a new set point for the manipulated stream (r2). The relationship that 
determines this new set point can be seen below.  

 

Where γ is the gain factor.  
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Image taken from Astrom and Hagglund article on "Advanced PID Control."  

4.5.2 Accuracy Issues 

Another problem (which is an issue with all "feed-forward" controllers) is that the 
variable under control (mix ratio) is not directly measured. This requires a highly 
accurate characterization of the controlled stream's valves so that the desired flow rate is 
actually matched.  

One way to address this problem is to use two levels of PID control (Cascade Control). 
The first level monitors the controlled streams flow rate and adjusts it to the desired set 
point with a valve. The outer level of control monitors the wild stream’s flow rate which 
adjusts the set point of the controlled stream by multiplying by the desired ratio. For 
example, if stream A’s flow rate is measured as 7 gpm, and the desired ratio of A:B is 2, 
then the outer level of control will adjust B’s set point to 3.5. Then the inner level of 
control will monitor B’s flow rate until it achieves a flow rate of 3.5.  

4.6 Ratio Control Schemes 

The following subsections introduce three ratio controller schematics. Each schematic 
illustrates different ways that the controlled feed stream can be manipulated to account 
for the varying wild feed stream.  
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4.6.1 Ratio Relay Controller 

The wild feed flow rate is received by the ratio relay and then multiplied by the desired 
mix ratio. The ratio relay outputs the calculated controlled feed flow rate which is 
compared to the actually flow rate of the controlled feed stream. The flow controller then 
adjusts the controlled feed flow rate so that it matches the set point (3).  

Image adapted from Houtz, Allen and Cooper, Doug "The Ratio Control Architecture"  

The mix ratio (Fc/Fw) is not easy to access, so it requires a high level of authorization to 
change. This higher level of security may be an advantage so that only permitted people 
can change the mix ratio and decrease the chance that an accidental error occurs. A 
disadvantage is that if the mix ratio does need to be changed quickly, operation may be 
shut down while waiting for the appropriate person to change it.  

Another disadvantage is that linear flow signals are required. The output signals from the 
flow transmitters, Fw and Fc, must change linearly with a change in flow rate. Turbine 
flow meters provide signals that change linearly with flow rates. However, some flow 
meters like orifice meters require additional computations to achieve a linear relationship 
between the flow rate and signal.  

4.6.2 Flow Fraction Controller 

Flow fraction and ratio relay controllers are very similar except that the flow fraction 
controller has the advantage of being a single-input single-output controller. A flow 
fraction controller receives the wild feed and controlled feed flow rates directly. The 
desired ratio of the controlled feed to wild feed is a preconfigured option in modern 
computer control systems (3).  
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Image adapted from Houtz, Allen and Cooper, Doug "The Ratio Control Architecture"  

4.6.3 Ratio Relay with Remote Input 

The ratio relay with remote input model of a ratio controller is similar to the cascade 
control model in that it is part of a larger control strategy. The purpose of this model is to 
account for any unexpected or unmeasured changes that have occurred in the wild and 
controller feed streams. The diagram below illustrates how the composition of the mixed 
flow is used to change the relay ratio (3).  

Image adapted from Houtz, Allen and Cooper, Doug "The Ratio Control Architecture"  
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The main advantage of having remote input is that the mix ratio is constantly being 
updated. A disadvantage of using an additional analyzer is that the analysis of the mixed 
stream may take a long time and decrease the control performance. The lag time depends 
on the type of sensor being used. For example, a pH sensor will most likely returned fast, 
reliable feedback while a spectrometer would require more time to analyze the sample.  

4.7 Advantages and Disadvantages 

There are some pros and cons to using ratio control where there is a ratio being 
maintained between two flow rates.  

4.7.1 Advantages 

1. Allows user to link two streams to produce and maintain a defined ratio 
between the streams  

2. Simple to use  
3. Does not require a complex model  

4.7.2 Disadvantages 

1. Often one of the flow rates is not measured directly and the controller 
assumes that the flows have the correct ratio through the control of only the 
measured flow rate  

2. Requires a ratio relationship between variables that needs to be maintained  
3. Not as useful for variables other than flow rates  

 

4.8 Select Elements in Ratio Control 

A select element enables further control sophistication by adding decision-making logic 
to the ratio control system. By doing so, a select variable can be controlled to a maximum 
or minimum constraint. The figure below depicts the basic action of both a low select and 
high select controller. 
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4.8.1 Single Select Override Control 

Often times, these select elements are used as an override element in ratio control. Take, 
for example, ratio control system (with remote input) of a metered-air combustion 
process in the figure below. 
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In this design, the fuel set point, SPw, comes in as firing demand from a different part of 
the plant, so fuel flow rate cannot be adjusted freely. As the fuel set point (and therefore 
fuel mass flow rate, PVw) fluctuates, a ratio relay is employed to compute the 
combustion air set point, SPc. If the flow command outputs (COw and COc) are able to 
respond quickly, then the system architecture should maintain the desired air/fuel ratio 
despite the demand set point varying rapidly and often. However, sometimes the final 
control element (such as the valve on the fuel feed stream and blower on the combustion 
air feed stream in the diagram) can have a slow response time. Ideally, the flow rates 
would fluctuate in unison to maintain a desired ratio, but the presence of a slow final 
control element may not allow the feed streams to be matched at that desired ratio for a 
significant period of time. Valves often have quick response times, however, blowers like 
the one controlling the combustion air feed stream can have slow response times. A 
solution to this problem is to add a “low select” override to the control system, as shown 
in the figure below. 

 

 

The second ratio controller will receive the actual measured combustion air mass flow 
rate and compute a matching fuel flow rate based on the ideal design air/fuel mixture. 
This value is then transmitted to the low select controller, which also receives fuel flow 
rate set point based from the firing demand. The low select controller then has the power 
to pass the lower of the two input signals forward. So, if the fuel flow rate firing demand 
exceeds combustion air availability required to burn the fuel, then the low select 
controller can override the firing demand and pass along the signal of the fuel flow rate 
calculated based on the actual air flow (from the second ratio relay). 
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This low select override strategy ensures that the proper air/fuel ratio will be maintained 
when the firing demand rapidly increases, but does not have an effect when the firing 
demand is rapidly decreasing. While the low select override can help eliminate pollution 
when firing demand rates increase quickly, a rapid decrease in firing demand can cause 
incomplete combustion (as well as increased temperature) and loss of profit. 

4.8.2 Cross‐Limiting Override Control 

Cross-limiting override control utilizes the benefit of multiple select controls. Most 
commonly, a control system using the cross-limiting override strategy will implement 
both a high select and low select control. As a result, the system can account for quickly 
increasing firing demand as well as quickly decreasing firing demand. The figure below 
depicts a such a scenario using the inlet combustion air and fuel for a boiler as the 
example. 

 

 

 
It is assumed that same firing demand enters the high select and low select control and 
the flow transmitters have been calibrated so that the ideal air/fuel ratio is achieved when 
both signal match. As a result, the set point of air will always be the greater value of the 
firing demand and current fuel flow signals. Likewise, the set point of fuel will always be 
the lower value of the firing demand and current air flow signals. So, as the firing 
demand increases, the set point of air will increase. At the same time, the low select will 
keep the set point of fuel to the signal set by the present flow or air. Therefore, the set 
point of fuel will not match the increasing firing demand, but will follow the increasing 
air flow rate as it is responding upwards. Similarly, if the firing demand decreases, the 
low select control will listen to the firing demand and the high select controller will not. 
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As a result, the firing demand will directly cause the set point of fuel to decrease while 
the set point of air will follow the decreasing fuel rate as it responds downwards. The 
cross-limiting override strategy allows for greater balance in a ratio control system. 

4.9 Worked out Example 1 

In the following process shown below, a concentrated solution of product is diluted 
continuously to be sold as a final 10% solution. Flowrates coming from the unit feeding 
the pure product to this mixing tank are not constant (the wild stream), and therefore a 
ratio controller is used to properly dilute the solution.  
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In this example, the ratio controller would be set to a value of FC1/FC2 = RC1 = 9. The 
ratio contoller in this case would then work by the following logic:  

• IF RC1 < 9, THEN ADJUST FC2 DOWN  

• IF RC1 > 9, THEN ADJUST FC2 UP  

For an additional challenge, determine an error equation that can is related to this 
controller.  

4.10 Worked out Example 2 

One of the most common uses of a ratio controller is used for correcting the air-fuel ratio 
in automobiles. A specified amount of air is always taken up by the engine and the 
amount of fuel injected is controlled by a computer through the use of a ratio controller. 
The stoichiometric ratio for air to gasoline by mass is 14.7:1. There is an oxygen sensor 
in the exhaust manifold as well as sensors for all of the exhaust components. This sensor 
is connected to the valve for the fuel injection. If there is too much oxygen measured in 
the exhaust, then the mixture is said to be lean. Is the ratio of air to gas in the original 
mixture greater than or less than 14.7:1 and what should the valve controlling the fuel 
injection do?  

Note: This is an indirect form of a ratio controller as it measuring a physical property of 
downstream in order to determine if the ratio is too high or low. Further information may 
be found here about Air-fuel Ratio and Oxygen Sensors.  
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Answer: Since there is leftover oxygen in the exhaust, there must have been too much in 
the original mixture. The ratio of air to gas in the original mixture is greater than 14.7:1 
and thus the computer should open the valve more for the fuel injection.  

 

4.11 Worked out Example 3 

Many processes in industry require multiple process streams entering at different 
locations in the system. A senior engineer gives you the project to design the control 
scheme for a new process to be implemented at the company. The process involves 2 
reactions and 3 different feed streams.  
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Reactions: 2A + B --> D  

C + 3D --> E  

Assume the reactions go to 100% completion (you only need stoichiometric amounts).  

Complete the P&ID with the control scheme and write the ratios (with respect to B) that 
the other molar flow rates will be set to. Also explain how the system will take action 
when it detects excess C or D in the product stream.  

 

 

 
Solution:  

 

A: 2 B: 1 C: 1 D: 1/3 E: 1/3  
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If the AC detects greater or less amounts of C expected, it will adjust the ratio setting in 
RY connected to C's flow controller, reducing or decreasing the ratio of C to B, 
respectively.  

4.12 Multiple Choice Question 1 

Why is a Blend Station used?  

a. to create the set point for the ratio controller  

b. to reduce lag time in adjusting flow rates  

c. to measure flow rates  

d. to multiply one flow rate by the desired ratio  

4.13 Multiple Choice Question 2 

How is the set ratio used in the first type of ratio controller described above?  

A. Outputs how much each stream should be flowing.  

B. It is compared against two flow rates to adjust one if needed.  

C. Tells the system to shut down.  

D. It adjusts for lag time when the system is not at steady-state.  
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Section 5. Summary: Summary on Control Architectures’ 
philosophies, advantages, and disadvantages. 

 Summary on Control Architectures 

A summary of the philosophies, advantages, and disadvantages of the different control 
architectures is shown below in Table 1. 

Table 1. Control architectures’ philosophy, advantages, and disadvantages. 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6.1 Introduction 

Liquid level and liquid pressure control are fundamental aspects of many control 
processes because of the reliance on the stability and convenience of liquid usage. The 
following article will introduce the main concepts behind liquid pressure control, liquid 
level control, examining the loop characteristics, response, tuning and limitations. Two 
models are included to illustrate the application of a liquid pressure control loop and a 
level control loop in idealized systems.  

6.2 Pressure Control Basics 

Like its counterparts of temperature, level and flow, pressure is one of the most common 
process variables. Pressure is a key process variable as it provides a critical condition for 
processes such as any chemical reaction, extrusion, boiling, distillation, air conditioning 
and vacuuming. Poor pressure control may likely lead to problems associated with 
quality, safety and productivity. For example, the presence of high-pressure conditions in 
a sealed vessel may result in an explosion and thus it is imperative that pressure be kept 
under good control within its safety limits.  

Liquid pressure control is one of the easier control loops in the sense that it is shares 
many of the same characteristics of a common flow loop. The aim of the liquid pressure 
loop is to control the pressure at the needed set point pressure by controlling the flow 
with changing process needs. Because dealing with a liquid, the flow present is that of an 
incompressible fluid and as a result the pressure changes very quickly leading to a fast-
responding process with small dead time and capacitance. This process behaves as a fixed 
restriction where the change in pressure is a function of the flow through the process. 
Illustrated below is a diagram with liquid pressure control on the pipe leading to the 
process.  

 

There are a few additional considerations for the aforementioned liquid pressure loop. 
Firstly the controller can be proportional plus integral (PI) or integral only (I-only) if Kc < 
2 otherwise a proportional only (P-only) controller is to be used. This controller is tuned 
similarly to the flow controller. Another consideration is that process gain is not constant, 
a square-root extractor or the highest loop gain should be used in tuning the controller. 
This highest loop gain is employed to prevent the process loop from ever becoming 
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unstable. Finally, this liquid pressure loop is noisy like its flow loop counterpart and as a 
result it is recommended that derivative action in the controller not be used.  

If you wish to see the various issues associated with pressure controllers please refer to 
previous wiki articles.  

6.3 Level Control Basics 

Controlling the level of liquid in a tank is one of the most basic requirements for a 
chemical process to run effectively. Most chemical engineering processes require some 
sort of liquid to be held for usage, and the most convenient way of ensuring the proper 
amount of liquid is available is through level control. A specific example of a process that 
requires level control is seen around the world. Water towers must have a designated 
amount of water within them to ensure sufficient water pressure to surrounding 
neighborhoods and hence liquid level control (LLC) is used.  

Fortunately Liquid level control is one of the easier control loops available. The systems 
are fairly simple, a sensor reads the level of liquid within a tank, which then is conveyed 
to the controller. Subsequently, the controller changes a valve to increase or decrease the 
flowrate into or out of the tank, depending on the required action and controlled valve 
placement. Below is a figure with LLC on the pipe leaving the tank.  

 

The ease of LLC also lies in its large capacitance and nominal dead time. Usually hold-up 
times vary from 5-15 minutes. Problems may arise when signal noise becomes a factor, 
as it usually does with level controllers. Refer to previous wiki articles to the issues 
associated with level controllers(), however it is important to note that a measurement of 
weight instead of directly measuring level can be a effective way of eliminating noise.  
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6.3.1 P‐only Controllers 

Oftentimes using a P-only controller is the best way to ensure proper level control, in 
most cases only a small percent error will result, and it reduces problems associated with 
noise. P-only controllers should only be used when gain is very small and the tank has a 
large capacity. This will be the basis for the rest of the wiki.  

A P-only controller works off the following principle of control:  

Output=Gain*Error+Bias  

The output directly effects a valve to control the flowrate into or out of the tank. Refer to 
the previous wiki articles to learn more about P-only control.  

6.3.2 Level Measurement Noise 

When controlling liquid levels in drums or vessels, an important aspect to consider is that 
there may be noise in the level measurement due to disturbances such surface turbulence, 
boiling of the liquid, or agitation. Due to the existance of this noise, using a derivative 
action controller may not be appropiate. However, if this type of controller action is used, 
there are various methods that may be employed to minimize the noise.  

Method 1: Use a displacer in a stilling well  

Advantage: - Filters high frequency noise due to turbulence in the tank  

Disadvantage: - Bobbing level due to the low-frequency movement of tank liquid into 
the well resulting from the formation of a U-tube between tank and well  

 
Method 2: Use an ultrasonic level measurement with electronic filtering of the signal  

Advantage: - Works well when the level response period is much lower than the noise 
frequency  

 
Method 3: Use a tank weighing method  

In the this method, a loading device is placed beneath the tank supports to measure the 
mass of the tank. Output weight values are averaged by a transmitter which are then sent 
to a converter which outputs the corresponding level to the controller.  

Advantage: - Effectively eliminates noise in the level measurement due to turbulence  
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6.4 Models 

The following are Excel models of Pressure and Level contol in simple systems. 
Proportional only control is used primarily for these models. Controller noise has been 
eliminated for sake of simplicity.  

6.4.1 Liquid Pressure Control Model 

The model at hand illustrates both the feed backwards system of the liquid pressure in a 
pipline of a process and its process gain relationships. This liquid pressure control loop is 
regulated by the position of the valve on the pipeline leading to the process. A P-only 
control is used here to change the valve position resulting in the need response in 
attaining the set point value. The following are any assumptions made and the equations 
used in modeling this process. An assumption is made that the process behaves like a 
fixed restriction such as an orifice plate whose Dp is a function of flow through the 
process. Another assumption that should be made is that the valve responds linearly to 
the flow-rate through it. In determining the process gain the following equations where 
used.  

 

where P0 is the downstream pressure at zero flow  

 

where R is the process flow resistance  

As a result we obtain:  

 

The gain of the process is then determined by the following expression:  

 

 
A model for the feed backwards system for liquid pressure control introduced in this 
article is very complicated and might possibly be out of the scope of our discussion. A 
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possible alternative model would be very similar to the liquid level model presented 
below with the head in the tank determining the liquid pressure in the pipeline leaving the 
reactor.  

The process gain model for a liquid pressure loop can be downloaded here --> 
Media:Process gain model.xls  

6.4.2 Liquid Level Control Model 

The following model represents a feed backward system of a liquid holding tank. The 
control loop is regulated by the exiting valve position on the pipe leaving the tank. A 
maximal flowrate out is assumed and the height of water in the tank does not have any 
effect on the flowrate out of the tank. This assumption can be made in tanks which are 
sufficiently wider than the pipe exiting operating with little liquid level change, as often 
is the case. Another assumption made is the linear response of the valve to flowrate out.  

The pipe entering the tank is set by the user at a fixed flowrate. The P-only control is 
used to change the exiting valve position in order to cause the desired response to obtain 
the setpoint value. The P control follows the equation listed above and the bias is 
designated by the point at which the valve is open to allow a steady state to occur. Gain 
in Level control systems is usually low, however this can be changed by the user as well. 
The setpoint for the tank is determined by the user, as are the entering liquid flowrates 
and the maximal exiting flowrate.  

The user can input a set point change in order to view the corresponding response in the 
controller.  

Download the Level Model here --> Media:LLCmodel.xls  

6.5 Worked out Examples 

6.5.1 Question 1 

Using the Liquid Level control Excel Model, what do you find when you change the level 
set point at a given point in time?  

What happens if you change the gain to an large number?  

6.5.2 Answer 1 

When you change the level set point, you should notice a corresponding increase or 
decrease in the level as the P-control kicks in and beings to compensate for the error. The 
rate at which this set point is obtained is determined by the controller gain. At high 
controller gains the system responds extremely rapidly in an unreal fashion, this is why 
controller gain is usually small in large capacity tanks with flow control.  
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The above figure changes the setpoint to 100 @ t=100 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The above figure uses a very high controller gain. Note the unreal response.  

6.5.3 Question 2 

What is the primary difference between the model for the process gain of the pressure 
flow loop introduced earlier in the article and a typical head flow response curve?  

6.5.4 Answer 2 

The response of pressure to flow is shaped similarly to the response of the head flow 
device and as a result the rules that govern the liquid pressure process gain model are in 
essence the same for the head flow device response. The only difference between the two 
response curves is that whereas the pressure varies from Po to 100 per cent for the 
process gain curve for the pressure flow loop, the pressure varies from 0 to 100 percent 
for the head flow device.  

Below is the response for the pressure loop followed by that of head flow device.  
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6.6 Multiple Choice Question 1 

When should P-only controllers be used in Liquid Level control?  

A) Whenever, because it's really easy.  

B) Never because it is too simple.  

C) Sometimes, when the gain is small and the tank capacity is large.  

D) None of the above  
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6.7 Multiple Choice Question 2 

Various methods may be used to minimize the noise in a level measurement when using 
which type of controller action:  

A) None, you can never minimize noise in a level measurement  

B) Integral  

C) Derivative  

D) PI-control  

6.8 References 

• Use the Harvard Referencing style for references in the document. 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more information 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when to reference see the following wikipedia 

entry. 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7.1 Introduction 

Temperature, pressure, flow, and level are the four most common process variables. 
Temperature is important because it provides a critical condition for processes such as 
combustion, chemical reactions, fermentation, drying, distillation, concentration, 
extrusion, crystallization, and air conditioning. Poor temperature control can cause major 
safety, quality, and productivity problems. Although highly desirable, it is often difficult 
to control the temperature because its measurement must be within a specified range of 
accuracy and have a specified degree of speed of response, sensitivity, and dependability. 
Additionally, temperature measurements must also be representative of true operating 
conditions in order to achieve successful automated control. The instrument selected, 
installation design, and location of the measuring points determine these specifications.  

 
This article will serve as a guide to select the best location of measuring points to achieve 
the best automatic control. It will consider temperature control for three common process 
types: a CSTR, distillation column, and heat exchanger.  

 

7.1.1 Temperature Control Loops 

Before temperature control loops for specific processes are explained, we must discuss 
the general considerations common for all temperature control loops.  

 
Temperature control loops can either be endothermic (requiring heat energy) or 
exothermic (generating heat energy). Both types are similar in that they both result in a 
response representing a process with a dominant capacitance plus a dead time. For both 
types of processes, one of the following devices is used to measure temperature:  



  267 

• thermocouple  
• filled thermal well system  
• Resistance temperature detector (RTD)  

The measurement device, or thermal well, should be selected so that is minimizes 
additional lag to the overall process lag. Minimizing temperature measurement lag in the 
temperature control loop is important in both slow and fast loops. Some general rules of 
thumb for reducing temperature measurement lag are:  

1. Use a small-diameter bulb or thermal well to minimize the thermal resistance and 
thermal capacity of the measuring element.  

2. Use a thermal well made from a material that minimizes thermal resistance and 
thermal capacity of the measuring element.  

3. Use a small pipe or orfice near the measuring device to increase velocity of the passing 
flow. Increasing flow will increase the rate of heat transfer between the process fluid and 
the measuring device.  

4. Place the measuring element in the liquid phase when measuring temperature in a two-
phase system since thermal resistance is smaller in the liquid phase than in the vapor.  

5. Use a transmitter with derivative action to cancel out some of the lag in the measuring 
element. Compensate for this added derivative gain in the transmitter by reducing the 
derivative gain in the controller.  

7.2 CSTR Temperature Control 

7.2.1 Endothermic Reactor Temperature Control Loops 

Endothermic CSTR reactors are generally easier to control than exothermic CSTR 
reactors because when the temperature reaches a critical minimum, the reaction does not 
proceed until there is adequate heat. In this sense, endothermic CSTR reactors are self-
regulating. A good way to think of an endothermic CSTR’s controls is that of a heat 
exchanger being used to heat a reaction solution. This heat exchanger’s response is 
controlled by the dead time, so typically a PI or PID controller is used.  

There are two main types of temperature control methods for endothermic CSTRs: 
control via steam flow rate and control via steam pressure. For the steam flow rate control 
case, the temperature control sends a signal to the flow control, which then controls the 
steam inlet valve. For the steam pressure control case, the temperature control sends a 
signal to the pressure control, which controls the steam inlet valve. Examples of an 
endothermic CSTR temperature control loop can be seen below in Figure 1 a-b.  
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Image Modified From: Riggs, James B., Karim, Nazmul M.. Chemical and Bio-Process 
Control. Third Edition Chapter 18. Ferret Publishing.  

7.2.2 Exothermic Reactor Temperature Control Loops 

In an exothermic reaction, energy is released in the form of heat. In some cases, a cooling 
system is require to bring the temperature back to a set point and also to ensure that the 
temperature does not rapidly increase, or runaway. Some steps can be taken to prevent 
runaway temperatures, such as reducing the feed rates or concentrations of reactants. 
Also, the ratio of the heat transfer area to the reactor volume can be increased to help 
increase the controllability of the CSTR. Typically, the temperature is controlled using a 
PID controller, which is described in the previous section PID Control.  

Exothermic CSTRs are very difficult to control because they are very unstable and the 
temperature can easily runaway. The relationship between heat generation and 
temperature is non-linear, while the relationship between heat removal and temperature is 
linear. This relationship is illustrated in Figure 2. The stability of the temperature control 
loops depend on the rate at which heat can be removed from the system. For example, an 
exothermic CSTR that generates heat at a slow steady rate is more stable than a reactor 
that rapidly produces heat. In this example, the rate at which the heat can be removed 
from the system depends on the rate at which the temperature can be changed in the 
cooling jacket surrounding the CSTR.  
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Figure 2. Heat generation or removal as a function of temperature in an exothermic 

CSTR  

 
The intersections of the two curves, labeled A, B and C, represent steady state operating 
points. A and C are stable operation points while B is unstable. A and C are stable 
because as the temperature increases from this point, the rate of heat generation is less 
than the rate of heat removal. This means that as the temperature increases, heat is 
removed faster than it is generated so the temperature will be brought back down to that 
operating point. The same will happen if the temperature decreases from that point. As 
the temperature decreases, the heat generation rate is greater than the heat removal rate so 
the temperature will be brought back up to the operating point.  

Point B is unstable because when the temperature increases from that point, the heat 
generation is greater than the heat removal. This means that as the temperature increases, 
heat is continuously added to the system and the temperature will rise until it reaches one 
of the stable operating points, in this case C. If the temperature decreases from point B, 
the heat generation rate is less than the heat removal rate so the temperature will continue 
to decrease until it reaches the lower, stable operating point, A.  

This graph would be similar for an endothermic CSTR but there would be only one stable 
steady state operating point.  

Very rapid exothermic reactions are the most difficult to control and they are sometimes 
carried out in a semi-batch reactor so the addition of reactants can be carefully controlled 
and runaway temperatures can be avoided.  
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Figure 3.Temperature control loops for an exothermic CSTR  

 
Figure 3 illustrates a common control loop for an exothermic CSTR with a cooling 
jacket. A temperature transmitter (TT) sends a signal to the temperature controller (TC), 
which controls the hot and cold water valves on the jacket. The cold and hot water are 
pumped into the jacket which controls the reactor at a set temperature.  

7.3 Temperature Control in Distillation 

In a distillation column, temperature control is used as a means to control composition 
because temperature sensors are cheaper, more reliable, provide continuous 
measurements, and respond quicker than composition analyzers. Through equilibrium 
relationships, temperature measurements can be used to infer composition of the product. 
Inferential temperature control is only effective when the relative volatility of the 
components is high (greater than 2.0). Temperature controllers are used as feedback 
composition controllers to adjust column operation to meet production requirements. 
They must be able to satisfy the constraints defined by production requirements at all 
times, even in the face of disturbances.  
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7.3.1 Inferential Temperature Control  

To control composition via temperature, a correlation must be made between temperature 
in the tray and composition of the key components. Determining a correlation is 
challenging because the temperature-composition relationship is affected by process 
nonlinearity and disturbances in feed composition, flowrates, and occurrence of 
entrainment or fouling. For multi-component separations, temperature does not determine 
a unique composition, so either an online composition analyzer or periodic lab tests must 
be utilized to verify composition at the temperature setpoint. Additionally, the column 
pressure greatly affects the measurement of tray temperature. For most systems, the 
following linear equation can be used to correct for variations in pressure:  

(Eqn 1)  

Where,  

=corrected temperature  

=measured tray temperature  

=pressure correction factor  

=column pressure  

=reference pressure  

 

The pressure correction factor, , can be estimated using a steady-state column 
simulator for two different operating pressures and the equation:  

(Eqn 2) 

Where,  

=temperature of tray i predicted by the column simulator  
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Successful temperature control in the column depends on the dynamic response of 
measuring the tray temperature with respect to the manipulated energy source used to 
actuate temperature. The energy source is either the reboiler or the reflux. To have tight 
process control means that the equivalent dead time in the loop is small compared to the 
shortest time constant of a disturbance with significant amplitude. According to Svreck, 
et al, the following observations from experimental tests are cited:  

• Temperature control is made less stable by measurement lag or response 
times.  

• The speed of response and control stability of tray temperature, when 
controlled by reboil heat, is the same for all tray locations.  

• The speed of response and control stability of the tray temperature, when 
controlled by reflux, decrease in direct relation with the number of trays 
below the reflux tray.  

• When pressure is controlled at the temperature control tray, the speed of 
response of the temperature control instrument can vary considerably with 
tray location, and is normally slower.  

 
To achieve the best composition control, you need to determine the tray(s) whose 
temperature(s) show the strongest correlation with product composition. The following 
procedure using a steady-state column model can be used:  

1. Run the column at the base conditions and at steady-state and 

record the temperature, , of each tray.  

2. Increase the impurity level in the bottoms product (  and , 
so that Δx is about 25-50% of the impurity level for the base case. Record the 

temperature, , of each tray.  

3. Increase the impurity level in the overhead product and , 
so that Δy is about 25-50% of the impurity level for the base case. Record the 

temperature, , of each tray.  

4. The best tray for inferential temperature control of the stripping section will be the 
least sensitive to variations in the composition of the overhead product. This tray is the 
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one that maximizes: 
(Eqn 3)  

5. The best tray for inferential temperature control of the rectifying section will be the 
least sensitive to variations in the composition of the bottoms product. This tray is the one 

that maximizes: (Eqn 
4)  

6. Repeat this procedure for a range of feed compositions. Then, select the tray that 

maximizes the equations most often for the range of feed compositions.  

7.3.2 Single Composition Control 

Once you have determined the best tray to use for inferential temperature control, you 
must choose a manipulated variable (MV) that will have a significant gain on the tray 
temperature, and thus on the composition. Usually in distillation, the composition of only 
one product stream is controlled while the composition of the other product stream is 
allowed to drift. This is called single composition control. The chemical industry 
primarilly uses sing composition control.  

When you are interested in controlling the composition of the overhead product, the 
reflux is used to control the purity, while the reboiler duty is held constant. The bottom 
composition is not directly controlled and will vary as the feed composition varies. The 
reflux, L, is the manipulated variable that will result in the tightest control, rather than 
either the distillate flowrate, D, or the reflux ratio, L/D. This is because L is the fastest-
acting MV for the overhead and is the least sensitive to changes in the feed composition 
This scenario is depicted below in Figure 4a.  
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Figure 4a. Control diagram for inferential temperature‐single composition control 

of overhead product stream by L.  

 
Figure 4b. Control diagram for inferential temperature‐single composition control 

of bottom product stream by V.  

 
When you are interested in controlling the composition of the bottom product, the boilup 
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rate, V, is used to control the purity, while the reflux rate is held constant. The overhead 
composition is not directly controlled and will vary as the feed composition varies. V is 
the manipulated variable that will result in the tightest control, rather than either the 
bottoms product flowrate, B, or the boilup ratio, V/B. This is because V is the fastest-
acting MV for the bottoms and is the least sensitive to changes in the feed composition 
This scenario is depicted above in 4b.  

7.3.3 Dual Composition Control 

Although single composition control is most commonly used, there are some industries 
that need to simultaneously control the composition of both the overhead and bottom 
product streams. This is called dual composition control and is harder to implement, tune, 
and maintain than single composition control. Dual composition control increases 
product recovery and reduces utility costs and is used for refinery columns that generally 
have high associated energy usage. Industries that have refineries, such as the oil 
industry, use dual composition control because they are interested in using both the 
overhead and bottom streams as product.  

In dual composition control, there are many possible control configurations. The control 
configuration is described by the control objective and by the MV. There are four 
possible control objectives: bottom product x, overhead product y, reboiler level, and 
accumulator level. The chosen control objectives are then paired with a MV. There are a 
variety of choices for the MV. These include: L, D, L/D, V, B, V/B, B/L, and D/V. 
Therefore, in dual composotion control, there are many possible configurations to 
consider, although most are not practical.  

The most commonly used configuration for dual composition control is (L, V) which uses 
L to control y (overhead composition) and V to control x (bottom composition), because 
it provides good dynamic response, is the least sensitive to changes in feed composition, 
and is the easiest to implement. However, it is highly susceptible to coupling. In this 
configuration, depicted below, the setpoint for the reflux flow controller is set by the 
overhead composition controller, and the setpoint for the flow controller on the reboiler 
duty is set by the bottom composition controller. D is then used to control the 
accumulator level, and B is used to control the reboiler level.  
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Figure 5. Control diagram for inferential temperature‐dual composition 

configuration (L,V), the control of overhead product stream by L and bottom 
product stream by V.  

 
Since there are so many possibilities for configurations, there is no clear best choice for a 
configuration of MVs in dual composition control in distillation columns. It is impossible 
to know theoretically which configuration is optimum for a particular process, but there 
are some rules of thumb to follow to increase the possibility of choosing a good 
configuration. These rules are summarized in the chart below.  
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Figure 6. Chart to determine a good configuration for your process when using dual 

composition inferential temperature control  

 
For the gray area where 5<L/D<8, follow the rules of thumb for the closest L/D, and use 
experimental data to determine the best configuration for your particular process.  

7.3.4 Controller Tuning and Constraints 

When temperature is used for inferential composition control, a PID controller is usually 
used because of the significant sensor lag. Common constraints on the extent of 
temperature control in a distillation column include:  

• Capacity of reboiler power  
• Capacity of overhead condenser  
• Flooding or entrainment  
• Maximum (undesired) column temperature  

In general, temperature control can be used to control composition in a distillation 
column. The temperature measuring device should be chosen to minimize the lag time. A 
steady-state model can be used to correct for pressure changes in the column and to 
determine the best tray at which to measure temperature. The choice of the MV depends 
on if you are operating under single or dual composition control and which product 
composition you want to control.  
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7.4 Heat Exchanger Control 

In heat exchanger control, the temperature of the process exit stream is the controlled 
variable (CV) and can be adjusted by one of four possible manipulated variables: cool 
side entry stream, cool side exit stream, hot side entry stream, or hot side exit stream. The 
selection of where control will be implemented is a combined result of three factors:  

1. Whether we want to heat or cool the process stream  

2. The response time of the controller  

3. The capital cost  

To illustrate the selection process, first it is shown that the hot stream preferred for 
temperature control, then two case studies are discussed, one for heating up the process 
stream and the other for cooling the process stream.  

7.4.1 Controlling the Cool Side Stream 

It is not advisable to place temperature control on the cool side stream. This is 
explained below.  

The particular MV in each stream is the flow rate. It is known that the temperature of the 
hot stream will change once the flow rate of the cool stream is adjusted.  

 
Figure 7. Image modified from Riggs & Karim, shows coolant temperature control 

loop for a Liquid/Liquid Heat Exchanger. 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It is easier to think of the temperature change as the magnitude of the process gain (|

|). This just is the magnitude of the temperature change over a 
specified interval. This way the discussion can be general for both heating or cooling the 
process stream.  

 
Figure 8. Taken from Riggs & Karim, demonstrates the limit that increasing the flow 
rate of the coolant stream has on the exit temperature of the process stream for 

three heat exchanger areas 

 
As the rate of the cool stream is increased from zero, the magnitude of the process gain 
continuously decreases. Above a certain rate, the gain will not be a measurable change in 
the process stream temperature. Because of this, making the coolant stream the MV will 
make the process uncontrollable at a critical point and is not a good idea.  

7.4.2 Controlling the Hot Side Stream 

As indicated above it is never recommended to place the temperature control on the cool 
side stream. This reduces controls consideration to only the hot stream. There are two 
cases where the control can be on the hot stream; when heating up and when cooling 
down the process stream.  

 

Heating Up The Process Stream 

CASE STUDY 1: Steam-Heat Heat Exchanger  
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In this case the process stream is the cooler of the two entering streams, the previous 
section states that the MV would have to on the stream used to heat up the process 
stream.  

The temperature control loop can either be the direct steam flow or the steam pressure. 
Both controls the amount of steam flowing into the heat exchanger by adjusting a valve, 
however, the preferred of the two is the steam pressure as the MV in the temperature 
control loop. This is because a change in the steam supply can quickly cause the internal 
pressure of the heat exchanger to change hence affecting the temperature exchange. The 
steam pressure control responds and corrects this faster than the steam flow control. This 
becomes especially useful for heavy duty requirements when the change in response to 
change in flow rate of the process stream. The two figures below show two preferred 
configurations;  

 
Figure 9. Image modified from Riggs & Karim, shows one arrangement for 

temperature control for heating up a process stream  



  281 

 
Figure 10. Image modified from Riggs & Karim, shows an alternative arrangement 

for temperature control for heating up a process stream  

 
Notice that Figure 10 shows the control valve on the condensate stream. This is an 
acceptable control placement, however, in most practical application the first of the 
configurations in Figure 9 is preferred. In addition there are some ramifications to making 
the condensate flow the MV. The temperature loop in this case would not be as 
responsive as in the previous case. This is because the level responds slower than the 
pressure to the changes in the respective valves. The capitol cost involved in placing the 
valve in the condensate stream is much lower that that in the steam stream because the 
steam stream is generally larger and requires a larger, more expensive valve. In addition a 
steam trap is required down stream of the condensate valve, for that configuration.  

Cooling Down The Process Stream 

CASE STUDY 2: Liquid/Liquid Heat Exchanger  

In this case the process stream is the hotter of the two entering stream so the controls will 
have to be on this stream. As in case one we are setting up the temperature control loop 
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for varying flows in the process stream because in a plant the flow rate of this stream is 
dependent on a process before the heat exchanger. Hence when creating control loop for 
cooling down the process stream the coolant flow is kept constant (as stipulated in the 
section "Coolant Stream Controls") and maintain the CV at the set point. The best choice 
for the MV in this temperature control loop is having a feed bypass stream, as illustrated 
in Figure 11 below. The advantages of having this bypass stream are that the process 
dynamics are considerably faster with low levels of dead time and this condition is more 
linear, as opposed to varying the coolant flow rate. With this configuration the coolant 
flow rate can be maintained very high which reduced the tendency for fouling on the 
process fluid side of the heat-transfer surface.  

 
Figure 11. Image modified from Riggs & Karim, shows the common arrangement 

for temperature control for cooling down a process stream  
 

7.5 Worked out Example 1 

(a) Is an exothermic CSTR easier or harder to control than an endothermic CSTR? What 
are some reasons for this, and what are a few steps that can be taken to increase control?  

(b) In Graph 1, why are points A and C stable operating points, while point B is an 
unstable operating point?  

 
SOLUTION:  
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(a) An exothermic CSTR is harder to control. The relationship between heat generation 
and temperature is non-linear for an exothermic system (Graph 1). If the rate of heat 
generation exceeds the maximum rate of heat removal then the temperature will runaway.  

An endothermic CSTR is much easier to control because these reactors are self-regulating 
and there is no concern for runaway temperatures.  

The control of an exothermic CSTR can be increased by reducing the feed flow of the 
reactants, reducing the concentration of reactants and increasing the ratio of the heat 
transfer surface area to the reactor volume.  

 
(b)  

 
Figure E11. Relationship between heat generation or heat removal and 

temperature for an exothermic system.  

 
Points A and C are stable because if you increase the temperature from this point, the 
heat generation rate is lower than the heat removal rate. If you increase the temperature 
from point B, the heat generation rate is higher than that heat removal rate, shich is not 
desired. If the rate of heat generation is greater than the heat removal then the 
temperature is rising and could possible runaway. This is an unstable state for the reactor.  
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7.6 Worked out Example 2 

Refer to Heat Exchanger Modeling Worked Example 1 problem statement.  

After you successfully created your ODE model, you are assigned a partner who will 
work along with you to put temperature controls on the heat exchanger. Your partner, a 
new college graduate, seems to remember that in his process controls class, the best way 
to control a temperature loop for a heat exchanger is to make the flow rate of the coolant 
stream the manipulated variable. Since you are such a process guru, you know that this is 
not right. However, the hot shot college graduate just feels that you are over the hill and 
he knows his stuff.  

Vary the coolant flow rate in the Euler's Method heat exchanger to demonstrate to your 
new partner why it is not a good idea to place the controls on the coolant side flow of a 
stream. Produce a process gain plot similar to that in the article to show this. Also, find 
the magnitude of the process gain for three different points in the plot: low, medium and 
high coolant flow rate, to show process gain goes to zero as the coolant flow rate 
increases.  

 
SOLUTION  

Note that in this case we are dealing with a liquid/liquid heat exchanger and the hot 
stream is the process stream. The table below summarizes the results.  
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Table E21. Process stream exit temperature as a function of coolant flow rate. 

 

 
Figure E21. A continuous picture of how the magnitude of process gain decreases 

to zero as the coolant flow rate is increased.  

 
From the graph or table above one can show that the magnitude of process gain decreases 
as the coolant flow rate increases. This is done as follows;  

Magnitude of process gain for;  

Low flow rates, choose from 0 to 0.1 m3 / s.  

= |330 - 274.50| = 55.5K  

Medium flow rates, choose (same interval size) from 0.4 to 0.5 m3 / s.  

= |262.01 - 261.20| = 0.81K  

High flow rates, choose (again same interval size) from 0.9 to 1 m3 / s.  

= |259.798 - 259.626| = 0.172 K  
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Clearly, as the flow rate increases, the magnitude of process gain decreases towards zero. 
This puts a limit on the amount of control of the heat exchanger if the coolant flow rate is 
chosen as the MV in the temperature control loop.  

7.7 Multiple Choice Question 1 

What two types of endothermic CSTR temperature control methods are there?  

a. steam flow rate and reactor level  

b. reactor composition and reactor level  

c. steam flow rate and steam pressure  

d. reactant flow rate and reactor level  

7.8 Multiple Choice Question 2 

What are temperature controllers commonly used for in distillation columns?  

a. To control composition  

b. To control reflux ratio  

c. To control pressure  

d. None of the above  

7.9 References 

• Svrcek, W., Mahoney, D., Young, B.. A Real-Time Approach to Process Control. Second Edition. 
John Wiley and Sons.  

• Riggs, James B., Karim, Nazmul M.. Chemical and Bio-Process Control. Third Edition Chapter 
18. Ferret Publishing.  



  287 

 

Section 8. Common control architectures / model for reactors 

Title: Common Control Architectures for Reactors  

Note: Video lecture available for this section!  

Authors: Brian McQuillan, Crystal Miranda, Brandon Quigley, and John Zhang  

Date Presented: Oct. 31, 2006  

• First round reviews for this page  
• Rebuttal for this page  

8.1 Introduction 

Reactors are the central focus of many chemical plants. Many parameters must be 
controlled in a reactor for proper operation. Temperature is of great importance because it 
affects reaction rates and equilibrium relationships. A major challenge for temperature 
control is handling the nonlinear nature of temperature inside most reactors. Therefore, it 
is important to design an effective control architecture in order to ensure optimal 
operation of the reactor.  

 
This article discusses the common control architectures and topologies in CSTRs. The 
control architectures are designed based on whether the reactor is endothermic or 
exothermic. The same concepts introduced in the wiki can be applied to other reactors as 
well. However, only CSTRs will be discussed for simplicity.  

8.2 Common Topologies 

Here we will introduce a few of the most common control topologies which will be 
examined in applications to endothermic and exothermic CSTRs below. Please refer to 
the specific wiki pages for each type for detail.  

8.2.1 Feedback and Feed‐Forward 

Feedback and feed-forward refer to the direction in which the sensor information is 
transfered to an actuator valve. Feedback control dictates that sensor information is "fed 
back" to a previous part of the process. For example, the reading from a level sensor of a 
filling tank can be "fed back" to the valve controlling the input to the tank. Feed-forward 
control means the sensor information is used to control something downstream from 
where the reading was taken. For example, the measured flow rate of water going into an 
evaporator can be used to control the heating coil inside of the evaporator. For detail 
about these two control topologies, please see the respective pages: Feedback Control 
Feed-Forward Control.  
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8.2.2 Ratio Control 

Ratio Control is used when the ratio between two measured process variables has an 
optimal value. In the context of two input streams with optimal flow ratio going into a 
reactor, one stream is designated as the control stream, and one stream is designated as 
the wild stream. The wild stream fluctuates, and a valve on the control stream is opened 
or closed to maintain the ratio between the two stream flows. For detail about ratio 
control, see Ratio Control.  

8.2.3 Cascade Control 

Cascade control simply means that instead of one control loop found in simple control 
topologies where a sensor's measurement directly controls an actuator valve, multiple 
loops are used so that sensors' measurements can control set points for other controllers. 
For example, the temperature sensor measurement of process fluid exiting a reactor can 
be used to modify the set point of the flow controller of steam feeding the heating jacket, 
which then sets the steam valve. This multiple-loop system eliminates some problems 
caused by variable-pressure feeds, for instance. For detail about cascade control, see 
Cascade Control.  

8.3 Disturbances to CSTRs 

There a few very common disturbances that CSTR may be subjected to. When designing 
a control architecture for a CSTR, you must invertigate the possibility of all of these 
disturbances, determine the magnitude of each possible disturbance, and address how 
each will be handled.  

• Changes in feed properties  
o flow rate  
o composition  
o temperature  

• Changes in enthalpy of heat exchange medium  
• Change in heat transfer properties (ex: fouling)  

8.4 Disturbances to PFRs 

Plug Flow Reactors (PFRs) behave differently than CSTRs and will have different 
properties to consider when designing a control architecture for them. The biggest 
difference is that the temperature, flows, and compositions will all vary along the reactor. 
There is danger of exceeding a design limitation in temperature or flow in certain parts of 
the PFR, so control of the reactor is important along its length. To design a control 
architecture for a PFR, the following disturbances and changes to the system must be 
addressed:  

• Temperature control in multiple places along reactor (hot spots can easily 
occur in PFRs) 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• Flow control in multiple places along the reactor  
• Inlet/outlet pressures  
• Feed property disturbances:  

o flow rate  
o composition  
o temperature  

• Changes in enthalpy of heat exchange medium  
• Change in heat transfer properties (ex: fouling)  

8.5 Endothermic Reactors 

DISCLAIMER: All reactors shown posess two controllers. We realize that in the 
real-world a reactor would require more than two temperature controllers but we 
are concerned primarily with the common placement of controllers outside of the 
reactor in this wiki. Thank you and continue reading.  

Endothermic reactors tend to be easier to control than exothermic ones because they are 
much less prone to runaway. There are two commonly used methods to control an 
endothermic CSTR. These two methods are differentiated by the variables they 
manipulate. In the first method, the steam pressure in the reactor jacket is in the 
manipulated variable, whereas in the second method, the steam flowrate is the 
manipulated variable. In endothermic reactors, as well as exothermic ones as we will later 
see, feedback is the most common type of control system used. This is done to ensure that 
changes are being based on what is actually happening in the reactor and not what is 
predicted to happen. This is important in the endothermic case to ensure that the proper 
amount of heat is being added to the reactor to obtain a desired conversion. Feedback is 
more useful for control since the amount of heat needed can change quickly based on the 
amount or concentration of reactants being added. Generally the temperature control of 
the reactor is independent of the reactant feed, so the system needs a way to adjust to 
changes within reactant feed, and this is accomplished by using feedback control in the 
streams that control the temperature (i.e. the steam feed stream).  

8.5.1 Controlled by Steam Pressure 

Heat duty can be more effectively removed with the use of steam pressure as the 
manipulated variable because changes in the heat duty of the reactor will cause an 
immediate change in the steam pressure. By using the steam pressure, it also linearizes 
the temperature control system which is not the case when the steam flowrate is the 
manipulated variable. Using the steam pressure as the manipulated variable does not 
provide a direct measurement of the heat load, the amount of heat needed by the reactor. 
If a direct measurement is required, a steam flow indicator can be installed which would 
allow for the direct measurement of the applied heat load. An added benefit, which those 
of you who have worked with the temperature controller in ChE 460 might have noticed, 
is that often times the pressure of steam being provided by the utilities plant is variable. 
By using the steam pressure as the manipulated variable the control system will 
automatically adjust to this type of disturbance from the source. If a large change in 



 290 

steam pressure were to occur, the pressure controller would measure this change, and the 
control scheme would intake the change in steam pressure and translate this into an 
appropriate change in the valve setting.  

 

Image Modified From: Riggs, James B., Karim, Nazmul M.. Chemical and Bio-Process 
Control. Third Edition Chapter 18. Ferret Publishing.  

 

As can be seen in the figure above, when steam pressure is used as the manipulated 
variable the control system is run in a feedback mode. One of two things can control the 
amount of steam fed into the jacket. The first is the temperature of the product, and the 
second is the steam pressure in the jacket. As mentioned above, a change in the heat duty 
required by the reactor will quickly change the steam pressure which is why it is 
commonly used over the steam flowrate.  

Notice that there are two controllers that are responsible for adjusting the steam valve. 
The pressure controller is sensitive to changes in the heat duty required by the reactor and 
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is used to adjust the steam according to the needs of the temperature controller on the 
product stream. This is a prime example of cascade control. The temperature of the 
product stream would output a setpoint to the pressure controller for the amount of steam 
needed to attain the desired temperature setpoint. The pressure controller would then 
communicate to the valve what needs to be done in order to achieve this temperature 
setpoint based on the steam pressure.  

8.5.2 Controlled by Steam Flowrate 

The second method for controlling a endothermic CSTR is by manipulating the steam 
flow rate. Using flow rate as the manipulated variable makes the control system prone to 
changes in heat load and changes in the enthalpy of supplied steam. These changes 
require direct action of the temperature control system. One advantage of using flowrate 
as the manipulated variable is that heat load is directly measured, and thus, conversion is 
directly measured.  

 

As can be seen in the figure above the system works in a feedback mode when the steam 
flowrate is used as the manipulated variable. The temperature of the product stream is the 
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primary factor in adjusting the amount of steam fed into the system, and therefore this 
system is less responsive to changes in the amount of heat duty required for the process.  

Note here that there are again two controllers used to adjust the steam valve. This setup is 
similar to the previous case, but now the flow controller is the "slave" controller to the 
temperature controller. The cascade control scheme is again at work!  

 

 

8.6 Exothermic Reactors 

Exothermic reactors are harder to control because safety is dependent on heat removal. 
There are two common control architectures for an exothermic CSTR based on the 
temperature of the coolant. The first method uses the outlet temperature of the coolant as 
the manipulated variable, while the second method uses the inlet temperature of the 
coolant. Just like the endothermic reactors, feedback control is very commonly used 
when controlling the temperature of exothermic reactors. The reasoning for feedback 
control in the exothermic case is slightly different but similar to that of endothermic 
reactors. In endothermic reactors we wanted to ensure that the proper amount of heat was 
being supplied to our reactor, and if the amount needed changed; we needed a way to 
adjust our temperature accordingly. In the exothermic case we need to ensure that we are 
removing the proper amount of heat, not only to ensure an optimal reaction temperature, 
but also to prevent a runaway reaction. Therefore, we need to know what is actually 
going on within the reactor instead of forecasting possible temperature changes within it. 
Cascade control is also used. In this case the temperature of the product stream outputs a 
setpoint to the temperature controller whether it be located on the outlet or inlet coolant 
feed. The "slave" controller can then adjust the valve position based on the temperature of 
the coolant water.  
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8.6.1 Controlled by Outlet Coolant Temperature 

 

The figure above shows the control architecture for CSTR reactor temperature controlled 
by outlet coolant temperature in a feedback mechanism. There is a temperature control on 
both the product stream and outlet coolant temperature. Both of the temperature controls 
are used to control the valve on the inlet coolant stream. The advantage of this setup is 
that it responds faster to fouling on heat-transfer surfaces than the setup with the 
temperature controller on the inlet. This is because in order for the inlet temperature to 
adjust to fouling, the fouling must first affect the temperature of the product stream. 
Therefore the fouling has less direct effect on the controller, but in this case fouling will 
immediately affect the temperature of the exiting cooling water. However, this setup has 
the disadvantage of responding slower to changes in the inlet coolant temperature.  

As can be seen in the above diagram you will notice that again cascade control is utilized 
in this particular system. The temperature sensor on the product stream provides 
information on whether the stream needs to be cooled more or less and outputs a setpoint 
to the temperature controller on the recycle stream. This controller can then take into 
account the temperature of the recycled coolant water and make an adjustment to the 
amount of fresh coolant water that is added to the system.  
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8.6.2 Controlled by Inlet Coolant Temperature 

 

As seen in the figure above, the control configuration for CSTR reactor temperature is 
controlled by inlet coolant temperature in a feedforward mechansim. There are 
temperature controls on both the product stream and inlet coolant temperature; both of 
the controls are used to control the valve on the inlet coolant stream. One advantage of 
this setup is that it responds faster to changes in inlet coolant temperature. A 
disadvantage is that it responds slower to fouling on heat-transfer surfaces.  

 

8.6.3 More on Exothermic Reactors  

How do you decide which exothermic reactor control architecture to use? It depends on 
whether a faster response to fouling on heat-transfer surfaces or a faster response to 
changes in inlet coolant temperature is more important.  

In addition to stabilizing the temperature within an exothermic reactor, it is often a goal 
to maximize production rate. This can be achieved by placing a valve on the feed stream. 
As the temperature control adjusts the cold water valve, the cold water valve position is 
then communicated to the feed valve and adjusts it.  

Cascade control is again utilized. In this case the secondary or "slave" controller is 
located in a different location, which is the only difference between the two scenarios.  
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8.7 Worked out Example 1 

As part of a community outreach program, your company is sponsoring a haunted 
house. The haunted house is being constructed on site in an old, dilapidated 
warehouse located on the plant property. You have been put in charge of designing 
a scene in which a witch is creating a witch’s brew. It has been proposed that you 
use a reaction between “Witch’s Brew Deluxe”, a commercial compound used in the 
haunted house industry, dry ice, and water.  

Dry Ice + “Witch’s Brew Deluxe” + Water --> Bubbles + Mist  

The manufacturer of “Witch’s Brew Deluxe” supplies optimal conditions for real 
life cauldron imitation at 30ºC water temperature. Temperatures in excess of this 
result in a surplus of cauldron bubbles and mist which impair the visual experience. 
Temperatures below this do not allow for large enough reaction rates and do not 
produce any steam or bubbles.  

The reaction is highly endothermic, so a supply of steam has been diverted from the 
main plant to supply heat to the reactor. However, due to the great distance this 
steam is traveling, the supply steam pressure is highly variable. An uncovered, 
jacketed CSTR is available for use as a cauldron. A mixture of water and “Witch’s 
Brew Deluxe” is constantly fed into the reactor, and solid dry ice is manually feed 
by the operator.  

What control scheme is most suitable for temperature control and why? 
Specifically, what should you use as the manipulated variable?  
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SOLUTION  

Because the steam supply pressure will vary greatly, a steam pressure control architecture 
is preferred. By monitoring the jacket pressure, changes in steam supply pressure will 
immediately be observed and corrected for.  

8.8 Worked out Example 2 

You have just recently taken a job offer from a haunted engineering firm run by a 
group of witches located in Salem, Massachusetts. As the new guy on the job they 
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would like your input on which variable they should treat as the manipulated 
variable for the reactor temperature controller. Their reactor is an exothermic 
CSTR. The following reaction is what takes place within this CSTR.  

3 frog's legs + 2 cow hooves --> 4 moles of magic elixir  

The magic elixir is generally used as a wart remover but also shows promise as an 
antacid.  

The head witch at the plant tells you that significant fouling occurs on the heat 
transfer surfaces because the city only allows them access to dirty water with high 
mineral content because they are witches and generally considered substandard 
citizens. She (the head witch) also points out that they have recently developed a 
spell to maintain the inlet temperature and pressure of their coolant water.  

Which variable should be the manipulated one and why?'  

SOLUTION  

The correct manipulated variable for the reactor temperature controller would be the 
outlet coolant temperature. This allows for a quicker response to fouled heat-transfer 
surfaces. Since the head witch told you that inlet temperature and pressure are constant, 
the configuration's weakness to changes in these two parameters can be overlooked.  

8.9 Multiple Choice Question 1 

Which type of REACTION is generally much easier to control?  

 
a) Endothermic  

b) Distillation of alcohol  

c) Cold Fusion  

d) Exothermic  

8.10 Multiple Choice Question 2 

By using the __________ as the manipulated variable, it linearizes the temperature 
control system which is not the case when the steam flowrate is the manipulated 
variable.  

 
a) feed flow rate  
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b) steam pressure  

c) product composition  

d) rate of mixing  
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1.1 Introduction 

A system of inputs and outputs can be described as one of four types: SISO (single input, 
single output), SIMO (single input, multiple output), MISO (multiple input, single 
output), or MIMO (multiple input, multiple output).  

Multiple input, multiple output (MIMO) systems describe processes with more than one 
input and more than one output which require multiple control loops. Examples of MIMO 
systems include heat exchangers, chemical reactors, and distillation columns. These 
systems can be complicated through loop interactions that result in variables with 
unexpected effects. Decoupling the variables of that system will improve the control of 
that process.  

An example of a MIMO system is a jacketed CSTR in which the formation of the product 
is dependent upon the reactor temperature and feed flow rate. The process is controlled 
by two loops, a composition control loop and a temperature control loop. Changes to the 
feed rate are used to control the product composition and changes to the reactor 
temperature are made by increasing or decreasing the temperature of the jacket. However, 
changes made to the feed would change the reaction mass, and hence the temperature, 
and changes made to temperature would change the reaction rate, and hence influence the 
composition. This is an example of loop interactions. Loop interactions need to be 
avoided because changes in one loop might cause destabilizing changes in another loop. 
To avoid loop interactions, MIMO systems can be decoupled into separate loops known 
as single input, single output (SISO) systems. Decoupling may be done using several 
different techniques, including restructuring the pairing of variables, minimizing 
interactions by detuning conflicting control loops, opening loops and putting them in 
manual control, and using linear combinations of manipulated and/or controlled 
variables. If the system can’t be decoupled, then other methods such as neural networks 
or model predictive control should be used to characterize the system.  

There are two ways to see if a system can be decoupled. One way is with mathematical 
models and the other way is a more intuitive educated guessing method. Mathematical 
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methods for simplifying MIMO control schemes include the relative gain array (RGA) 
method, the Niederlinski index (NI) and singular value decomposition (SVD). This 
article will discuss the determination of whether a MIMO control scheme can be 
decoupled to SISO using the SVD method. It will also discuss a more intuitive way of 
decoupling a system using a variation of the RGA method.  

1.1.1 Definitions of Input and Output System Types 

1. SISO- Single Input, Single Output  

 

These systems use data/input from one sensor to control one output. These are the 
simplest to design since they correspond one sensor to one actuator. For example, 
temperature (TC) is used to control the valve state of v1 through a PID controller.  

2. SIMO- Single Input, Multiple Output  

 

These systems use data/input from one sensor to control multiple outputs. For example, 
temperature (TC) is used to control the valve state of v1 and v2 through PID controllers.  

3. MISO- Multiple Input, Single Output  

 

These systems use data/input from multiple sensors to control one ouput. For example, a 
cascade controller can be considered MISO. Temperature (TC) is used in a PID controller 
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(#1) to determine a flow rate set point i.e. FCset. With the FCset and FC controller, they 
are used to control the valve state of v1 through a PID controller (#2).  

4. MIMO- Multiple Input, Multiple Output  

 

These systems use data/input from multiple sensors to control multiple outputs. These are 
usually the hardest to design since multiple sensor data is integrated to coordinate 
multiple actuators. For example, flow rate (FC) and temperature (TC) are used to control 
multiple valves (v1, v2, and v3). Often, MIMO systems are not PID controllers but rather 
designed for a specific situation.  

1.2 Singular Value Decomposition  

Singular value decomposition is a useful mathematical way to determine if a system will 
be prone to interactions due to sensitivity problems that result from small errors in 
process gains. It is a matrix technique that determines if a system is able to be decoupled.  

1.2.1 Two input two output system 

The SVD method starts with the steady state gain matrix, which is obtained from the 
relative gain array (RGA) method for a given 2 input-2 output control loop system:  

, 
Using [G], we obtain the eigenvalues for the system. This can be done through two 
methods; either the eigenvalues can be obtained through numerical software as described 
in the Eigenvalues and Eigenvectors section or the eigenvalues can be calculated by hand. 
The hand calculations are shown here. [G] gives the following values for the system, 
which have been derived from theoretical work and are used to find the eigenvalues:  
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b = g11
2 + g12

2 --------------(1) 
c = g11g21 + g12g22---------(2) 
d = g21

2 + g22
2--------------(3) 

b, c, and d are parameters created for this method that do not have a direct physical 
meaning. Using the formulas below with the values of b, c, and d gives the eigenvalues 
for the system:  

λ1 = s1
2 = ------(4) 

λ2 = s2
2 = ------(5) 

s1 and s2 are the positive square roots of the respective eigenvalues. The condition number 
CN is defined as the ratio of the larger of the two values to the smaller value:  

CN = if , or CN = if  

The greater the CN value, the harder it is for the system in question to be decoupled. As a 
rule of thumb, a system with a CN number of more than 50 is impossible to decouple. 
Such a system has manipulated variables which all have significant and similar relative 
impact on the controlled variables they affect and hence the control equations for the 
system cannot be restructured to obtain a simpler control system. In the worst case 
scenario for a two input two output system, using the exact same control variable twice 
would give a CN number of infinity, because both control variables would have the same 
effect on the controlled variables. An ideal system would have a CN number of one, 
where each control variable controls a single distinct output variable.  

1.2.2 MIMO systems with two or more inputs and outputs 

To use this method, it is necessary to know how to create a transpose matrix. A transpose 
matrix is created by writing the columns of the original matrix as the rows of the 
transpose matrix. Mathematically, the transpose matrix is denoted by [A]T, where [A] is 

the original matrix. An example is shown here:  
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To use singular value decomposition on systems with two or more inputs and outputs, the 
m x m steady state gain matrix [G] of the form  

 
is broken down into the form: 
G = UΣVT  

Where: 
*U is an m x m matrix , the column vectors of which are the unit eigenvectors of the m x 
m matrix GGT,GT being the transpose matrix of G. 
*V is an m x m matrix, the column vectors of which are the unit eigenvectors of the m x 
m matrix GTG. 
*Σ is an m x m diagonal matrix containing singular values, where the values are arranged 
in descending order from the top left most corner to the bottom right corner. 

for a 2 input 2 output system if , or 

for a 2 input 2 output system if .  

The CN number can then be determined by the ratio of the largest value in Σ to the 
smallest value. Notice in the previous two input two output example, there was no need 
to calculate the eigenvalue matrix Σ for a two by two matrix, since the eigenvalues can be 
calculated directly with the parameters b,c, and d.  

For more information on how to derive the three matrices U, Σ and V by hand, refer to 
the Eigenvalues and Eigenvectors section.  

Mathematica can also be used to find U, Σ and V for a given m x m Matrix G. This is 
accomplished by typing in the command 
Map[MatrixForm, {u, w, v}=SingularValueDecomposition[G]],  
giving U, Σ and V in that order.  
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1.2.3 Intuitive decoupling using the RGA 

With this technique, the first step is to construct the RGA by placing all of the controllers 
in manual, changing the value of the output manually, and then recording the final value 
of the controller after making the change. This will give the gain matrix, which is then 
multiplied by its inverse to give the relative gain matrix. The goal here is to pair 
measurements and control valves so that the relative gain elements are close to 1, and all 
other combinations are close to zero. A values between 0 and 1 tells that the net effect of 
the other loops on this pairing is to change the measurement signal in the same direction 
as the control valve signal (cooperation). A value greater than one means that the 
measurement signal will go in the opposite direction of the control valve signal (conflict). 
Finally a relative gain element less than zero means that the net effect is conflict, but here 
the gain will change sign, not the measurement signal. Therefore, if a loop is stable when 
the other loops are in manual, it will probably not be stable when the other loops are in 
automatic, and vice versa. To intuitively decouple this system then would require a guess 
and check of different pairings, with the goal being to get the pairings to a relative gain 
element close to one. If this is not possible and no pairings give a value close to one, then 
the system will need to be decoupled using decoupling control.  

1.2.4 Decoupling a system using decoupling control 

The goal of decoupling control is to eliminate complicated loop interactions so that a 
change in one process variable will not cause corresponding changes in other process 
variables. To do this a non-interacting or decoupling control scheme is used. In this 
scheme, a compensation network called a decoupler is used right before the process. This 
decoupler is the inverse of the gain array and allows for all measurements to be passed 
through it in order to give full decoupling of all of the loops. This is shown pictorially 
below.  
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For a simple jacketed reactor example, if changing the flow rate of reactant to obtain a 
desired composition also increases the reactor temperature by five degrees, the decoupler 
would decrease the temperature of the jacket to decrease the temperature inside the 
reactor by five degrees, offsetting the original change. This jacket temperature decrease 
also changes the composition inside the reactor, so a properly designed controller 
accounts for both effects in the control scheme to obtain the desired composition without 
changing the reactor temperature.  

1.3 Worked out Example 1 

Hot water at 110°C is pumped into a mixer at 500 kg/h. The water is used to dilute a 
concentrated caustic substance at 50°C flowing in at 200 kg/h. Below is a diagram of the 
process. Check, by the singular value decomposition method, to see if decoupling of the 
system is feasible. Assume that the heat capacities of both streams are the same with no 
heat of mixing.  
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From the question you know:  

T1 = 383.15 K  

T2 = 323.15 K  

m1 = 500 kg/h  

m2 = 200 kg/h  

y1 = outgoing mass flow rate (kg/h)  

y2 = temperature of outflowing stream (K)  

From mass balances you know:  

 

 

 

So:  

y1 = 700 kg/h  

y2 = 366.01 K  

 
The steady state gain matrix (G) needs to be calculated as explained in the RGA method:  
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By plugging in all known values, the steady state gain matrix becomes:  

 

From here you can solve for the values b, c, d λ1, λ2, s1 and s2 by using the equations (1) 
through (5) in the wiki:  

b = g11
2 + g12

2 = 12 + 12 = 2  

c = g11g21 + g12g22 = (1)(.0245) + (1)( − .0612) = -0.0367  

d = g21
2 + g22

2 = .02452 + − .06122 = 0.004346  
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λ1 = = 

= 2  

λ2 = = = 0.003673  

s1 = = = 1.414  

s2 = = = 0.0606  

 

= 23.33  

CN is less than 50, therefore decoupling for this system is feasible.  

 

1.4 Worked out Example 2 

A jacketed reactor with a single feed stream (Stream 1) is monitored by 3 proportional 
(P) controllers as indicated in the figure.  
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These controllers all act as inputs to each of 3 valves according to the relationships:  

 

 

 

Where:  

C1 = Kc1e1(t) + b1, C1 is the output from the level controller  

C2 = Kc2e2(t) + b2, C2 is the output from the temperature controller  

C3 = Kc3e3(t) + b3, C3 is the output from the composition sensor  
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Is it feasible to decouple this system?  

 

 

 
The gain array is calculated according to the RGA method and is:  

 

Input the following commands in Mathematica for SVD analysis:  

G ={{1/3, 7/15, 1/5}, {4/15, 4/15, 1/3}, {1/5, 4/15, 1/3}} 
G = G*1.0 Map[MatrixForm, 
{u,w,v}=SingularValueDecomposition[G]]  

The output of the SVD decomposition is the following:  

, 

, 

  

The condition number is calculated from the highest and lowest values of the ∑ matrix:  
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CN < 50, therefore the system may be decoupled.  

 
As a more complicated problem, consider how this problem would change if the 
controllers used a cascade control style. For a P controller, the output may be similar to:  

C2 = Kc2e2(t) + b2 = Kc2 * (LCactual − f(C1)) + b  

 
What if we used a PID controller instead?  

1.5 Multiple Choice Question 1 

The CN, or condition number 
 
a. Is the ratio of the smaller number (s2) to the larger number (s1) 
b. Determines the feasibility of decoupling a system. 
c. Is the unit eigenvectors of the m x m matrix GTG 
d. Is always less than 50.  

                                                                                                 
Answer: b  

1.6 Multiple Choice Question 2 

For MIMO systems 
 
a. Control loops are isolated 
b. Each controlled variable is only manipulated by one variable 
c. Decoupling the system makes it more complicated 
d. Manipulated variables may affect several controlled variables 

                                                                                                 
Answer: d  

1.7 Sage's Corner 
http://www.youtube.com/v/j-heeeVmEAM 
Unnarated Powerpoint Presentation  

1.8 References 

• Mahoney, D.P., Svrcek, W.Y., and Young, B.R. (2006) A Real-Time Approach to Process 
Control, 2nd Edition. John Wiley & Sons, Ltd. ISBN 0470025336  



 312 

• Gwak, K.W., Masada, G.Y. (2005) "Structural Analysis and Optimization of Nonlinear Control 
Systems Using Singular Value Decomposition". American Society of Mechanical Engineers 
Journal of Dynamic Systems, Measurement and Control, Vol. 127, No. 1, pp. 105-113, March 
2005.  

• McMillan, Gregory K. (1983) Tuning and Control Loop Performance. Instrument Society of 
America. ISBN 0-87664-694-1.  

• Tham, M.T. (1999). "Multivariable Control: An Introduction to Decoupling Control". Department 
of Chemical and Process Engineering, University of Newcastle upon Tyne. Available online at: 
http://lorien.ncl.ac.uk/ming/mloop/mloop.pdf.  

• Lee, Jay H., Choi, Jin Hoon, and Lee, Kwang Soon. (1997). "3.2 Interaction and I/O Pairing". 
Chemical Engineering Research Information Center. Available online at: 
http://www.cheric.org/education/practical/mpc16473.pdf.  



  313 

 

Section 2. MIMO control using RGA 
See also ECOSSE 

Note: Video lecture available for this section!  

Authors: Jeffrey Carey, Ben van Kuiken, Curt Longcore, Angela Yeung  

Stewards: Gillian Berberich, Katie Feldt, Christopher Mark, Jason Wong  

Date Presented: 7 November 2006; Revised: 1 November 2007  

• First round reviews for this page  
• Rebuttal for this page  

 
 

2.1 Introduction 

Single variable Input or Single variable Output (SISO) control schemes are just one type 
of control scheme that engineers in industry use to control their process. They may also 
use MIMO, which is a Multi-Input-Multi-Output control scheme. In MIMO, one or more 
manipulated variables can affect the interactions of controlled variables in a specific loop 
or all other control loops. A MIMO control scheme is important in systems that have 
multiple dependencies and multiple interactions between different variables- for example, 
in a distillation column, where a manipulated variable such as the reflux ratio could 
directly or indirectly affect the feed flow rate, the product composition, and the reboiler 
energy. Thus, understanding the dependence of different manipulated and controlled 
variables in a MIMO control scheme could be extremely helpful in designing and 
implementing a control scheme for a process.  

One method for designing and analyzing a MIMO control scheme for a process in steady 
state is with a Relative Gain Array (RGA). RGA is useful for MIMO systems that can be 
decoupled (see the article about determining if a system can be decoupled). For systems 
that cannot be decoupled, model predictive control or neural networks are better choices 
of analysis tool than RGA. A good MIMO control scheme for a system that can be 
decoupled is one that can control a process variable without greatly affecting the other 
process variables. It must also be stable with respect to dynamic situations, load changes, 
and random disturbances. The RGA provides a quantitative approach to the analysis of 
the interactions between the controls and the output, and thus provides a method of 
pairing manipulated and controlled variables to generate a control scheme.  
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2.2 What is RGA? 

Relative Gain Array is an analytical tool used to determine the optimal input-output 
variable pairings for a multi-input-multi-output (MIMO) system. In other words, the 
RGA is a normalized form of the gain matrix that describes the impact of each control 
variable on the output, relative to each control variable's impact on other variables. The 
process interaction of open-loop and closed-loop control systems are measured for all 
possible input-output variable pairings. A ratio of this open-loop 'gain' to this closed-loop 
'gain' is determined and the results are displayed in a matrix.  

 

The array will be a matrix with one column for each input variable and one row for each 
output variable in the MIMO system. This format allows a process engineer to easily 
compare the relative gains associated with each input-output variable pair, and ultimately 
to match the input and output variables that have the biggest effect on each other while 
also minimizing undesired side effects.  

2.2.1 Understanding the Results of the RGA 

• The closer the values in the RGA are to 1 the more decoupled the 
system is  

• The maximum value in each row of the RGA determines which 
variables should be coupled or linked  

• Also each row and each column should sum to 1  

 

• Example  

The table below includes the RGA results. The values highlighted in red are the 
maximum values in the row. These values indicated that the valve for that row should be 
used to control the variable that is listed in the corresponding column.  
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2.3 Calculating RGA 

There are two main ways to calculate RGA:  

(1) Experimentally determine the effect of input variables on the output variables, then 
compile the results into an RGA matrix.  

(2) Use a steady-state gain matrix to calculate the RGA matrix.  

Method (1) should be used when it is possible to carry out the experiments as detailed in 
the Calculating RGA with Experiments section. This method will generally yield the 
most accurate RGA matrix of the system because it is based on actual data taken from the 
operating control system. If performing these extensive experiments is not possible, 
method (2) can be used. If a process model is available, method (2) can be used with no 
experimental data. If there is no process model available, some experimental data must be 
taken (though less extensively than in method (1)) and used in conjunction with method 
(2).  

 

2.3.1 Method 1: Calculating RGA with Experiments 

This method of calculating the RGA can be used when it is possible to run experiments 
on each of the input-output pairings. Below is a step-by-step explanation of how to 
experimentally compile the RGA for a simple MIMO system.  

The simplest MIMO system is one that has two inputs and two outputs. Remember that 
by definition, a change in one of the inputs in a MIMO system will change both of the 
outputs. This system can be expressed mathematically as written below.  



 316 

 

y1 = a11m1 + a12m2 
y2 = a21m1 + a22m2 

 

 
Where yi is the output for loop i, the m variables are the inputs for each loop, and the a 
variables are the transfer functions. It also helps to see this system as a control diagram, 
as shown here.  

 

 

 
Clearly, both y1 and y2 are affected by both inputs (m1 and m2). Because of this, there are 
two choices for control. y1 could be controlled by m1, or y1 could be controlled by m2. y2 
would then be controlled by the input that is not controlling y1. For a MIMO system with 
n input variables, there are n! possible control configurations. The question is: Which 
configuration will give you the best control? The answer can be determined by finding 
the relative gain array (RGA). There are a few ways to determine the RGA, one of which 
is by doing two experiments, repeated for every possible configuration. The RGA can be 
assembled from the data collected. These experiments are explained below using the 
above drawing and the configuration where m1 controls y1.  
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Experiment 1  

For the first experiment, the objective is to observe the effect of m1 on y1. To do this, all 
of the loops must be open. In other words, the feedback loop is removed and the system 
is run manually with no control. This configuration is shown below.  

 

 

 
Now, since the system is under manual control, it is possible to introduce a step change 
Δm1 while keeping m2 constant. Because m2 is held constant, the change in y1, Δy1, can be 
attributed entirely to m1. Although a change in m1 will also affect y2, it is the relationship 
between m1 and y1 that must be observed at this point. Then, the gain of y1 with respect to 
m1 with all loops open is defined as g11. The calculation of g11 is shown below.  

 

 

 
The final objective of experiment one is obtaining the value gij where the controlled 
variable i is controlled by manipulated variable j.  

Experiment 2  

The goal of experiment two is to determine the effect of m2 on y1. To do this, loop 1 must 
remain open, but all other loops remain closed. This configuration is shown below.  
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Now, the same step change that was introduced to m1 in experiment one must be 
introduced again. The difference is, now loop 2 is in perfect control which means that 
when m1 changes, it affects y2, so the control loop on loop two will adjust m2 in order to 
compensate and keep y2 constant. When m2 changes it, in turn, affects y1. It is this change 
that is being observed. The amount y1 changes is Δy1 and the amount m1 was stepped up 
is Δm1. Now:  

 

The objective of experiment two is to obtain this value of where controlled variable 
i is being controlled by manipulated j.  

Compiling the Array  

Once the experiments are run for every possible configuration, the results can be used to 
compile the relative gain array (RGA). To do this, we first have to find the relative gain. 

The relative gain is the ratio of to and is represented by .  
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The value for λ must be computed for every possible combination of i and j. After every 
value is found, the RGA matrix can be formed:  

 

 

 

2.3.2 Method 2: Calculating RGA with Steady‐State Gain Matrix 

Sometimes it is not convenient or possible to perform the experiments described above 
on every control pairing possibility in the system. If that is the case, a steady-state gain 
matrix can be used to determine the RGA. If a process model is available, the steady-state 
gain matrix can be calculated from the model equations. If a process model is not 
available, the steady-state gain matrix can be calculated from experimental data (fewer 
experiments are required than when the RGA is calculated directly from experimental 
data as above). Once the steady-state gain matrix is calculated, it can be used to compute 
the RGA. Beware that a RGA has to have the same number of controlled variables and 
manipulated variables (same number of inputs and outputs) to be in an m x m matrix 
form.  

 
Process Model Available  

If a process model is available, the steady-state gain matrix relates the manipulated 
variables to the controlled variables according to the following equation:  

 

where is a vector of the controlled variables:  
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is a vector of the manipulated variables:  

 

and G is the steady-state gain matrix:  

 

The values of gij are calculated by taking partial derivatives of the equations governing 
the controlled variables. Specifically:  

 

During differentiation, hold constant all manipulated variables other than mj. To fill in 
matrix G with numerical values, simply substitute the appropriate steady state values for 
the process into the expressions derived from differentiation.  

Now that the steady-state gain matrix has been found, the RGA can be calculated with 
just a little bit more math. However, now that you have the steady state gain matrix, this 
might be a good time to determine if your system can even be decoupled! See the article 
on singular value decomposition for methods to check this. Assuming SVD gives a 
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condition number of less than about 50, we can proceed to calculation of the RGA. First, 
define a matrix R to be the transpose of the inverse of matrix G:  

 

The calculation of the inverse of a matrix is quite complicated for anything larger than a 
2x2 matrix. Fortunately Mathematica will do this with the following command for a 
square matrix M:  

Inverse[M] 

The transpose of a matrix is when the rows become columns and the columns become 
rows. For a square matrix, this just means reflecting across the diagonal running from the 
top left to the bottom right corner of the matrix. The transpose can be found in 
Mathematica with the following command:  

Transpose[M] 

The RGA can now be obtained one element at a time according to this equation:  

λij = gijrij 

Note that this is not your usual matrix multiplication! Here you multiply corresponding 
elements of the G and R matrices to get the corresponding element of the RGA. This is 
the type of multiplication Mathematica does with the standard multiplication operator.  

See Example 1 below for a worked-out RGA calculation using this approach.  

 
Process Model Not Available  

In case there is no process model available and it is not feasible to determine the RGA by 
carrying out both experiments necessary for full experimental determination, it still may 
be possible to develop a steady-state gain matrix experimentally which can then be used 
to derive the RGA. In this case, just carry out experiment 1 as described above to 
determine the elements of the steady-state gain matrix:  

with all loops open 

Each element of the steady-state gain matrix can be determined this way, and then the 
RGA can be calculated from the steady-state gain matrix as shown in the previous 
section.  
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2.4 Interpreting the RGA 

There are some important properties and guidelines in understanding and analyzing the 
RGA, and what the different values of the RGA mean:  

1) All elements of the RGA across any row, or down any column will sum up to one:  

 

This makes calculating the RGA easier because:  

• in 2X2 case, only 1 element must be calculated to determine all elements  

• in 3X3 case, only 4 elements must be calculated to determine all elements  

and so on.  

2) The λij calculated from steady-state matrix is dimensionless and unaffected by scaling.  

3) Each of the rows in the RGA represent one of the outputs. Each of the columns 
represent a manipulated variable.  

• If λij = 0: The manipulated variable (mj) will have no effect on the output or 
the controlled variable (yi).  

• If λij = 1: The manipulated variable mj affects the output yi without any 
interaction from the other control loops in the system. From the definition of 
λij, this implies that the gain loop with all loops open is equal to the gain loop 
with all other loops closed, ie: g11 = g*11.  

• If λij < 0: The system will be unstable whenever mj is paired with yi, and the 
opposite response in the actual system may occur if other loops are opened 
in the system.  

• If 0 < λij < 1: This implies that other control loops (mj‐ yi) are interacting 
with the manipulated and controlled variable control loop.  

Three different relationships based on λ=0.5 imply different interpretations of pairing and 
the RGA:  

• If λij = 0.5: The control pairing effect is equal to the retaliatory effect of other 
loops. 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• If λij < 0.5: The other control loops are influencing the control pair, and the 
influence from the other control loops are greater than the influence from the 
control pair.  

• If λij > 0.5: This means that the control pair has a greater influence on the 
system than the other control loops.  

• If λij >1: The open‐loop gain of the control pair is greater than the gain with 
all other loops closed, ie: g11 > g*11. The positive value of RGA indicates that 
the control pair is dominant in the system, but the other loops are still 
affecting the control pair in the opposite direction. The higher the value of λij, 
the more correctional effects the other control loops have on the pair.  

λij  Possible Pairing  

λij = 0  Avoid pairing mj with yi  

λij = 1  Pair mj with yi  

λij < 0  Avoid pairing mj with yi  

λij = or < 0.5  Avoid pairing mj with yi  

λij >1  Pair mj with yi  

 

2.5 NI Analysis with RGA 

NI, the Niederlinski Index, is a calculation used to analyze the stability of the control 
loop pairings using the result of the RGA, evaluated at Steady State: 

 

 

A negative NI value indicates instability in the control loop. For a 2 2 matrix, a 
positive NI value indicates stability in the pairings, but this is not necessarily true for 

larger matrices! For matrices larger than 2 2, a conclusion can only be drawn from a 
negative NI, which indicates instability. NI should not be used for systems that have time 
delays (dead time), as the NI stability predictions assume immediate feedback to the 
controller. However, the index can be adapted for systems with dead time, although that 
application is beyond the scope of this article.  
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Here's an example NI calculation: given the steady state gain matrix  

 

the NI can be calculated from the following expression:  

 

Since this is a 2 2 matrix, the positive value of the NI indicates stability in the 
control loop pairings.  

 

2.6 Optimizing a MIMO Control Scheme: Pairing Rules  

The goal of the RGA and NI analysis is to quantitatively determine the optimal variable 
pairing for a given process. Some basic rules to remember when attempting to obtain an 
optimal pairing of control loops in a system are:  

• Rule 1: The positive RGA elements that are closest to 1.0 should have the 
corresponding manipulated and controlled variables paired. When the CN 
number is large, implying a less decoupled system, one should look for the 
max RGA elements.  

• Rule 2: If the NI value is negative, the loop pairing for that control system 
configuration is unacceptable.  

 

2.7 Worked Out Example 1 

A blending unit is used to dilute and cool down the product stream of a reactor. Three 
streams are combined in the mixer: the hot, concentrated stream from the reactor, a room 
temperature stream containing none of the product A, and a second room temperature 
stream containing some A produced elsewhere in the process. It is desired to control the 
flow rate, temperature, and concentration of A in the product stream by manipulating the 
flow rates of the three input streams. A schematic of the process follows, filled in with 
the steady state values of flow rate, temperature, and concentration. The manipulated 
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variables are indicated with the letter m and the controlled variables are indicated with the 
letter y:  

 

The equations used to model the system are:  

 

 

 

Calculate the RGA using the steady-state gain matrix method and use it to determine the 
best control scheme for the system.  

2.7.1 Solution 

First you must take the partial derivatives of the control variable equations in order to 
determine the elements of the steady-state gain matrix:  
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Now you can substitute in the given steady state values of the variables to find the 
numerical values of gij, obtaining:  
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In matrix form:  

 

Now calculate matrix R:  

 

You can now calculate the RGA by multiplying matrices G and R piecewise, according to 
the formula:  
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So the RGA is:  

RGA   

Note that all rows and columns sum to 1, as they should.  

Now it's time to determine the optimal control scheme for the system. The closer an 
element in the matrix is to 1, the better the pairing is between the manipulated and 
controlled variables represented by that element. With this in mind, we can immediately 
see that m1, the flow rate of stream 1, should be used to control y2, the temperature of the 

output stream, because the value of λ21 is the closest to 1 in the matrix ( ). Next in line 

is λ33, with a value of . This indicates that m3, the flow rate of stream 3, should control 
y3, the concentration of A in the product stream. So far so good, but what should control 
y1, the flow rate of the product stream? The best option would be m3, but this is already 
controlling the concentration of A in the product, so the next best option is m2, the flow 
rate of stream 2. This is not optimal because the relative gain is less than 0.5, but it is the 
best option available given the constraints of the system.  

2.8 Worked Out Example 2 

In a distillation column, reflux rate (R) and steam rate (S)are used to control the 
compositions in the distillate (xD)and the bottom product (xB). The control loops are 
opened in order to conduct experiment one as described above, and the following set of 
data is collected: 

Trial  R (kg/min)  S (kg/min)  xD  xB  

1  75  20  0.96  0.05  

2  85  20  0.94  0.06  

3  95  20  0.92  0.08 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4  85  15  0.95  0.06  

5  85  25  0.97  0.03  

Calculate the RGA for this system, and determine which is the best pairing between the 
manipulated (R and S) and controlled variables (xD and xB).  

 

2.8.1 Solution 

From the experiment data, it is observed that the reflux rates (R) are constant for trials 2, 
4 and 5, while the steam rates (S) are constant for trials 1, 2 and 3.  
First, calculate the steady-state gain matrix for this system:  

with S constant   
 

with S constant   
 

with R constant   
 

with R constant   
 

Organize the gain value into the matrix form and compute R:  
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Multiply each value in the R matrix by its corresponding gain value to obtain λij: 

λ11 = g11R11 
 

λij is then organized into the RGA matrix form:  

 
 

The RGA matrix indicates that the composition of the distillate (xD) would be best 
controlled by the reflux flow (R); while xB would be best controlled by the steam rate 
(S)from the reboiler.  

2.9 Worked Out Example 3: Using Mathematica  

An example problem based from Fall 2008 second exam:  

"Imagine that you are developing a control scheme for a new low temperature reactor 
system. The physics governing the system is complicated, so you decide to start out with 
an experiment on the system to see if you can develop a simple set if SISO controllers. 
To evaluate this possibility, you begin with your five valves at their steady state operating 
conditions (v1=0.5, v2=0.55, v3=0.5, v4=0.6, v5=0.4) and measure the five key variables 
of this process T1, T2, T3, P1 and P2. Next you slightly adjust each valve to see the 
steady state effects on each output variable"  

 

As an approximation, you fit this model to the following system:  

 

"Perform an RGA analysis to find the best pairing between valves (v1, v2, v3, v4, and 
v5) and outputs (T1,T2, T3, P1, and P2)."  
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In Mathematica, you can input the matrix of coefficients by the following:  

 

Note: I assign the matrix of coefficients to the variable, G.  

It can be viewed in a matrix form in Mathematica by using function, "MatrixForm[]":  

 

With the gain matrix, G, you can use the a singular value decomposition (SVD) of the 
gain matrix to determine how linearly dependent the model is. The linearity is based on 
the condition number (CN). Mathematica has a built-in function to do singular value 
decomposition. The following shows how to do singular value decomposition for this 
example.  
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The Mathematica syntax is : N[Map[MatrixForm, {u, w, v} = 
SingularValueDecomposition[G]]]. The "SingularValueDecomposition[]" pops out three 
arrays assigned to variable u, w, and v . The "Map[MatrixForm, ..." portion pops out the 
three arrays into a matrix view and "N[.." portion forces numerical values in the matrices.  

To the condition number(CN), you divide the biggest value by the smallest value in 
matrix, w. The general rule thumb is that if the condition number(CN) is greater than 50, 
then the system/model is too difficult to decouple.  
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This illustrates that this system can be decoupled because the CN number is below 50. To 
determine the best pairing, RGA analysis is used in which it is a normalized form of the 
gain matrix, "G" that determines the impact of each control variable on its respective 
output e.g. how much impact does v1 have on T1, etc. The Mathematica syntax is 
N[G*Transpose[Inverse[G]]]. The RGA normalization is essential since at times, not in 
this case however, the values of the gain matrix may represent that a valve has great 
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influence on multiple variables (ie. a column may contain the highest value from multiple 
rows). In order to distinguish unique separations between these influences, the RGA is 
used to normalize the gain matrix as seen below. This allows us to determine the different 
magnitudes of influence the valve has on an output in order to find the predominant effect 
on an output. The RGA illustrates these marginal differences in impact by the valves on 
the variable outputs, and lets us make the best possible pairings.  

 

The best pairing is discovered by taking the maximum value of RGA Matrix for each 
row.  

 

The bold values correspond to the valve that is the best pairing for the individual output. 
By looking at the bold values, V1->P2 V2->T3, V3-> P1, V4-> T1, V5-> T2.  

2.10 Test Yourself! 

Multiple Choice Question 1  

For a MIMO control system containing 4 different manipulated and 4 different controlled 
variables, how many control configurations are possible for the system?  

a. 24 
b. 4 
c. 64 
d. 256 

 
Multiple Choice Question 2  
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In a case of a 2x2 matrix system, if one RGA element in first row calculated to be . 
According to the RGA properties, what is the other element in that same row?  

a.  

b.  

c.  
d. Cannot be determined with given information.  

 
Multiple Choice Question 3  

RGA is useful for process engineers because it allows us to determine:  

a. Which matrix size to use. 
b. What eigenvalues and eigenvectors are paired. 
c. What input and output pairs to use. 
d. When feed forward control is preferred over feedback control. 

 

2.11 Test Yourself! Answers 

Multiple Choice Question 1  

Answer: a 
Explanation: Mathematically, for an nxn manipulated by controlled variable system, the 
number of control configurations possible will be n! or n factorial. For a 4x4 variable 
system, 4x3x2x1 = 24. Physically, the number of control configurations translates to the 
number of possible input-output pairings.  

Multiple Choice Question 2  

Answer: b 
Explanation: As explained above, all elements of the RGA across any row, or down any 

column should sum up to unity (one). For a 2x2 matrix, if one element in a row is , the 

other element must be 1-  =  

Multiple Choice Question 3  
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Answer: c 
Explanation: Using RGA, a process engineer will assess the relative gain of pairing each 
input with each output to minimize undesired interactions and maximize desired 
interactions between controlled and manipulated variables in a system. See "Interpreting 
the RGA" section if you are confused on how this analysis is achieved.  

 

2.12 Sage's Corner 

MIMO Control using RGA Presentation #1 
http://www.youtube.com/v/cRUCIPIoPeo 
  

MIMO Control using RGA Presentation 
#2 
http://www.youtube.com/v/W9bOs2un-
uM 
  

  

Interpreting RGA matrices powerpoint  
Slides without narration  

PDF of slides  
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Section 3. MIMO using model predictive control 

Title: Model Predictive Control  
Note: Video lecture available for this section!  
Authors: Bradley Anderson, Aaron Bennick, Michael Salciccioli  
Stewards: Sarah Hebert, Valerie Lee, Matthew Morabito, Jamie Polan  

Date Presented: 11/7/06; Revised: 10/30/07  

• First round reviews for this page  
• Rebuttal for this page  

3.1 Introduction 

This article will describe how to control a system with multiple inputs and outputs using 
model predictive control (MPC). MPC is a linear algebra method for predicting the result 
of a sequence of control variable manipulations. Once the results of specific 
manipulations are predicted, the controller can then proceed with the sequence that 
produces the desired result. One can compare this controller method to "look ahead" in 
chess or other board games. In look ahead, you foresee what an action might yield some 
time in the future using specific knowledge of the process (or game in the case of chess), 
and are thereby able to optimize your actions to select for the best long term outcome. 
MPC methods can prevent an occurrence with conventional PID controllers in which 
actions taken achieve short term goals, but end up very costly in the end. This 
phenomenon can be described as "winning the battle but losing the war."  

The open ended nature of MPC allows the process control engineer use MPC to control 
any system for which models can be generated.  

3.2 Model Predictive Control 

MPC is a widely used means to deal with large multivariable constrained control issues in 
industry. THe main aim of MPC is to minimoze a performance criterion in the future that 
would possibly be subject to constraints on the manipulated inputs and outputs, where the 
future behavior is computed according to a model of the plant. The model predictive 
controller uses the models and current plant measurements to calculate future moves in 
the independent variables that will result in operation that honors all independent and 
dependent variable constraints. The MPC then sends this set of independent variable 
moves to the corresponding regulatory controller set-points to be implemented in the 
process.  

MPC uses the mathematical expressions of a process model to predict system behavior. 
These predictions are used to optimize the process over a defined time period. An MPC 
controller can operate according to the following algorithm.  
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1. Development of a process model by the control engineers.  

2. At time t, previous process inputs and outputs are used, along with the process model, 
to predict future process outputs u(f) over a "prediction horizon."  

3. The control signals that produce the most desired behavior are selected.  

4. The control signal is implemented over a pre-defined time interval.  

5. Time advances to the next interval, and the procedure is repeated from step 2.  

This is one of the many algorithm possibilities, which can be applied to systems with any 
number of inputs or outputs. The process model can be variable as well. Examples 
include physical models, input-output models, and state models which are all derived 
from the specific system being controlled.  

When comparing predicted behavior to desired behavior, there are multiple techniques. A 
common procedure is to generate a second mathematical model that describes your 
desired behavior. When process behavior is predicted in step 2 of the MPC algorithm, the 
control signals which produce the predicted behavior that minimize deviations from your 
desired behavior over the [t,t+h] interval, are selected. The generation of models and 
optimization process is repeated continuously as the algorithm is repeated.  
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As seen in the figure above, depending on the algorithm, MPC may generate possible 
outcomes given possible controller action. These generations are either based on past 
process outputs, or the process model. After many possible outcomes are generated, the 
controller can pick one based on the optimization goals. This generation and optimization 
process is repeated at every time step.  

The flow diagram below depicts the flow of information used by the controller.  
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The figure above shows the basic structure of a Model Predictive Controller. The model 
takes data from past inputs and outputs, and combines it with the predicted future inputs, 
and gives a predicted output for the time step. This predicted output is combined with the 
reference trajectory, giving the predicted future errors of the system. These errors are fed 
into an optimizer, which enforces the constraints of the system (for instance, ensuring 
that a flow rate calculation for the model is not greater than the maximum flow) on the 
predicted outputs and minimizes the operating cost function. This gives the predicted 
future inputs, which are fed back into the main model, restarting the cycle.  

3.2.1 Motivation 

The motivation for the development and implementation of MPC controllers is 
compelling. MPC is very simple for sampled systems in which the control signal is 
constant over the interval [t,t+h]. The value of h can then be taken as the sampling 
interval, and the prediction horizon can become a small number of sampling intervals. 
This can reduce the computational power needed to implement a model predictive 
controller.  

A highly desired feature of MPC is that constraints can be implemented in the controller. 
These constraints include heaters and valves that have a finite operating range, actuators 
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with finite states (on/off or low/high), and cost or energy limits for the process. MPC can 
incorporate these constraints and eliminate the possibility of variables exceeding their 
limits. This helps the process operate efficiently, prevents damage to equipment, and 
prevents the system from running away by continuouly increasing a variable's setting 
when the limit for the equipment has already been reached. Another benefit of MPC 
controllers incorporating system constraints is the ability of the model to dynamically 
react to system changes. For example, if a valve is stuck open, it can be added as a 
constraint, and the model will compensate accordingly. This allows the controller to 
continue effectively controlling the system after an equipment malfunction. In a simpler 
control, such as PID control, this would not be possible.  

MPC is a highly specific method for controlling a process. Each controller is specific to 
the system it was designed for and the model equations, constraints, and set points will 
change for different systems. This means that a controller developed for a tank reactor 
will not be able to control an evaporation unit as the process model will be very different. 
This weakness in MPC brings out its biggest strength. The specificity and customizable 
nature of the controller will empower you with the freedom to design for exactly what is 
desired.  

MPC is a flexible control technique that uses discrete time segments and is the most 
commonly applied advanced control technique in the chemical process industry. MPC 
helps to simplify or completely elminate controller design and instead works as a system 
modeling controller. With MPC the designer does not have to worry about optimizing 
control parameters such as with PID control. The ability of MPC controllers to handle 
constraints in an optimal fashion is also a contributor to its success.  

3.2.2 Model Predictive Control Example 

To demonstrate the concepts of MPC, a general example for the development of a 
sampled process and a first-order system will be shown.  

General Model 

Take equation 1 as our process model:  

(1)  
 

Where u is controller input, y is process output, and h is the time interval. This is a 
general equation that relates previous process output y(t − h) and previous controller 
input u(t − h). In some situations this equation may be created using fitted experimental 
data, but is most often a derivation using knowledge of your specific system and 
fundamentals of chemical engineering. At time t, total previous behavior yp is shown as 
equation 2.  
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(2) 
 

Future process output yf can be predicted using current and future control signals, u(t) and 
u(t + h) respectively:  

(3) 
 

Both yp and yf could possibly be created by fits of experimental data, but are more likely 
to be derived from specific equations related to your system. Deviations from the desired 
behavior yd, either specified by another mathematical model or reference trajectory, 
produce an error function e(t) = y(t) − yd(t) for increments of control actions Δu(t) = u(t) 
− u(t − h). The loss function J to be minimized is shown as equation 4.  

(4) 
 

The control inputs that minimize equation 4 are then applied to the system by the 
controller over the time interval, and the process is repeated. The control input function F 
in equation 5 is determined implicitly by the optimization.  

(5) 
 

This general model is meant to be a guideline, and the equations listed representative, for 
the thought process required to create a model predictive controller.  

First‐Order System Example 

Take the process model to be equation 6:  

(6) 

Let us define Δy(t) = y(t) − y(t − h) and Δu(t) = u(t) − u(t − h). Let us also define our 
desired system behavior yd as a function which starts at y(t) and exponentially approaches 
a set point ysp with time constant T. Our desired behavior yd then becomes equation 7:  
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(7) 

Assuming that our controller can take as much action as needed to produce the desired 
behavior, the desired behavior can be realized in the next sampling period. This is done 
by setting y(t + h) equal to yd(t + h), and can be seen in equation 8:  

(8)  

Solving equation 8 for u(t) gives equation 9:  

(9) 

Upon examination of this result, you can see that we have produced a PI controller with 

gains and . It should be noted that the proportional 
gain k will only depend upon the developed process model, and the integral gain ki 
depends on both the process model and the desired response rate T.  

This process can be modified to include multiple inputs and outputs via the process 
model and desired behavior. We may also add system constraints to our MPC example by 
adding conditional statements limiting the maximum controller output discussed in the 
logical programs wiki. As discussed before, there are as many variations on the MPC 
process as you can think of. See the worked examples 1 and 2 for more MPC instances.  

 Question: is the above expression a PI control system or 
more of a PD control system?    The first term is 
k*(y(present0)-y(past)) which seems more like a derivative 
term.     The second term is more like k*(y(set)-
y(present)) which seems more like a P term.  

3.3 Differences from Other Controllers Types 

Model predictive control uses a mathematical model to simulate a process. This model 
then fits the inputs to predict the system behavior. In this way, MPC is a type of feed 
forward control. It uses system inputs as a basis of control. MPC is more complex than 
most other feed forward control types because of the way these predictions are used to 
optimize a process over a defined amount of time. Most feed forward control types do not 
take into account the process outputs much past a residence time. The MPC algorithm 
will compare predicted outputs to desired outputs and select signals that will minimize 
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this difference over the time selected. This control type can see ahead into multiple time 
steps in the future in order to optimize the process. Normal PID type controllers use 
mathematical expressions based on error from a set point. The governing equation for 
MPC controllers are based on set points, system properties, and desired outcomes and 
optimization.  

MPC is very specific to the process it is modeling. Unlike ratio or cascade control set ups, 
where it is simple to implement and change set points in various situations, MPC will 
model one specific process and optimize it. As previously mentioned this can either be an 
advantage or disadvantage. MPC is great for selecting one type of operation on one 
system and perfecting it to the desired conditions. This also has a downside in that the 
model equation will work for one and only one situation.  

3.4 Limitations of MPC 

3.4.1 Advantages of MPC 

1. MPC can be used to handle multivariable control programs.  

2. MPC can consider actuator limitations.  

3. MPC can increase profits by allowing for operation close to the system constraints.  

4. MPC can perform online computations quickly.  

5. MPC can be used for non-minimal phase and unstable processes.  

6. MPC is easy to tune.  

7. MPC is able to handle structural changes.  

3.4.2 Disadvantages of MPC 

1. Several MPC models are limited to only stable, open-loop processes.  

2. MPC often requires a large number of model coefficients to describe a response.  

3. Some MPC models are formulated for output disturbances, and they may not handle 
input disturbances well.  

4. Some forms of MPC use a constant output disturbance assumption. This corrects for 
the fact that the output predicted by the model is not exactly equal to the actual measured 
output. This method assumes the correction term is constant in the future, which may not 
yield a good performance if there is a real disturbance at the plant input.  
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5. If the prediction horizon is not formulated correctly, control performance will be poor 
even if the model is correct.  

6. Some systems have a wide range of operating conditions that change frequently. Some 
examples of this include exothermic reactors, batch processes, and any systems where 
different consumers have different product specifications. An MPC linear model will not 
be able to handle the dynamic behavior of these processes. A nonlinear model must be 
used for better control performance.  

3.5 Industrial MPC Applications 

There are many industrial applications that incorporate model predictive control in order 
to effectively control a multivariable system. In order to effectively do this, one needs to 
set up a working model by testing many different parameters in a plant. This is usually 
done by starting up a plant, varying many different parameters, and having the MPC 
program analyze the data.  

In order to test the plant, one may vary parameters such as:  

1. feed flow rate/composition  

2. steam pressure  

3. heat duty  

4. recycle ratio  

5. reactor temperatures  

This is only a small sample of parameters that can be changed. Once these parameters 
have been changed, the data is analyzed, and downstream effects of these parameters are 
characterized as a function of these variables. This relationship can be a combination of 
many different relationships (linear, nonlinear, logarithmic, exponential, power, etc.).  

By testing the plant thoroughly and coming up with a robust model, the engineers ensure 
that an MPC controller will be able to much more effectively run the plant. Barring any 
major process changes, this model should be accurate for normal use.  

Some industrial MPC applications are:  

1. Model Predictive Heuristic Control by Richard et al. 1976 (Adersa)  

2. Dynamic Matrix Control (DMC) by Cutler and Ramaker 1979 (Shell Oil)  

3. Quadratic-Program Dynamic Matrix (QDMC) Control by Cutler et al. 1983 (Shell Oil)  
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4. IDCOM-M by Setpoint, Inc (part of ASPEN Technology)  

5. Generalized Predictive Control (GPC)  

3.6 Implementing MPC using Excel 

In MPC, values of the control variables will be optimized for a given time interval in 
order to best tell the system how it should act. The control variables will be optimized by 
optimizing some characteristic. Usually, this characteristic is simply the least squared 
error between an actual state and a "set" or desired state. This can easily be done using 
the Solver tool in Excel. See MPC_in_Excel for an example of implementing MPC to 
control the valve, v1, in the following system (keep reading to learn about everything in 
the Excel file).  

 

To describe this system in words, there is a variable feed, Fin, with time that pours into a 
storage tank. The flow out of the tank, Fout, is controlled by the valve, v1, multiplied by 
a constant of proportionality, k1 = 50. The tank volume is to be maintained at 150.  

There are three scenarios contained in the example Excel file. In the first scenario, the 
valve is continuous and in the second, it is binary (can be open or closed only). In the 
third scenario, the valve is still binary; however, Solver cannot recognize this setup even 
though this setup may seem intuitive (this is discussed further below). As it turns out, it 
doesn't really matter if a binary or continuous valve is used. Both types of valves yield 
very similar results; however, the continuous valve yields slightly tighter control over the 
tank volume (see screenshot below).  
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As you can see from this screen shot, the sum of the least squares between the actual 
volume and the set volume (Row 22) is lowest for the 1st scenario, when the valve is 
continuous. This measure of deviation from the set value is only slightly lower than in the 
2nd scenario, when the valve is binary. In the 3rd scenario, Solver didn't work properly, 
resulting in all of the v1 variables (Column P) to be set to 0.  

At the start of the simulation, the volume of the tank is 0, so v1 stays closed until time = 
5.4 when the volume is very close to the set volume. If the deviations that occurred 
during the time v1 was closed (which is the same time length for all 3 scenarios) is 
removed from the sum of the least squares (Row 23) the 1st scenario suddenly looks 
much better at controlling the volume than the 2nd scenario.  

 
There are a couple things to note while using Solver in Excel to perform MPC:  

1) This note only applies if your system has a binary control variable. If you intend to use 
a conditional statement (such as an IF() function) that depends on the optimization of the 
control variable, you must leave open the possibility that this control variable can be any 
real number, whether it's binary or not. This may seem unnecessary because Solver will 
output only optimized discreet numbers. To put this in the context of the example Excel 
file, you might think you could have simply done the following to control Fout:  

• = IF(v1 = 1, k1*1, 0)  

(The variables "v1" and "k1" are not recognized by Excel. Instead of typing the variables 
into Excel, cells containing the variable values must be referenced.)  
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This statement says that if the valve is open, allow a flow of k1 (or 50), otherwise, the 
flow is 0. This would not allow Solver to work properly. If Solver chose a value of v1 = 
0.1, measured the target cell, and then it chose v1 = 0.2, it wouldn't see any difference 
because in both cases the flow would be 0. Solver needs to be able to see a change in the 
system, whether it's practical or not, to determine the actual gradient of your system. This 
gradient cannot be determined if an IF() statement turns the continuous output to discreet 
output.  

The proper way to handle this is to program a constraint into solver that allows only 
binary outputs of v1 values (select bin from the pull down menu when adding the 
constraint). Fout can then be programmed as:  

• = v1 * k1  

Using this method, Solver can calculate the gradient of the system to define how it would 
react if v1 changed to a non-binary value. By using this method, Solver will output only 
binary values for the valve state as is desired.  

2) Solver can only handle manipulating 200 variables at a time, so if your model requires 
looking at more than 200 time steps, you will have to optimize your system in sections.  

3.7 Worked out Example 1 

You have a tank outside your home used to supply water for various household functions 
(i.e. flushing the toilet). The optimal water pressure from the tank is achieved when the 
height of water in the tank is at 15, and the tank can hold water up to a height of 30, 
because when it rains, it pours. When it does rain, the level of water in this tank exceeds 
15 and a model predictive controller and valve is in place to release water so the height 
will drop back down to this value (don't worry, this water is not wasted, but used as 
drinking water on your llama farm). At time t=25, there is a downpour that increases the 
flow into the tank by 150 and lasts for 100 time steps. Will this tank overflow, and how 
long will it take for the tank to return to the desired set point? Your controller output is 25 
maximum.  

Other key pieces of info:  

H(0)= 15  

A= 100  

B= 1  

T= 15  

Hset= 15  
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h= 1  

Solution:  

To obtain the required information, we will produce a model predictive controller for the 
water tank system, and simulate how the system will behave during the downpour. The 
first step is to generate a mathematical model that describes the relevant parameters. 
Equation 10 below relates the fluid height in the tank H to the flow in, and controller 
signal u.  

(10)  

Where A and B are physical constants of the system. Next we will define the way we 
wish the height of fluid in the tank to act in equation 11.  

(11)  

Where h is the time interval, T is an exponential time constant, and Hset is the desired 
liquid set point of 15. It can be seen by examining equation 11 that as time proceeds, the 
exponential term will reduce to zero, resulting in H(t + h) = Hset. The next step is to figure 
out how to produce a controller input that will give the desired behavior. This may be 
done by calculating the error between process model and desired behavior, and 
optimizing for u. Fortunately for us, this is a relatively simple set of equations that can be 
solved for u explicitly. By expanding equation 10 using the fundamental theorem of 
calculus to produce equation 12, and plugging equation 11 in for H(t + h), equation 13 
results solved for u.  

(12)  

(13)  

These equations can be implemented in a spreadsheet to model the behavior of the height 
of liquid in the tank, as well as the actions taken by the controller to restore the set point. 
Keep in mind the 0 to 25 output restriction on your controller.  
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This spreadsheet has been made with the relevant equations and can be used to solve this 
problem and model tank behavior. This spreadsheet can be found here:MPC example 1  

So yes, the tank will overflow, and will return to its set point after 200 time points.  

3.8 Worked out Example 2 

What happens if the actuator on the valve breaks and must be replaced with an older one 
you happened to have in your basement? This new (although old) actuator cannot operate 
the valve fast enough, and B is decreased from 1 to 0.8. How does the graph from 
example 1 change? What does this tell you about the physical meaning of parameter B?  

Solution:  

This B can easily be changed in the spreadsheet used in example 1. With this different 
actuator, and hence different B, we can see that the tank acquires more volume, and it 
takes longer for the tank to return to its optimal height of 15. This is because the valve on 
the tank cannot be opened as fast. Parameter B represents the physical 
properties/limitations of the valve, and pipe properties.  

3.9 Sage's Corner 
http://www.youtube.com/v/XNccO4neVfc 
http://www.youtube.com/v/2HkpKgXlyfE 

3.10 Multiple Choice Question 1 

Which of the following is a highly desired feature for model predictive control?  

A) It is ideal in determining short-term behavior.  

B) It is the simplest of all feed forward controller types.  

C) It accounts for system constraints.  

D) Controllers of this type are universal and can be used without modification for any 
process.  

3.11 Multiple Choice Question 2 

Will a model predictive controller developed for a tank reactor be able to control an 
evaporation unit?  

A) Yes, as they are both standard pieces of chemical engineering equipment.  

B) Maybe, it depends if the reaction taking place in the reactor is exothermic or 
endothermic.  
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C) No, the governing equations will be very different.  

D) Yes, because evaporation units and tank reactors can both use steam to supply heat.  

3.12 Multiple Choice Question 3 

Which of the following statements about MPC is false?  

A) MPC uses a defined time interval.  

B) MPC utilizes feed forward control.  

C) MPC requires a certain number of inputs and outputs.  

D) MPC can generate more than one possible outcome.  

3.13 Answers to the multiple choice questions 

1 - C  

2 - C  

3 - C  
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4.1 Introduction 

Multiple Input Multiple Output (MIMOs) are systems that require multiple inputs and 
generate multiple outputs. MIMOs are controlled by controllers that combine multiple 
input readings in an algorithm to generate multiple output signals. MIMOs can be used 
with a variety of algorithms. The most versatile algorithm used to date is the neural 
network. Neural networks, which were initially designed to imitate human neurons, work 
to store, analyze, and identify patterns in input readings to generate output signals. In 
chemical engineering, neural networks are used to predict the ouputs of systems such as 
distillation columns and CSTRs. This article will discuss how neural networks work, the 
advantages and disadvantages of neural networks, and some common applications of the 
networks.  

4.2 MIMOs 

As mentioned, Multiple Inputs Multiple Outputs (MIMOs) are systems that require 
multiple inputs and generate multiple outputs, as shown schematically in Figure 1.  

 

 

Figure 1. Schematic diagram of MIMOs  

 
As shown in the figure, MIMOs are controlled by controllers that combine multiple input 
readings in an algorithm to generate multiple output signals. Typically, MIMOs do not 
require that the the number of inputs and outputs be the same. Instead, any number of 
input readings could be used to generate any number of output signals.  
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4.3 Neural Networks 

Various types of controllers can be used to control MIMOs. One of the most accurate and 
versatile controllers used for MIMOs is the neural network. Neural networks are 
controllers that crudely imitate the human neuron. Initially, these networks were designed 
to model neural brain activity. However, as people began to recognize the advantages of 
neural networks, these networks were applied to controller algorithm design. Like a 
human neuron, neural networks work to store, analyze, and identify patterns in data by 
performing learning tasks. The ability of these networks to "learn" parallels the human 
neuron's ability to learn, making these automatic controllers the closest analog to a 
human controller.  

4.3.1 Neurons 

Like neurons in the body, network neurons receive inputs, store this data, and transmit 
outputs to either another neuron or directly to the MIMO. In order to transmit this data, 
the neuron must relate the multiple inputs to the multiple outputs. A simple mathematical 
representation of this relationship is shown below.  

 
 
wi = weight 
ai = input 
y = output 
f = sigmoid function (any nonlinear function) 

According to this relationship, the multiple input parameters are each multiplied by the 
corresponding weight factor, wi. These weight factors "weigh" the significance of each 
input, scaling each input proportionally to the effect it will have on the output. These 
weighted inputs are then added and the sum is input into the sigmoid function to generate 
an output. This output can then be sent to multiple neurons that, in turn, each generate its 
own output.  

The sigmoid function in this relationship is a nonlinear, empirical function that relates the 
input readings to the output signals. This empirical function can take on many forms 
depending on the data set. The equation that is best able to predict the outputs for the 
given system will be used (polynomial, sine, logarithmic, etc.). For example, one form 
this function may take is the hyperbolic sine function, where  

 



 354 

x = sum of weighted inputs =  
 
α = empirical parameter  

In this sigmoid function, α is an empirical parameter that adjusts the function outputs. 
The effect of α on this sigmoid function is shown in Figure 2.  

 

Figure 2. Plot of hyperbolic sine sigmoid function with varying αx 

 
As shown in Figure 2, increasing α increases the output for this particular sigmoid 
function. Like most empirical functions, the hyperbolic sine sigmoid function can only be 
used within a specified range of values (x values between the vertical asymptotes). In this 
case, the range would depend on the value of α.  

4.3.2 Combining Neurons into Neural Networks 

Once neurons have been programmed to correlate input and output data, they can be 
connected in a feedforward series to produce a neural network, or neural net (NN). A 
schematic diagram of a neural network is shown in Figure 3.  
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Figure 3. Schematic diagram of a neural network.  

Figure 3 shows MIMO parameters, such as temperature, pressure, and flow readings, are 
first processed in the first layer of neurons. The outputs of the first layer of neurons then 
serve as the inputs to the second layer. The outputs of the second layer then become the 
inputs to the third layer, and so on, until the final output of the network is used to directly 
affect MIMO controls such as valves. The layers of neurons between the initial and final 
layers are known as hidden layers.  

The way neurons within hidden layers correlate the inputs and outputs is analogous to the 
way individual neurons correlate these variables. As shown in the flowchart inset of the 
diagram, a neuron within the network receives multiple inputs. Each of these input 
parameters are then weighted, having the most effective parameters weighted more 
heavily. These weighted input values are added and input into the particular sigmoid 
function the neuron is programmed to follow. The output of this function is then sent to 
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other neurons as input. These input values are then reweighed for that particular neuron. 
This process is continued until the final output of the neuron network is used to adjust the 
desired controls. Although the diagram shows only one hidden layer, these neuron 
networks can consist of multiple layers. Although almost all continuous functions can be 
approximated by a single hidden layer, incorporating multiple hidden layers decreases the 
numbers of weights used. Since more layers will result in more parameters, each of these 
individual parameters will be weighted less. With more parameters and less weights, the 
system becomes more sensitive to parameter change (a greater "rippling" effect within 
the network).  

The "rippling" effect of a neuron network makes the system difficult to model 
analytically. A small change in a single input variable would result in multiple changes 
throughout the the entire network. Although modelling these complex networks is beyond 
the scope of the class, only a basic, qualitative understanding of how neural networks 
function is necessary to analyze neural network controllers and their effects on input and 
output parameters.  

4.3.3 Learning Process 

The ability of neural networks to learn distinguishes them from most automatic 
controllers. Like humans, neural networks learn by example, and thus need to be trained. 
Neural networks are usually configured to specific applications and have the ability to 
process large amounts of data. Complex trends and patterns can be detected by neural 
networks that would otherwise be imperceptible to humans or other computing programs. 
Within neural networks, there are learning procedures that allow the device to recognize a 
certain pattern and carry out a specific task. These learning procedures consist of an 
algorithm that enables the network to determine the weighting parameters in order to 
match the given data (inputs and outputs) with a function. In this iterative procedure, the 
initial input values are used to generate initial output values. Based on these input and 
output values, the weights within the network are adjusted to match the data. These 
adjusted weights are then used to correlate the next pair of input and output values. 
Again, these values are used to adjust weights. This process continues until the network 
obtains a good fit for the data. A flow chart summarizing this iterative process is shown 
in Figure 4.  

 

Figure 4. Flowchart for training a network.  
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A visual example of the learning process that takes place in a neural network is shown in 
the link below.  
 
http://tralvex.com/pub/nap/video/jn-learn.mpg  
 
As illustrated in the video, the neural network learns by tracing the path of an object over 
a specific area and sequence. For this application, inputs for the neural network included 
the position, velocity, and direction. Once the the neural network has completed its 
training, it will use what it learned to predict trajectories. A visual example of this is 
shown in the link below.  
 
http://tralvex.com/pub/nap/video/jn-pred.mpg  
 
As illustrated in this video, the neural network can predict where the object will move 
given the position, velocity, and direction of the object.  

The trajectories shown in these videos demonstrate an important characteristic of neural 
networks. In these videos, the neural network can only predict outputs for objects that 
behave similar to the output it encountered during training. For instance, if a person was 
to start running forward, then stop, spin in a circle, and start running backwards, the 
neural network output would be unpredictable.  

Once the neural network becomes capable of predicting system outputs, it is run like any 
other controller. In real-time, this often entails the chemical process and a computer 
system of some sort. Often, such as in LabVIEW, the chemical engineer is presented with 
a user-friendly data acquisition program that allows the user to set desired temperatures, 
flowrates, etc. and displays the system's input and outputs. Although the neural network 
continually sends signals to the system controllers (such as valves), the network 
algorithm is embedded in the acquisition program. Therefore, once the system is up and 
running, the user does not directly see the algorithm working.  

4.4 Advantages and Disadvantages 

Given the interesting, human-like behavior of neural networks, one would expect all 
process applications to be controlled by neural networks. However, the advantages and 
disadvantages of neural networks limit their use in applications. The following lists 
summarize these advantages and disadvantages.  

 
Advantages  

• Neural networks are very general and can capture a variety of patterns very 
accurately  

• The static, non‐linear function used by neural networks provide a method to 
fit the parameters of a particular function to a given set of data.  

• A wide variety of functions can be used to fit a given set of data  



 358 

• Neural networks do not require excessive statistical training  
• There is no need to assume an underlying input data distribution when 

programming a neural network  
• Neural networks can detect all possible, complex nonlinear relationships 

between input and outputs  
• Neural networks are the closest thing to having an actual human operate a 

system (i.e. they can "learn")  

 
Disadvantages  

• Neural networks are difficult to design. One must determine the optimal 
number of nodes, hidden layers, sigmoid function, etc.  

• Neural networks are diffcult to model analytically because a small change in 
a single input will affect the entire network  

• The operation of neural networks is limited to the training process. If the 
network is trained poorly, then it will operate poorly and the outputs cannot 
be guaranteed.  

• There is a great computational burden associated with neural networks  
• Neural networks require a large sample size in order to empirically fit data  
• Neural networks have a “black box” nature. Therefore, errors within the 

complex network are difficult to target.  
• Outside of their data training range, neural networks are unpredictable. This 

occurs because neural networks may "overfit" data. For instance, during 
training, a neural network may fit a 10th order polynomial to only 5 data 
points. When using this model to make predictions of values outside this 5‐
point range, the neural network behaves unpredictably.  

4.5 Applications of Neural Networks 

Each neural network will generate a different algorithm based on the inputs and outputs 
to the system. Because neural networks fit a specific function to the given data, they can 
be used in a variety of applications. Within chemical engineering, neural networks are 
frequently used to predict how changing one input (such as pressure, temperature, etc.) on 
a distillation column will influence the compositions and flow rates of the streams exiting 
the column. The network training is performed on various inputs to the column, and thus 
can predict how changing one input will affect the product streams. Within a CSTR, 
neural networks can be used to determine the effect of one input parameter such as 
temperature or pressure on the products.  

In addition to its applications to chemical equipment, neural networks can also be applied 
to model material responsess as a function of various loads under various conditions. 
These models can then be used in product development to create a device for a particular 
application, or to improve an existing device. For example, by modeling the corrosion of 
steel under different temperature and pH conditions, implanted biomedical devices can be 
manufactured or improved.  
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Neural networks are also often used in biology and biological applications to predict the 
outcome of a certain event. For example, neural networks can be used to predict the 
growth of cells and bacteria in cell culture labs, given a set of varying conditions, such as 
temperature and pH. In addition, neural network models have been used to predict the 
mortality rate in intensive care units in hospitals. Data was collected from different 
patients, and a neural network model was created to predict the mortality of future 
patients given a set of specified conditions. Neural networks have also been used to 
diagnose breast cancer in patients by predicting the effects of a tumor provided specified 
input conditions of the patient.  

Neural networks are also used in applications beyond the chemical aspect of controllers. 
For instance, neural networks are used to predict travel time based on different travel 
conditions. Signs on the highways that give estimated travel times are examples of neural 
networks. They predict the amount of time required to reach a certain destination given 
the varying traffic volume, road conditions, and weather conditions.  

Neural networks are not limited to the applications listed above. They can be used to 
model most predictable events, and the complexity of the network will increase 
depending on the situation. For more information on the uses listed above, refer to the 
journal articles listed in the references section of this wiki.  

4.6 Worked out Example 1 

Hypothetical Industries has expanded to now include a biology lab! As an employee, you 
are working on developing a new antibiotic, and thus have been assigned to predict the 
growth of bacteria. Your boss wants to know how the growth of the bacteria is affected 
by different conditions, such as temperatures, pH, and provided nutrients. You don't 
really feel like manipulating all these conditions, and then sitting and watching bacteria 
grow on a petri dish, so you decide to come up with a way to predict the how the bacteria 
will grow. Using the information presented in the wiki, determine what the inputs and 
outputs to this neural network are.  

SOLUTION: 
The inputs to the neural network are each of the parameters that may affect the growth of 
the bacteria. In this situation, the inputs are the temperature, pH, and nutrients provided 
(such as sugars, amino acids, and antibiotics). The outputs from this system include the 
growth of the bacteria.  
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4.7 Worked out Example 2 

As seen in the example above, a neural network can be used to predict bacterial growth. 
Given the information presented in the wiki, explain the advantages and disadvantages of 
using a neural network to model bacterial growth.  

SOLUTION: 
 
Advantages 

• Because there are so many inputs (temperature, pH, etc.), a neural network 
fits a function to this data that is able to predict how future conditions would 
affect the bacterial growth. 

• Neural networks provide a mechanical method of modeling the system of 
bacterial growth that is extremely similar to have an acutal human predict 
the growth of bacteria. 

• Someone monitoring the system does not need much statistical training to 
use the neural network. 

Disadvantages 

• You must first run a large number of samples with varying conditions in 
order to obtain a good fit for the neural network. Based on how well you 
would like your network to predict bacterial growth, the number of samples 
that must be run in order to create the network changes. The network will 
only function as well as it is trained, so if a high degree of accuracy is desired, 
then more data inputs will be required. This becomes time comsuming and 
expensive. 

• Because of the black box nature of the neural networks, it is difficult to 
determine how the individual parameters such as temperature or pH will 
affect the bacterial growth. 

• Neural networks cannot be used to predict the growth patterns of the 
bacteria outside of the given data ranges. 

 

4.8 Multiple Choice Question 1 

Why would someone want to increase the number of hidden layers when combining 
neurons into a neural network?  

 
a.) To decrease the amount of programming needed  

b.) To decrease the number of weights required  
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c.) To increase the cost associated with the system  

d.) To increase the aesthetic structure of the system  

4.9 Multiple Choice Question 2 

What does the neural network output if its inputs are outside its training range?  

 
a.) Zero  

b.) Input^2  

c.) sqrt(input)  

d.) The outputs outside of range are unpredictable  
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Section 5. Understanding MIMO Control Through Two Tanks 
Interaction 

Written by: Erin Baragar, Omar Ismail, Yuan Chen  

5.1 Introduction 

We have been familiar with the models of single surge tank manipulated by first order 
process and two tanks in series manipulated by second order process, both of which are 
typical examples of Single Input Single Output (SISO) control. However, in the real 
chemical processes, there are always interations between the reactors. The following page 
will discuss the two tanks model by taking into consideration the interaction between the 
two tanks. To manipulate this model, we need to use Multiple Input Multiple Output 
(MIMO) control, which will add more complexity in understanding the overall process.  

5.2 Two Tanks Interaction Model 

The following figure, Figure 1, demonstrates how two tanks model works to interact each 
other. From Figure 1, we can see that the input of Tank1, x1, not only affects the level in 
Tank1, but also affects that in Tank2. The same goes for the input of Tank2, x2. We use 
the resistance, R3, to account for the interaction between the two tanks.  

 

Figure 1: Two tanks interaction model  

In the above figure,  
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x1 = Input of Tank1  
x2 = Input of Tank2  
A1 = Cross section area of Tank1  
A2 = Cross section area of Tank2  
h1 = Level of Tank1  
h2 = Level of Tank2  
R1 = Resistance of Tank1  
R2 = Resistance of Tank2  
R3 = Interaction Resistance  

5.2.1 Mathematical Equations for the Process 

Now, we will derive the mathematical equations to describe the process, now we assume 
the direction of the flow goes from Tank1 to Tank2:  

To begin with, we write down the governing equation for each of the tanks, taking into 
consideration the interaction term:  

 

 

Under steady state, the time derivatives, i.e. the left hand side of the above equations, go 
to zero:  

 

 

Now, we define the deviation variables as follows:  

X1 = x1 − x1(0), Y1 = h1 − h1(0)  
X2 = x2 − x2(0), Y2 = h2 − h2(0)  

Set y1=h1, y2=h2, we can obtain the following equations:  
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It will be more general if we write down the above equations into a form of Matrix:  

, 

We can represent the above equation using the following equation:  

 

 

 

 

Invert the above equation:  

 

Now, set  

 

We get the following equation:  
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5.2.2 Control Diagram 

 

Figure 2: Contol Diagram for Two tanks interaction model. 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5.2.3 Decouple the process 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5.3 Reference 
• http://controls.engin.umich.edu/wiki/index.php/Second‐

order_differential_equations 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Analysis for 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Process Control 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Chapter 13. Statistics and Probability 
Background 
Section 1. Basic statistics: mean, median, average, standard 
deviation, z‐scores, and p‐value 

 Note: Video lecture available for this section!  
Authors: Andrew MacMillan, David Preston, Jessica Wolfe, Sandy Yu  
Stewards: Jeff Byrd, Khek Ping Chia, John Cruz, Natalie Duchene, Samantha Lyu  

Date Presented: 11/21/06; Revised: 11/5/07  

• First round reviews for this page  
• Rebuttal for this page  

1.1 Introduction 

Statistics is a field of mathematics that pertains to data analysis. Statistical methods and 
equations can be applied to a data set in order to analyze and interpret results, explain 
variations in the data, or predict future data. A few examples of statistical information we 
can calculate are:  

• Average value (mean)  
• Most frequently occurring value (mode)  
• On average, how much each measurement deviates from the mean 

(standard deviation of the mean)  
• Span of values over which your data set occurs (range), and  
• Midpoint between the lowest and highest value of the set (median)  

Statistics is important in the field of engineering by it provides tools to analyze collected 
data. For example, a chemical engineer may wish to analyze temperature measurements 
from a mixing tank. Statistical methods can be used to determine how reliable and 
reproducible the temperature measurements are, how much the temperature varies within 
the data set, what future temperatures of the tank may be, and how confident the engineer 
can be in the temperature measurements made. This article will cover the basic statistical 
functions of mean, median, mode, standard deviation of the mean, weighted averages and 
standard deviations, correlation coefficients, z-scores, and p-values.  

1.2 What is a Statistic? 

In the mind of a statistician, the world consists of populations and samples. An example 
of a population is all 7th graders in the United States. A related example of a sample 
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would be a group of 7th graders in the United States. In this particular example, a federal 
health care administrator would like to know the average weight of 7th graders and how 
that compares to other countries. Unfortunately, it is too expensive to measure the weight 
of every 7th grader in the United States. Instead statistical methodologies can be used to 
estimate the average weight of 7th graders in the United States by measure the weights of 
a sample (or multiple samples) of 7th graders.  

Parameters are to populations as statistics are to samples.  

A parameter is a property of a population. As illustrated in the example above, most of 
the time it is infeasible to directly measure a population parameter. Instead a sample must 
be taken and statistic for the sample is calculated. This statistic can be used to estimate 
the population parameter. (A branch of statistics know as Inferential Statistics involves 
using samples to infer information about a populations.) In the example about the 
population parameter is the average weight of all 7th graders in the United States and the 
sample statistic is the average weight of a group of 7th graders.  

A large number of statistical inference techniques require samples to be a single random 
sample and independently gathers. In short, this allows statistics to be treated as random 
variables. A in-depth discussion of these consequences is beyond the scope of this text. It 
is also important to note that statistics can be flawed due to large variance, bias, 
inconsistency and other errors that may arise during sampling. Whenever performing 
over reviewing statistical analysis, a skeptical eye is always valuable.  

Statistics take on many forms. Examples of statistics can be seen below.  

1.3 Basic Statistics 

When performing statistical analysis on a set of data, the mean, median, mode, and 
standard deviation are all helpful values to calculate. The mean, median and mode are all 
estimates of where the "middle" of a set of data is. These values are useful when creating 
groups or bins to organize larger sets of data. The standard deviation is the average 
distance between the actual data and the mean.  

1.3.1 Mean and Weighted Average 

The mean (also know as average), is obtained by dividing the sum of observed values by 
the number of observations, n. Although data points fall above, below, or on the mean, it 
can be considered a good estimate for predicting subsequent data points. The formula for 
the mean is given below as equation (1). The excel syntax for the mean is 
AVERAGE(starting cell: ending cell).  
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(1)  

However, equation (1) can only be used when the error associated with each 
measurement is the same or unknown. Otherwise, the weighted average, which 
incorporates the standard deviation, should be calculated using equation (2) below.  

 

(2)  

 

where and xi is the data value.  

1.3.2 Median 

The median is the middle value of a set of data containing an odd number of values, or 
the average of the two middle values of a set of data with an even number of values. The 
median is especially helpful when separating data into two equal sized bins. The excel 
syntax to find the median is MEDIAN(starting cell: ending cell).  

1.3.3 Mode 

The mode of a set of data is the value which occurs most frequently. The excel syntax for 
the mode is MODE(starting cell: ending cell).  

1.3.4 Considerations 

Now that we've discussed some different ways in which you can describe a data set, you 
might be wondering when to use each way. Well, if all the data points are relatively close 
together, the average gives you a good idea as to what the points are closest to. If on the 
other hand, almost all the points fall close to one, or a group of close values, but 
occassionally a value that differs greatly can be seen, then the mode might be more 
accurate for describing this system, whereas the mean would incorporate the occassional 
outlying data. The median is useful if you are interested in the range of values your 
system could be operating in. Half the values should be above and half the values should 
be below, so you have an idea of where the middle operating point is.  
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1.3.5 Standard Deviation and Weighted Standard Deviation 

The standard deviation gives an idea of how close the entire set of data is to the average 
value. Data sets with a small standard deviation have tightly grouped, precise data. Data 
sets with large standard deviations have data spread out over a wide range of values. The 
formula for standard deviation is given below as equation (3). The excel syntax for the 
standard deviation is STDEV(starting cell: ending cell).  

 

(3)  

Side Note: Bias Estimate of Population Variance  

The standard deviation (the square root of variance) of a sample can be used to estimate a 
population's true variance. Equation (3) above is an unbias estimate of population 
variance. Equation (3.1) below is another common method for calculating sample 
standard deviation, although it is an bias estimate. Although the estimate is biased, it is 
advantageous in certain situations because the estimate has a lower variance. (This relates 
to the bias-variance trade-off for estimators.)  

 

(3.1)  

When calculated standard deviation values associated with weighted averages, equation 
(4) below should be used.  

 

(4)  

1.3.6 The Sampling Distribution and Standard Deviation of the Mean 

Population parameters follow all types of distributions, some are normal, others are 
skewed like the F-distribution and some don't even have defined moments (mean, 
variance, etc.) like the Chaucy distribution. However, many statistical methodologies, 
like a z-test (discussed later in this article), are based off of the normal distribution. How 
does this work? Most sample data are not normally distributed.  
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This highlights a common misunderstanding of those new to statistical inference. The 
distribution of the population parameter of interest and the sampling distribution are not 
the same. Sampling distribution?!? What is that?  

Imagine an engineering is estimating the mean weight of widgets produced in a large 
batch. The engineer measures the weight of N widgets and calculates the mean. So far, 
one sample has been taken. The engineer then takes another sample, and another and 
another continues until a very larger number of samples and thus a larger number of 
mean sample weights (assume the batch of widgets being sampled from is near infinite 
for simplicity) have been gathered. The engineer has generated a sample distribution.  

As the name suggested, a sample distribution is simply a distribution of a particular 
statistic (calculated for a sample with a set size) for a particular population. In this 
example, the statistic is mean widget weight and the sample size is N. If the engineer 
were to plot a histogram of the mean widget weights, he/she would see a bell-shaped 
distribution. This is because the Central Limit Theorem guarantees that as the sample size 
approaches infinity, the sampling distributions of statistics calculated from said samples 
approach the normal distribution.  

Conveniently, there is a relationship between sample standard deviation (σ) and the 

standard deviation of the sampling distribution (  - also know as the standard 
deviation of the mean or standard errordeviation). This relationship is shown in equation 
(5) below:  

 

(5)  

 

An important feature of the standard deviation of the mean, is the factor in 
the denominator. As sample size increases, the standard deviation of the mean decrease 
while the standard deviation, σ does not change appreciably.  

Microsoft Excel has built in functions to analyze a set of data for all of these values. 
Please see the screen shot below of how a set of data could be analyzed using Excel to 
retrieve these values.  
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1.3.7 Example by Hand 

You obtain the following data points and want to analyze them using basic statistical 
methods. {1,2,2,3,5}  

Calculate the average: Count the number of data points to obtain n = 5  

 

 
Obtain the mode: Either using the excel syntax of the previous tutorial, or by looking at 
the data set, one can notice that there are two 2's, and no multiples of other data points, 
meaning the 2 is the mode.  
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Obtain the median: Knowing the n=5, the halfway point should be the third (middle) 
number in a list of the data points listed in ascending or descending order. Seeing as how 
the numbers are already listed in ascending order, the third number is 2, so the median is 
2.  

 

Calculate the standard deviation: Using the equation shown above,  

 

1.3.8 Example by Hand (Weighted) 

Three University of Michigan students measured the attendance in the same Process 
Controls class several times. Their three answers were (all in units people):  

Student 1: A = 100 ± 3  

Student 2: A = 105 ± 4  

Student 3: A = 102 ± 2  

What is the best estimate for the attendance A?  

, , ,  

 

 

Therefore,  

A = 101.92 ± .65 students  
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1.3.9 Gaussian Distribution 

Gaussian distribution, also known as normal distribution, is represented by the following 
probability density function:  

 

where μ is the mean and σ is the standard deviation of a very large data set. The Gaussian 
distribution is a bell-shaped curve, symmetric about the mean value. An example of a 
Gaussian distribution is shown below.  

 

In this specific example, μ = 10 and σ = 2.  

Probability density functions represent the spread of data set. Integrating the function 
from some value x to x + a where a is some real value gives the probability that a value 
falls within that range. The total integral of the probability density function is 1, since 
every value will fall within the total range. The shaded area in the image below gives the 
probability that a value will fall between 8 and 10, and is represented by the expression:  

Gaussian distribution is important for statistical quality control, six sigma, and quality 
engineering in general. For more information see What is 6 sigma?.  
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1.3.10 Error Function 

A normal or Gaussian distribution can also be estimated with a error fuction as shown in 
the equation below.  

 

Here, erf(t) is called "error function" because of its role in the theory of normal random 
variable. The graph below shows the probability of a data point falling within t*σ of the 
mean.  

 

For example if you wanted to know the probability of a point falling within 2 standard 
deviations of the mean you can easily look at this table and find that it is 95.4%. This 
table is very useful to quickly look up what probability a value will fall into x standard 
deviations of the mean.  

1.3.11 Correlation Coefficient (r value) 

The linear correlation coefficient is a test that can be used to see if there is a linear 
relationship between two variables. For example, it is useful if a linear equation is 
compared to experimental points. The following equation is used:  
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The range of r is from -1 to 1. If the r value is close to -1 then the relationship is 
considered anti-correlated, or has a negative slope. If the value is close to 1 then the 
relationship is considered correlated, or to have a positive slope. As the r value deviates 
from either of these values and approaches zero, the points are considered to become less 
correlated and eventually are uncorrelated.  

There are also probability tables that can be used to show the significant of linearity 
based on the number of measurements. If the probability is less than 5% the correlation is 
considered significant.  

1.3.12 Linear Regression 

The correlation coefficient is used to determined whether or not there is a correlation 
within your data set. Once a correlation has been established, the actual relationship can 
be determined by carrying out a linear regression. The first step in performing a linear 
regression is calculating the slope and intercept:  

 

 

Once the slope and intercept are calculated, the uncertainty within the linear regression 
needs to be applied. To calculate the uncertainty, the standard error for the regression line 
needs to be calculated.  

 

The standard error can then be used to find the specific error associated with the slope 
and intercept:  
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Once the error associated with the slope and intercept are determined a confidence 
interval needs to be applied to the error. A confidence interval indicates the likelihood of 
any given data point, in the set of data points, falling inside the boundaries of the 
uncertainty. For a table of confidence interval values, see student's t-
distributionWikipedia page.  

 

 

Now that the slope, intercept, and their respective uncertainties have been calculated, the 
equation for the linear regression can be determined.  

Y = βX + α  

1.3.13 Z‐Scores 

A z-score (also known as z-value, standard score, or normal score) is a measure of the 
divergence of an individual experimental result from the most probable result, the mean. 
Z is expressed in terms of the number of standard deviations from the mean value.  

(6)  

X = ExperimentalValue  

μ = Mean  

σ = StandardDeviation  

Z-scores assuming the sampling distribution of the test statistic (mean in most cases) is 
normal and transform the sampling distribution into a standard normal distribution. As 
explained above in the section on sampling distributions, the standard deviation of a 
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sampling distribution depends on the number of samples. Equation (6) is to be used to 
compare results to one another, whereas equation (7) is to be used when performing 
inference about the population.  

Whenever using z-scores it is important to remember a few things:  

• Z‐scores normalize the sampling distribution for meaningful comparison.  
• Z‐scores require a large amount of data.  
• Z‐scores require independent, random data.  

 

(7)  

 

n = SampleNumber 

1.3.14 P‐Value 

A p-value is a statistical value that details how much evidence there is to reject the most 
common explanation for the data set. It can be considered to be the probability of 
obtaining a result at least as extreme as the one observed, given that the null hypothesis is 
true. In chemical engineering, the p-value is often used to analyze marginal conditions of 
a system, in which case the p-value is the probability that the null hypothesis is true.  

The null hypothesis is considered to be the most plausible scenario that can explain a set 
of data. The most common null hypothesis is that the data is completely random, that 
there is no relationship between two system results. The null hypothesis is always 
assumed to be true unless proven otherwise. An alternative hypothesis predicts the 
opposite of the null hypothesis and is said to be true if the null hypothesis is proven to be 
false.  

The following is an example of these two hypotheses:  

4 students who sat at the same table during in an exam all got perfect scores.  

Null Hypothesis: The lack of a score deviation happened by chance.  

Alternative Hypothesis: There is some other reason that they all received the same score.  
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If it is found that the null hypothesis is true then the Honor Council will not need to be 
involved. However, if the alternative hypothesis is found to be true then more studies will 
need to be done in order to prove this hypothesis and learn more about the situation.  

As mentioned previously, the p-value can be used to analyze marginal conditions. In this 
case, the null hypothesis is that there is no relationship between the variables controlling 
the data set. For example:  

• Runny feed has no impact on product quality  
• Points on a control chart are all drawn from the same distribution  
• Two shipments of feed are statistically the same  

The p-value proves or disproves the null hypothesis based on its significance. A p-value 
is said to be significant if it is less than the level of significance, which is commonly 5%, 
1% or .1%, depending on how accurate the data must be or stringent the standards are. 
For example, a health care company may have a lower level of significance because they 
have strict standards. If the p-value is considered significant (is less than the specified 
level of significance), the null hypothesis is false and more tests must be done to prove 
the alternative hypothesis.  

Upon finding the p-value and subsequently coming to a conclusion to reject the Null 
Hypothesis or fail to reject the Null Hypothesis, there is also a possibility that the wrong 
decision can be made. If the decision is to reject the Null Hypothesis and in fact the Null 
Hypothesis is true, a type 1 error has occurred. The probability of a type one error is the 
same as the level of significance, so if the level of significance is 5%, "the probability of 
a type 1 error" is .05 or 5%. If the decision is to fail to reject the Null Hypothesis and in 
fact the Alternative Hypothesis is true, a type 2 error has just occurred. With respect to 
the type 2 error, if the Alternative Hypothesis is really true, another probability that is 
important to researchers is that of actually being able to detect this and reject the Null 
Hypothesis. This probability is known as the power (of the test) and it is defined as 1 - 
"probability of making a type 2 error."  

If an error occurs in the previously mentioned example testing whether there is a 
relationship between the variables controlling the data set, either a type 1 or type 2 error 
could lead to a great deal of wasted product, or even a wildly out-of-control process. 
Therefore, when designing the parameters for hypothesis testing, researchers must 
heavily weigh their options for level of significance and power of the test. The sensitivity 
of the process, product, and standards for the product can all be sensitive to the smallest 
error.  

Important Note About Significant P‐values 

If a P-value is greater than the applied level of significance, and the null hypothesis 
should not just be blindly accepted. Other tests should be performed in order to determine 
the true relationship between the variables which are being tested. More information on 
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this and other misunderstandings related to P-values can be found at P-values: Frequent 
misunderstandings.  

Calculation 

There are two ways to calculate a p-value. The first method is used when the z-score has 
been calculated. The second method is used with the Fisher’s exact method and is used 
when analyzing marginal conditions.  

First Method: Z‐Score 

The method for finding the P-Value is actually rather simple. First calculate the z-score 
and then look up its corresponding p-value using the standard normal table.  

This table can be found here: Media:Group_G_Z-Table.xls  

This value represents the likelihood that the results are not occurring because of random 
errors but rather an actual difference in data sets.  

To read the standard normal table, first find the row corresponding to the leading 
significant digit of the z-value in the column on the lefthand side of the table. After 
locating the appropriate row move to the column which matches the next significant digit.  

Example:  
If your z-score = 1.13  

Follow the rows down to 1.1 and then across the columns to 0.03. The P-value is the 
highlighted box with a value of 0.87076.  
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Values in the table represent area under the standard normal distribution curve to the left 
of the z-score.  

Using the previous example:  

Z-score = 1.13, P-value = 0.87076 is graphically represented below.  

 

Second Method: Fisher's Exact 

In the case of analyzing marginal conditions, the P-value can be found by summing the 
Fisher's exact values for the current marginal configuration and each more extreme case 
using the same marginals. For information about how to calculate Fisher's exact click the 
following 
link:Discrete_Distributions:_hypergeometric,_binomial,_and_poisson#Fisher.27s_exact  
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1.3.15 Chi‐Squared Test 

A Chi-Squared test gives an estimate on the agreement between a set of observed data 
and a random set of data that you expected the measurements to fit. Since the observed 
values are continuous, the data must be broken down into bins that each contain some 
observed data. Bins can be chosen to have some sort of natural separation in the data. If 
none of these divisions exist, then the intervals can be chosen to be equally sized or some 
other criteria.  

The calculated chi squared value can then be correlated to a probability using excel or 
published charts. Similar to the Fisher's exact, if this probability is greater than 0.05, the 
null hypothesis is true and the observed data is not significantly different than the 
random.  

Calculating Chi Squared 

The Chi squared calculation involves summing the distances between the observed and 
random data. Since this distance depends on the magnitude of the values, it is normalized 
by dividing by the random value  

 

or if the error on the observed value (sigma) is known or can be calculated:  

 

Detailed Steps to Calculate Chi Squared by Hand 

Calculating Chi squared is very simple when defined in depth, and in step-by-step form 
can be readily utilized for the estimate on the agreement between a set of observed data 
and a random set of data that you expected the measurements to fit. Given the data:  
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Step 1: Find  

 

 

When:  
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The Excel function CHITEST(actual_range, expected_range) also calculates the 
value. The two inputs represent the range of data the actual and expected data, 
respectively.  

 
Step 2: Find the Degrees of Freedom  

 

 

When: df = Degrees of Freedom  

n = number of observations  

k = the number of constraints  

 

Step 3: Find  

= the established value of obtained in an experiment with df degrees of freedom  

 

Step 4: Find using Excel or published charts.  

The Excel function CHIDIST(x,df) provides the p-value, where x is the value of the chi-
squared statistic and df is the degrees of freedom. Note: Excel gives only the p-value and 
not the value of the chi-square statistic.  

 

= the probability of getting a value of that is as large as the 

established  

 
Step 5: Compare the probability to the significance level (i.e. 5% or 0.05), if this 
probability is greater than 0.05, the null hypothesis is true and the observed data is not 
significantly different than the random. A probability smaller than 0.05 is an indicator of 
independence and a significant difference from the random.  
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Chi Squared Test versus Fisher's Exact 

• For small sample sizes, the Chi Squared Test will not always produce an 
accurate probability. However, for a random null, the Fisher's exact, like its 
name, will always give an exact result.  

o Chi Squared will not be correct when:  

1. fewer than 20 samples are being used  
2. if an expected number is 5 or below and there are between 20 and 40 

samples  

• For large contingency tables and expected distributions that are not random, 
the p‐value from Fisher's Exact can be a difficult to compute, and Chi Squared 
Test will be easier to carry out.  

1.3.16 Binning in Chi Squared and Fisher’s Exact Tests 

When performing various statistical analyzes you will find that Chi-squared and Fisher’s 
exact tests may require binning, whereas ANOVA does not. Although there is no optimal 
choice for the number of bins (k), there are several formulas which can be used to 
calculate this number based on the sample size (N). One such example is listed below:  

k = 1 + log2N  

Another method involves grouping the data into intervals of equal probability or equal 
width. The first approach in which the data is grouped into intervals of equal probability 
is generally more acceptable since it handles peaked data much better. As a stipulation, 
each bin should contain at least 5 or more data points, so certain adjacent bins sometimes 
need to be joined together for this condition to be satisfied. Identifying the number the 
bins to use is important, but it is even more important to be able to note which situations 
call for binning. Some Chi-squared and Fisher's exact situations are listed below:  

• Analysis of a continuous variable:  

This situation will require binning. The idea is to divide the range of values of the 
variable into smaller intervals called bins.  

• Analysis of a discrete variable:  

Binning is unnecessary in this situation. For instance, a coin toss will result in two 
possible outcomes: heads or tails. In tossing ten coins, you can simply count the number 
of times you received each possible outcome. This approach is similar to choosing two 
bins, each containing one possible result.  

• Examples of when to bin, and when not to bin: 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o You have twenty measurements of the temperature inside a reactor: 
as temperature is a continuous variable, you should bin in this case. 
One approach might be to determine the mean (X) and the standard 
deviation (σ) and group the temperature data into four bins: T < X – σ, 
X – σ < T < X, X < T < X + σ, T > X + σ  

o You have twenty data points of the heater setting of the reactor (high, 
medium, low): since the heater setting is discrete, you should not bin 
in this case.  

1.4 Worked out Example 1 

1.4.1 Question 1 

Say we have a reactor with a mean pressure reading of 100 and standard deviation of 7 
psig. Calculate the probability of measuring a pressure between 90 and 105 psig.  

1.4.2 Solution 1 

To do this we will make use of the z-scores.  

 

where:  
a is the lower bound  
b is the upper bound  

Substitution of z-transformation equation (3)  

 

 

 

 
Look up z-score values in a standard normal table. Media:Group_G_Z-Table.xls  
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So:  

 

= 0.76155 ‐ 0.07636 
= 0.68479. 

The probability of measuring a pressure between 90 and 105 psig is 0.68479.  

A graphical representation of this is shown below. The shaded area is the probability  

 

1.4.3 Alternate Solution 

We can also solve this problem using the probability distribution function (PDF). This 
can be done easily in Mathematica as shown below. More information about the PDF is 
and how it is used can be found in the Continuous Distribution article  
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As you can see the the outcome is approximately the same value found using the z-
scores.  

1.5 Worked out Example 2 

1.5.1 Question 2 

You are a quality engineer for the pharmaceutical company “Headache-b-gone.” You are 
in charge of the mass production of their children’s headache medication. The average 
weight of acetaminophen in this medication is supposed to be 80 mg, however when you 
run the required tests you find that the average weight of 50 random samples is 79.95 mg 
with a standard deviation of .18.  

a) Identify the null and alternative hypothesis.  

b) Under what conditions is the null hypothesis accepted?  
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c) Determine if these differences in average weight are significant.  

1.5.2 Solution 2 

a)  

• Null hypothesis: This is the claimed average weight where Ho=80 mg  
• Alternative hypothesis: This is anything other than the claimed average 

weight (in this case Ha<80)  

 
b) The null hypothesis is accepted when the p-value is greater than .05.  

 
c) We first need to find Zobs using the equation below:  

 

Where n is the number of samples taken.  

 

 

 
Using the z-score table provided in earlier sections we get a p-value of .025. Since this 
value is less than the value of significance (.05) we reject the null hypothesis and 
determine that the product does not reach our standards.  

1.6 Worked out Example 3 

1.6.1 Question 3 

15 students in a controls class are surveyed to see if homework impacts exam grades. The 
following distribution is observed.  
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Determine the p-value and if the null hypothesis (Homework does not impact Exams) is 
significant by a 5% significance level using the P-fisher method.  

1.6.2 Solution 3 

To find the p-value using the p-fisher method, we must first find the p-fisher for the 
original distribution. Then, we must find the p-fisher for each more extreme case. The p-
fisher for the orginal distribution is as follows.  

 

To find the more extreme case, we will gradually decrease the smallest number to zero. 
Thus, our next distribution would look like the following.  

 

The p-fisher for this distribution will be as follows.  
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The final extreme case will look like this.  

 

The p-fisher for this distribution will be as follows.  

 

Since we have a 0 now in the distribution, there are no more extreme cases possible. To 
find the p-value we will sum the p-fisher values from the 3 different distributions.  

pvalue = 0.195804 + 0.0335664 + 0.0013986 = 0.230769  

Because p-value=0.230769 we cannot reject the null hypothesis on a 5% significance 
level.  

1.7 Application: What do p‐values tell us? 

1.7.1 Population Example 

Out of a random sample of 400 students living in the dormatory (group A), 134 students 
caught a cold during the academic school year. Out of a random sample of 1000 students 
living off campus (group B), 178 students caught a cold during this same time period.  

Population table  
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Fisher's Exact:  

 

Solve:  

 

pf = 2.28292 * 10 − 10  

Comparison and interpretation of p-value at the 95% confidence level  

This value is very close to zero which is much less than 0.05. Therefore, the number of 
students getting sick in the dormatory is significantly higher than the number of students 
getting sick off campus. There is more than a 95% chance that this significant difference 
is not random. Statistically, it is shown that this dormatory is more condusive for the 
spreading of viruses. With the knowledge gained from this analysis, making changes to 
the dormatory may be justified. Perhaps installing sanitary dispensers at common 
locations throughout the dormatory would lower this higher prevalence of illness among 
dormatory students. Further research may determine more specific areas of viral 
spreading by marking off several smaller populations of students living in different areas 
of the dormatory. This model of significance testing is very useful and is often applied to 
a multitude of data to determine if discrepancies are due to chance or actual differences 
between compared samples of data. As you can see, purely mathematical analyses such 
as these often lead to physical action being taken, which is necessary in the field of 
Medicine, Engineering, and other scientific and non-scientific venues.  

 

 

1.8 Multiple Choice Question 1 

you are given the following set of data: {1,2,3,5,5,6,7,7,7,9,12} What is the mean, 
median and mode for this set of data? And then the z value of a data point of 7?  

a) 5.82, 6, 7, 0.373  

b) 6, 7, 5.82, 6.82  

c) 7, 6, 5, 0.373  
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d) 7, 6, 5.82, 3.16  

 
Answer: a  

1.9 Multiple Choice Question 2 

What is n and the standard deviation for the above set of data {1,2,3,5,5,6,7,7,7,9,12}? 
And then consulting the table from above, what is the p-value for the data "12"?  

a) 12, 3.16, 5.82  

b) 7, 3.16, 0.83  

c) 11, 3.16, 0.97  

d) 11, 5.82, 0  

 
Answer: c  

 

1.10 Sage's Corner 
http://www.youtube.com/v/_3ZJeSrysfc 
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Setion 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Sample 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R charts, S 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2.1 Introduction 

Control charts are one of the most commonly used methods of Statisical Process Control 
(SPC), which monitors the stability of a process. The main features of a control chart 
include the data points, a centerline (mean value), and upper and lower limits (bounds to 
indicate where a process output is considered "out of control").They visually display the 
fluctuations of a particular process variable, such as temperature, in a way that lets the 
engineer easily determine whether these variations fall within the specified process limits. 
Control charts are also known as Shewhart charts after Walter Shewhart, who developed 
them in the early 1900’s.  

2.2 Control Chart Background 

A process may either be classified as in control or out of control. The boundaries for 
these classifications are set by calculating the mean, standard deviation, and range of a set 
of process data collected when the process is under stable operation. Then, subsequent 
data can be compared to this already calculated mean, standard deviation and range to 
determine whether the new data fall within acceptable bounds. For good and safe control, 
subsequent data collected should fall within three standard deviations of the mean. 
Control charts build on this basic idea of statistical analysis by plotting the mean or range 
of subsequent data against time. For example, if an engineer knows the mean (grand 
average) value, standard deviation, and range of a process, this information can be 
displayed as a bell curve, or population density function (PDF). The image below shows 
the control chart for a data set with the PDF overlay.  
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Figure I. Control chart showing PDF for a data set  

The centerline is the mean value of the data set and the green, blue and red lines represent 
one, two, and three standard deviations from the mean value. In generalized terms, if data 
points fall within three standard deviations of the mean (within the red lines), the process 
is considered to be in control. These rules are discussed in greater detail later in this 
section.  

Control Charts are commonly used in six sigma control today, as a means of overall 
process improvement. For more on six-sigma control, see six sigma.  

2.3 Control Chart Functions 

The main purpose of using a control chart is to monitor, control, and improve process 
performance over time by studying variation and its source. There are several functions 
of a control chart:  

1. It centers attention on detecting and monitoring process variation over time.  

2. It provides a tool for ongoing control of a process.  
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3. It differentiates special from common causes of variation in order to be a guide for 
local or management action.  

4. It helps improve a process to perform consistently and predictably to achieve higher 
quality, lower cost, and higher effective capacity.  

5. It serves as a common language for discussing process performance.  

2.4 Sample Size and Subgrouping 

There are a few key conditions that must be met when constructing control charts:  

- The initial predictions for the process must be made while the process is assumed to be 
stable. Because future process quality will be compared to these predictions, they must be 
based off of a data set that is taken while the operation is running properly.  

- Multiple subsets of data must be collected, where a subset is simply a set of n 
measurements taken over a specific time range. The number of subsets is represented as 
k. A subset average, subset standard deviation, and subset range will be computed for 
each subset.  

- From these subsets, a grand average, an average standard deviation, and an average 
range are calculated. The grand average is the average of all subset averages. The average 
standard deviation is simply the average of subset standard deviations. The average range 
is simply the average of subset ranges.  

 
The upper and lower control limits for the process can then be determined from this 
data.  

- Future data taken to determine process stability can be of any size. This is because any 
point taken should fall within the statistical predictions. It is assumed that the first 
occurrence of a point not falling within the predicted limits shows that the system must 
be unstable since it has changed from the predictive model.  

- The subsets are defined, based on the data and the process. For example, if you were 
using a pH sensor, the sensor would most likely output pages of data daily. If you know 
that your sensor has the tendency to drift every day, you might select a 30 minute subset 
of data. If it drifts monthly you might set your subset to be 24 hours or 12 hours.  

- Finally, the population size, N is assumed to be infinite. Alternatively, if the population 
is finite but the sample size is less than 5% of the population size, we can still 
approximate the population to be near infinite. That is, n/N <= 0.05 where n is the sample 
size and N is the population size. [5]  
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2.5 X‐Bar, R‐Charts, and S‐Charts 

There are three types of control charts used determine if data is out of control, x-bar 
charts, r-charts and s-charts. An x-bar chart is often paired with either an r-chart or an s-
chart to give a complete picture of the same set of data.  

Pairing X-Bar with R-Charts  

X-Bar (average) charts and R (range) -charts are often paired together. The X-Bar chart 
displays the centerline, which is calculated using the grand average, and the upper and 
lower control limits, which are calculated using the average range. Future experimental 
subsets are plotted compared to these values. This demonstrates the centering of the 
subset values. The R-chart plots the average range and the limits of the range. Again, the 
future experimental subsets are plotted relative to these values. The R-chart displays the 
dispersion of the subsets. X-Bar/R-Chart plot a subgroup average. Note that they should 
only be used when subgroups really make sense. For example, in a Gage R&R study, 
when operators are testing in duplicates or more, subgrouping really represents the same 
group.  

Pairing X-Bar with S-Charts  

Alternatively, X-Bar charts can be paired with S-charts (standard deviation). This is 
typically done when the size of the subsets are large. For larger subsets, the range is a 
poor statistic to estimate the distributions of the subsets, and instead, standard deviation is 
used. In this case, the X-Bar chart will display control limits that are calculated using the 
average standard deviation. The S-Charts are similar to the R-charts; however, instead of 
the range, they track the standard deviation of multiple subsets.  

Smoothing Data with a Moving Average  

If it is desired to have smooth data, the moving average method is one option. This 
method involves taking the average of a number of points, and using that average for the 
middle data point. From this point on, the data is treated the same as any normal group of 
k subsets. Though this method will produce a smoother curve, it has a lag in detecting 
points, which may be problematic if the points are out of the acceptable range. This time 
lag would keep the control system from reacting to the problem until after the average is 
found. For this reason, moving average charts are appropriate mainly for slower 
processes that can handle the lag.  

For example, let us calculate a value for a set of data which takes samples every second. 
We will use an average of 10 points to find this, however, in practice there is no set 
number of data points that should be used. For the point t = 50, we must wait until data 
has been collected through t = 54. The points are then averaged for t = 45-54 and used as 
the function value. For the next point, t = 51, the average of the points for t = 46-55 are 
used, and so on. If this is still confusing, please see moving average for a more detailed 
explanation.  
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Reading Control Charts  

Control charts can determine whether a process is behaving in an "unusual" way.  

Note: The upper and lower control limits are calculated using the grand average and 
either the average range and average sigma. Example calculations are shown in the 
Creating Control Charts Section.  

The quality of the individual points of a subset is determined unstable if any of the 
following occurs:  

Rule 1: Any point falls beyond 3σ from the centerline(this is represented by the upper 
and lower control limts).  

Rule 2: Two out of three consecutive points fall beyond 2σ on the same side of the 
centerline.  

Rule 3: Four out of five consecutive points fall beyond 1σ on the same side of the 
centerline.  

Rule 4: Nine or more consecutive points fall on the same side of the centerline.  
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Figure III. Quality control rules.  

 
The quality of a subset is determined unstable according to the following rules:  

1. Any subset value is more than three standard deviations from the centerline.  

2. Two consecutive subset values are more than two standard deviations from the 
centerline and are on the same side of the centerline.  

3. Three consecutive subset values are more than one standard deviation from the 
centerline and are on the same side of the centerline.  



 402 

 
Creating Control Charts  

To establish upper and lower control limits on control charts, there are a number of 
methods. We will discuss the method for the number of components in a subset, n, less 
than 15. For methods involving n > 15 and other techniques, see Process Control and 
Optimization, Liptak, 2.34. Here, the table of constants for computing limits, and the 
limit equations are presented below.  

Please note that Table A below does NOT contain data for a sample problem. Any time 
you make a control chart, you refer to this table. The values in the table are used in the 
equations for the upper control limit (UCL), lower control limit (LCL), etc. This will be 
explained in the examples below. If you are interested in how these constants were 
derived, there is a more detailed explanation in Control Chart Constants.  

 

Table A: Table of Constants  

 
To determine the value for n, the number of subgroups  

In order to determine the upper (UCL) and lower (LCL) limits for the x-bar charts, you 
need to know how many subgroups (n) there are in your data. Once you know the value 
of n, you can obtain the correct constants (A2, A3, etc.) to complete your control chart. 
This can be confusing when you first attend to create a x-bar control chart. The value of n 
is the number of subgroups within each data point. For example, if you are taking 
temperature measurements every min and there are three temperature readings per 



  403 

minute, then the value of n would be 3. And if this same experiment was taking four 
temperature readings per minute, then the value of n would be 4. Here are some examples 
with different tables of data to help you further in determining n:  

Example 1:   

n= 4 since there are four readings of kg.  
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Example 2:

  

n= 4 since there are four readings of pH.  
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Example 3:  

n= 3 since there are three readings of temperature.  

After creating multiple control charts, determining the value of n will become quite easy.  

 
Calculating UCL and LCL  

For the X-Bar chart the following equations can be used to establish limits, where 

is the grand average, is the average range, and is the average 
standard deviation.  

 
Calculating Grand Average, Average Range and Average Standard Deviation  

To calculate the grand average, first find the average of the n readings at each time point. 
The grand average is the average of the averages at each time point.  
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To calculate the grand range, first determine the range of the n readings at each time 
point. The grand range is the average of the ranges at each time point.  

To calculate the average standard deviation, first determine the standard deviation of the 
n readings at each time point. The average standard deviation is the average of the 
standard deviations at each time point.  

Note: You will need to calculate either the grand range or the average standard deviation, 
not both.  

 
For X-bar charts, the UCL and LCL may be determined as follows:  

 

 

 

 

Alternatively, can be used as well to calculate UCL and LCL:  

 

 

 

 

The centerline is simply .  

 

For R-charts, the UCL and LCL may be determined as follows:  

 

 

 

 

The centerline is the value .  
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For S-charts, the UCL and LCL may be determined as follows:  

 

 

 

 

The centerline is .  

The following flow chart demonstrates the general method for constructing an X-bar 
chart, R-chart, or S-chart:  

 

Calculating Region Boundaries  

To determine if your system is out of control, you will need to section your data into 
regions A, B, and C, below and above the grand average. These regions are shown in 
Figure III. To calculate the boundaries between these regions, you must first calculate the 
UCL and LCL. The boundaries are evenly spaced between the UCL and LCL. One way 
to calculate the boundaries is shown below.  

Boundary between A and B above XGA = XGA + (UCL − XGA) * 2 / 3  

Boundary Between B and C above XGA = XGA + (UCL − XGA) * 1 / 3  

Boundary Between A and B below XGA = LCL + (XGA − LCL) * 2 / 3  

Boundary Between B and C below XGA = LCL + (XGA − LCL) * 2 / 3  

2.6 Example 1 

Assume that in the manufacture of 1 kg Mischmetal ingots, the product weight varies 
with the batch. Below are a number of subsets taken at normal operating conditions 
(subsets 1-7), with the weight values given in kg. Construct the X-Bar, R-charts, and S-
charts for the experimental data (subsets 8-11). Measurements are taken sequentially in 
increasing subset number.  
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Solution:  

First, the average, range, and standard deviation are calculated for each subset.  

 

Next, the grand average XGA, average range RA, and average standard deviation SA are 
computed for the subsets taken under normal operating conditions, and thus the 
centerlines are known. Here n=4.  
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X-Bar limits are computed (using ).  

 

 

X-Bar limits are computed (using ).  

 

 

Note: Since n=4 (a relatively small subset size), both and can be used to 
accurately calculate the UCL and LCL.  

R-chart limits are computed.  

 

 

 
S-chart limits are computed.  

 

 

 

The individual points in subsets 8-11 are plotted below to demonstrate how they vary 
with in comparison with the control limits.  
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Figure E-1: Chart of individual points in subsets 8-11.  

 
The subgroup averages are shown in the following X-Bar chart:  

 

Figure E-2: X-Bar chart for subsets 8-11.  
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The R-chart is shown below:  

 

Figure E-3: R-chart for subsets 8-11.  

 
The S-chart is shown below:  

 

Figure E-4: S-chart for subsets 8-11.  
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The experimental data is shown to be in control, as it obeys all of the rules given above.  

2.7 Example 2 

It’s your first day on the job as a chemical engineer in a plant, and one of your 
responsibilities is to monitor the pH of a particular process. You are asked by your boss 
to monitor the stability of the system. She gives you some baseline data for the process, 
and you collect data for the process during your first day. Construct X-bar and R-Charts 
to report your results.  

Table 1: Baseline data  
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To be consistent with the baseline data, each hour you take four pH readings. The data 
you collect is displayed below.  

 
Table 2: Experimental data  

 

 
Solution  

For this situation, there are k=24 subsets because there are 24 data sets. For each subset, 
n=4 because there are four pH measurements taken each hour. The first thing you do is 
calculate the mean and range of each subset. The means are calculated using the 
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AVERAGE() Excel function and the ranges are calculated using MAX() – MIN(). Once 
these values are calculated, the Grand Average XGA and average range RA are calculated. 
These values are simply the means of each subset’s mean and range. This data is 
displayed below.  

Table 3: Data used to calculate and grand average and Range.  

 

 
Now that you know XGA = 7.01 and RA = 0.12, you can calculate the upper control limit, 
UCL, and lower control limit, LCL, for the X-bar control chart.  

 
From Table A, A2 = 0.729 when n=4. Using equations UCL and LCL for X-bar charts 
listed above:  
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Then the UCL = 7.0982, LCL = 6.9251 and XGA = 7.01 are plotted in Excel along with the 
average values of each subset from the experimental data to produce the X-bar control 
chart.  

 

Table 4: Average subset values and ranges plotted on the X-bar and R-chart  
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Figure E-5: X-bar control chart  

 

Then, to construct the Range charts, the upper and lower control limits were found. For 
n=4, D3 = 0 and D4 = 2.282 so then:  

 

 

 

 
Then, UCL = 0.2710, LCL = 0, RA = 0.12, and the ranges for each subset were plotted vs. 
time in Excel (Figure E-6).  
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Figure E-6: Range control chart  

From both of these charts, the process is in control because all rules for stabilty are met.  

Rule 1: No point falls beyond the UCl and LCL.  

Rule 2: Two out of three consecutive points do not fall beyond 2σ on the same side of the 
centerline.  

Rule 3: Four out of five consecutive points do not fall beyond 1σ on the same side of the 
centerline.  

Rule 4: Nine or more consecutive points do not fall on the same side of the centerline.  

It's important that both of these charts be used for a given set of data because it is 
possible that a point could be beyond the control band in the Range chart while nothing is 
out of control on the X-bar chart.  

Another issue worth noting is that if the control charts for this pH data did show some 
points beyond the LCL or UCL, this does not necessarily mean that the process itself is 
out of control. It probably just means that the pH sensor needs to be recalibrated.  

2.8 Example 3 

A simple out-of-control example with a sample constructed control chart.  
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You have been analyzing the odd operation of a temperature sensor in one of the plant's 
CSTR reactors. This particular CSTR's temperature sensor consists of three small 
thermocouples spaced around the reactor: T1, T2, and T3. The CSTR is jacketed and 
cooled with industrial water. The reaction taking place in the reactor is moderately 
exothermic. You know the thermocouples are working fine; you just tested them, but a 
technician suggests the CSTR has been operating out of control for the last 10 days. 
There have been daily samples taken and there is a control chart created from the CSTR's 
grand average and standard deviation from the year's operation.  

You are assigned to see if the CSTR is operating out of control. The grand average is 
307.47 units of temperature and the grand standard deviation is 4.67 units of temperature. 
The data is provided for construction of the control chart in Table 1 and the data from the 
last 10 troublesome days is shown in Table 2. You decide to plot the troublesome data 
onto the control chart to see if it violates any stability rules.  

 

Table 3-1. Data for Construction of Control Chart  

The way I found A_3 or in this case, R_3, I used the control charts constants table which 
is found on this wiki page. I decided to use the x-bar using the standard deviations) but 
you can also use use the range). I found that the value for n(number of subgroups) is three 
since the CSTR's temperature sensor consists of three small thermocouples (T1,T2,T3). 
Therefore by looking at the constant chart, I get A_3( or R_3 in this case) to be 1.954. 
Here's the table below:  
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Also, you will notice if you used the range instead of the standard deviation to determine 
the UCL,LCL, etc. that the values will be roughly the same. Here's the table in comparing 
the values of UCL and LCL using either A_2 (range) or A_3(stdev):  

 

Note: These values were using the same grand average (307.47), the grand standard 
deviation (4.67) and the grand range (8.80)  

 

 

Table 3-2. Sample Data from Past 10 Troublesome Days  
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Solution  

When the sample data was graphed onto the control chart, the image below was seen.  

 

Figure 3-1. 10-Day Data Graphed Onto Control Chart  

We can see from the control chart that the CSTR system is clearly out of control. Each 
thermocouple was tested to see which stability rules it violates.  

The first thermocouple (T1) violates every stability rule.  

• Rule 1 ‐ Several points from the T1 data fall above the upper control line.  
• Rule 2 ‐ There are many instances where at least two out of three consecutive 

points fall above the zone AB threshold.  
• Rule 3 ‐ There are eight consecutive points falling above the BC threshold.  
• Rule 4 ‐ Nine consecutive points fall above the mean value.  

Judging on this thermocouple's performance, we can say that the system is out of control, 
but we will analyze the other thermocouples' performance for good measure.  

The second thermocouple (T2) violates stability rule 1, 2, and 3.  

• Rule 1 ‐ One point falls below the lower control line. 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• Rule 2 ‐ Two consecutive points (samples 9 and 10) fall beyond the AB 
threshold.  

• Rule 3 ‐ Of the last five samples from T2, four are beyond the BC threshold.  

The third thermocouple (T3) does not violate any stability rules and the results it displays 
are within control.  

This system is out of control because the data from the thermocouples falls beyond the 
threshold rules for the unit's control chart. This could be explained with many potential 
situations. One is explained below.  

If the CSTR's agitator is knocked loose, the agitation could become erratic. The erratic 
agitation could create eddy currents and hot spots in the CSTR.  

The entire system is out of control because you know that the thermocouples are 
operating fine and more than one thermocouple violates the stability rules.  

2.9 Multiple Choice Question 1 

When is it useful to use a moving average data set?  

 
A. Never  

B. When instant response to process is desired  

C. When you have a process that changes slowly  

D. Always, as it is a far superior method  

2.10 Multiple Choice Question 2 

What does n signify?  

 
A. The number of subsets in collected data  

B. The number of data points in a subset  

C. The upper control limit for an X-bar chart  

D. The centerline for an R-chart  
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2.11 Multiple Choice Question 3 

Of the four stability rules for reading control charts, how many must occur in order for a 
subset to be determined unstable?  

A. 1  

B. 2  

C. 3  

D. 4  

2.12 Multiple Choice Answers 

Question 1: C  

Question 2: B  

Question 3: A  

2.13 Sage's Corner 

SPC Control Presentation  
http://video.google.com/googleplayer.swf?docId=1396803583755378767 
 
 
Slides without narration SPC control 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Section 3. Six Sigma: What is it and what does it mean? 

 Note: Video lecture available for this section!  

Authors: (November 1, 2007) Kevin Luchi, Matthew Neff, Mike Nappo, Lisa Schauman  

Stewards: (November 6, 2007) Ji Sun Sunny Choi, Jennifer Gehle, Razili Stanke-Koch, Sang Lee, Brian 
Murray (November 14, 2007) Jocelyn Anleitner, Stephanie Combs, Diane Feldkamp, Heeral Sheth  

 
The often‐used six sigma symbol. 

3.1 Introduction 

Every generation of business strives for a new level of quality. The quality program that 
is currently in vogue and being widely used and recognized by industry is the Six Sigma 
program. Six Sigma is a relatively new program, and was only started in 1986. It was first 
put into implementation at Motorola, but is now in use by most large corporations. Some 
of these other large companies include GE, Honeywell, and Bank of America. The Six 
Sigma program is in place to eliminate any abnormalities, failures, or defects that occur 
within a given process. These are problems that already exist. DFSS (Design for six 
sigma) starts earlier, to develop or redesign the process itself, so fewer wrinkles show up 
in the first place, thus systematically preventing downstream errors. Six Sigma is also 
used in developing new processes. The Six Sigma program strives to achieve six standard 
deviations between the mean and the closest specification limit on a short term study. 
Studies run to obtain this goal are short term capability studies, which include common 
cause or random variation, such as operator control, and long term studies, which include 
random and special types of variation. Both of these studies are evaluated on a Z-scale. 
The short term data variability which makes up long term variability tends to cause the 
mean to shift. This shift of the mean is by 1.5 standard deviations. Most companies are 
looking on a long term scale, because they would rather have a good/safe product in the 
long run/for a long time rather than for a short amount of time. Using this idea, the goal 
for the Six Sigma program is to have fewer than 3.4 failures per one million opportunities 
when the data is evaluated to include the shifted mean from process variability (6 
standard deviations - 1.5 standard deviations = 4.5 standard deviations). The 4.5 vs 6 
standard deviations is the same goal, but the 4.5 represents data variation in the long run, 
which is used in most processes. We will be using the shifted mean scenario for the rest 
of this article when referring to opportunity goals. This leaves very slight room for error 
on a process and leads to a very high level of quality in the products.  
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To reiterate, the term "Six Sigma" comes from the standard deviation and the Gaussian 
distribution. 3.4 failures per one million opportunities represents 4.5 standard deviations 
(sigma) away from the median value, either up or down, under a bell curve. This will be 
discussed further below along with what the Six Sigma program represents, what 
mathematically this means, and finally what a Gaussian distribution is. After the basics 
have been covered we will move onto Statistical Process Control. Statistical Process 
Control is different ways to analyze the data that you have obtained. Finally, we will 
relate Six Sigma to process control and explain how you can tell if something is in Six 
Sigma control or not.  

3.2 The Six Sigma Program 

Six Sigma is defined as a measure of quality that organizations strive to achieve. It is a 
disciplined, data-driven approach used to eliminate defects in any process – from 
manufacturing to transactional and from product to service. Six Sigma does not refer to a 
process operating within 6 or 4.5 standard deviations of the desired state. To achieve Six 
Sigma, a process must not produce more than 3.4 defects per million opportunities, where 
a defect is defined as anything outside of the customer specification. One million 
opportunities, and only 3.4 defects? Sounds like an efficient process. Here is an example 
that will help demonstrate. Let’s say a surgeon at the top of his field has a 5.51 sigma 
ranking. Sounds pretty good, right? That means that if he operates on 1,000,000 patients 
per year he loses 30 of them. When a process is operating at Six Sigma, it is seen that 
there are essentially zero defects within a process.  

In chemical engineering, many different processes require strict, robust control. For 
example, a reactor may need to be maintained between a specified temperature range to 
keep the plant safe. However, there is also an optimum temperature at which the reaction 
will occur. Engineers will want to keep a tight control around this temperature to make 
the system more efficient, while also closely watching the variable and keeping track of 
how close it gets to the control limits. Crossing the control limits is not the only problem. 
In order for a system to be in statistical control as stated by the Six Sigma program, the 
data points must not frequently approach the same control limit. The Six Sigma program 
helps engineers monitor processes to keep them within their desirable ranges. Many 
industries employ the Six Sigma system as well as its hierarchy of positions to champion 
data-driven problem solving.  

Originally invented by Motorola, the Six Sigma system contains belt rankings that 
represent a person’s achievements utilizing Six Sigma methodologies and associated 
roles and responsibilities. These rankings are modeled after the martial arts system, as 
detailed below.  

Yellow Belts (YB)  

Yellow belt is the first level in the Six Sigma program. To get yellow belt status one must 
go through a training course in Six Sigma and pass an online certification. Yellow belt 
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team members do not lead projects on their own, but they are usually a core team 
member with special knowledge on a project. Yellow belts are responsible for:  

• The development of process maps to support Six Sigma projects.  
• Running smaller process improvement projects using the Plan, Do, Check, Act 

(PDCA) method  
• Being a subject matter expert on the Six Sigma project  

Yellow Belt Projects  

• usually limited to identifying small projects the could benefit from 
improvement  

Green Belts (GB)  

Green belts are new team members that achieve certification after completing training in 
a Six Sigma course. To complete green belt training, new members must complete a 
relevant project that utilizes the DMAIC model outlined below. To maintain green belt 
certification, green belts generally complete DMAIC projects once every twelve months. 
Green belts are also responsible for:  

• Recommending Six Sigma projects  
• Participating on Six Sigma project teams  
• Leading Six Sigma teams in local improvement projects  

Green Belt Projects  

Green belts complete six sigma projects while still holding their current job duties. 
Therefore, a six sigma project undertaken by a green belt could include:  

• Statistical analysis to improve reliability on a reactor within the green belt's 
current responsibility  

• Root cause analysis and elimination of quality control problems that 
chronically affect the green belt's department  

Black Belts (BB)  

Black belts are intermediate team members that employ in-depth technical expertise to 
achieve Six Sigma objectives. Furthermore, black belts can become temporary, full-time 
change agents for a moderate period of time (two-three years) to produce change using 
Six Sigma methods. Black belts are also responsible for:  

• Demonstrating mastery of black belt knowledge  
• Demonstrating proficiency at achieving results through the application of the 

Six Sigma approach  
• Consultation for functional area Internal Process Improvement 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• Coaching, Mentoring, and Recommending green belts  

Black Belt Projects  

Black belts complete six sigma projects outside of their previous job duties. Therefore, a 
six sigma project undertaken by a black belt could include:  

• Plant‐level process controls improvement at a facility that greatly affects the 
finished product at a facility  

• Assessment of total warranty/quality control issues at a facility through large 
scale statistical data analysis and improvement  

 
Master Black Belts (MBB)  

The major duty of master black belts include acting as project leaders, as well as:  

• Training and mentoring Black Belts and Green Belts  
• Helping to decide large‐scale Six Sigma projects  
• Maintaining the quality of Six Sigma measurements  
• Developing Six Sigma training  

Master Black Belt Projects  

Most master black belts would only be involved with directing black and/or green belts in 
their projects. Their effect on process would generally be limited to pointing out and 
suggesting large projects for appointed black belts to undertake.  

 
To complete Six Sigma projects, belt candidates utilize the DMAIC model. DMAIC 
(Define, Measure, Analyze, Improve, Control) is an improvement system for existing 
processes falling below specification and looking for incremental improvement. DMADV 
(Define, Measure, Analyze, Design, Verify) is an improvement system used to develop 
new processes at Six Sigma quality level. Below, the steps for DMAIC and DMADV are 
outlined.  
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Table 1 - Outline of the steps used in DMAIC (improve an existing process) 
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Table 2 - Outline of the steps used in DMADV (develop a new process) 

 

All charts and descriptions referenced from Pyzdek, Thomas, “DMAIC and DMADV 
Explained” http://www.pyzdek.com/DMAICDMADV.htm , 2003  

3.3 Statistics and Six Sigma 

You are probably already familiar with the concepts of average, standard deviation, and 
Gaussian distribution. However, they are very important concepts in Six Sigma, so they 
are reviewed in this section. This section also discusses analysis methods used in Six 
Sigma.  

3.3.1 Average 

The equation for calculating an average is shown below.  

 
where  

average  
xi = measurement for trial i  
N = number of meaurements  

This equation relates to Six Sigma because it is the value that you aim for when you are 
creating your product. After millions of products made, you will have a very good idea of 
what your exact average product specification is. The average is combined with the 
specification limits, which are the limits that determine if your product is in or out of 
spec. The wider the specification limits are, the more room for deviation from the average 
there is for your product. A product specification would be written like this:  
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10 ± 2 mm  

Where the first number (10) represents the average and the second number (2) represents 
the amount of error allowable from the average without violating 4.5 standard deviations 
(on a long term scale). Thus, your product can range from 8 to 12 mm for this example.  

The average is a good representation of the a set of data. However, the main problem it 
experiences is the how it is strongly influenced by outlier values. For example, say a 
town had a population of 50 people with an average income of $30,000 per person. Now 
say that a person moves into the town with an income of $1,000,000. This would move 
the average up to approximately $50,000 per person. However, this is not a good 
representation of the average income of the town. Hence, outlier values must be taken 
into account when analyzing data. In contrast to the mean, sometimes the median can be 
a good representation of a set of data. The median is defined as the middle value of a set 
of data are arranged in order. The median is immune to outlier values as it basically one 
value and is not calculated it any way so it cannot be influenced by a wide range of 
numbers. Both the mean and median can be taken into account when analyzing a set of 
data points.  

3.3.2 Standard Deviation 

The equation for standard deviation is shown below. 

 
where σ = standard deviation, and the other variables are as defined for the average.  

For each measurement, the difference between the measured value and the average is 
calculated. This difference is called the residual. The sum of the squared residuals is 
calculated and divided by the number of samples minus 1. Finally, the square root is 
taken.  

The standard deviation is the basis of Six Sigma. The number of standard deviations that 
can fit within the boundaries set by your process represent Six Sigma. If you can fit 4.5 
standard deviations within your process specifications then you have obtained a Six 
Sigma process for a long term scale. However, the number of errors that you can have for 
your process as you move out each standard deviation continues to decrease. The table 
below shows the percentage of data that falls within the standard deviations and the 
amount of defects per sigma, in terms of "Defects Per Million Opportunities" or DPMO. 
The percentage of errors that you are allowed is one minus the percentage encompassed 
by the percent of the total.  

# of Standard Deviations % of Total DPMO 
1 68.27 690,000 
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2 95.45 308,537 
3 99.73 66,807 
4 99.9937 6,210 
5 99.99994 233 
6 99.9999998 3.4 

Data from: http://www.isixsigma.com/library/content/c020813a.asp  

The image below shows an example data set (see #Gaussian Distribution below) with 
lines marking 1 to 6 standard deviations from the mean. In this example, the mean is 
approximately 10 and the standard deviation is 1.16. 

 

 

3.3.3 Gaussian Distribution 

The normal, or Gaussian, distribution is a family of continuous probability distributions. 
The normal distribution function was first introduced in 1733, and since has become the 
most widely used family of distribution functions in statistical analysis. These 
distribution functions are defined by two parameters: a location (most commonly the 
"mean",μ), and a scale (most commonly the "variance", σ2). The use of normal 
distributions in statistics can be seen as advantageous due to its ability to maximize 
information entropy around a given mean and variance. Information entropy is the 
measure of uncertainty associated with a random variable.  
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For the purposes of this class and Chemical Engineering applications, you can model a 
given set of data using the probability density function which is shown below.  

 

where  

probability density  

average  
and the other variables are as defined in the above two sections.  

The above PDF equation gives graphs, depending on mean and variance, similar to those 
below.  

 

Above are 4 examples of different distributions given different values for mean and 
standard deviation. An important case is the standard normal distribution shown as the 
red line. The standard normal distribution is the normal distribution with a mean of 0 and 
a variance of 1. It is also important to note some special properties of probability density 
functions:  

• symmetry about the mean, μ 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• the mode and mean are both equal to the mean  
• the inflection points always occur one standard deviation away from the 

mean, at μ − σ and μ + σ  

 
Suppose we have a process where we make a product of a certain concentration and we 
have good control over the process. After analyzing a set of data from a time period we 
see that we have a standard deviation of only 0.01 and our product concentration is 
required to be within 0.05. In order to say our product is essentially defect-free, 4.5 
standard deviations away from the average must be less than our required product 
tolerance (± 0.05). In this case 4.5 standard deviations is equal to 0.045 and our product 
tolerance is 0.05. This is more easily seen graphically, as seen in the figure below.  

 

As you can see 4.5 standard deviations on either side of the averages falls just slightly 
inside of the required tolerances for our product. This means that 99.997% of our product 
will fall inside of our product tolerances.  

3.3.4 Analysis Methods 

Two ways to analyze data for similarities (percent confidence) would be running a 
regression analysis or an analysis of variance (ANOVA). The difference between these 
two methods of analysis is that the ANOVA is for comparing independent groups such as 
4 different reactor compositions that are supposed to make the same product (in reality 
this doesn’t happen). A linear regression would be used for data that is dependent on each 
other, such as looking at the difference between slurry product permeabilities when a 
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one-reactant composition in the process is changed. The percent confidence is the same 
as the student’s t-test, where you would want a t value (error) that is less than 0.05 to 
have statistically similar data.  
 
One statistical program that is widely used in Six Sigma projects is MINITAB. 
MINITAB is similar to Microsoft Excel but has much greater statistical analysis 
capabilities. This program allows you to run linear regressions and ANOVAs by the click 
of an option. It also graphs not only in 2-D but 3-D as well and runs statistical analysis 
methods that are more in depth than those offered in Excel. MINITAB graphical and 
analytical tools can provide insight and information throughout the DMAIC process. 
MINITAB can be used to:  

• Identify ‐ visualize sources of variation and relationships among variables  
• Verify ‐ having statistical confidence behind conclusions  

 

3.3.5 Key Tool Bar Descriptions on MINITAB 

• File ‐ typical of most programs ‐ save, open, print, etc.  
• Data ‐ can subset data easily (stratification), transpose data, stach and 

unstack, convert text to numberic and back, code data  
• Calc ‐ calculator function ‐ one time calc (doesn't update as you update your 

data)  
• Stat ‐ t‐tests, regression, ANOVA, DOE, control charts, quality tools (Pareto 

and Gage R&R)  
• Graph ‐ plots, histogram, matrix plot  
• Editor ‐ find/replace (if you need to find items)  
• Tools ‐ options and links to some external tools  
• Window ‐ session window shows detains on what you have open  

 
MINITAB is a powerful tool to help us understand the language of measurement and the 
different uses of measurement system. Some unique features of MINITAB include: 
Measurement System Analysis (MSA) and the Gage Reproducibility and Repeatability 
Study (Gage R&R). These two complicated Six Sigma analysis can be accomplished 
within steps using MINITAB.  

3.4 Statistical Process Control 

Statistical process control (SPC) is an effective method of determining whether a system 
has deviated from its normal statistical behavior by the use of control charts. Walter 
Shewhart first pioneered the use of statistical techniques when studying variations in 
product quality and consistency at Bell Laboratories in the early 1920’s. SPC utilizes 
statistical tools in the form of control charts (such as Shewhart charts) to observe the 
performance of the production process in order to predict significant deviations that may 
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result. Dr. Shewhart created concepts for statistical control and the basis for control 
charts through a series of carefully designed experiments. While he primarily drew from 
pure mathematical statistical theories, he understood that data from physical processes 
seldom produced a normal distribution curve (a Gaussian distribution, also known as a 
bell curve). Shewhart determined that every process displays variation: some display 
controlled variation that is natural to the process, while others display uncontrolled 
variation that is not always present in the process causal system.  

SPC, most often used for manufacturing processes, is used in conjunction with 
experimental designs, process capability analyses, and process improvement plans to 
monitor product quality and maintain process targets. Six Sigma programs often depend 
on statistical process controls to provide their data with supportive information. If a 
process falls outside its preferred operating range, the statistical control can help you 
determine where and why the process failed.  

 
Benefits of the SPC Method:  

• Provides surveillance and feedback for keeping processes in control  

• Signals when a problem with the process has occurred  

• Detects assignable causes of variation  

• Accomplishes process characterization  

• Reduces need for inspection  

• Monitors process quality  

• Provides mechanism to make process changes and track effects of those changes  

• Once a process is stable (assignable causes of variation have been eliminated), provides 
process capability analysis with comparison to the product tolerance  

 
Capabilities of the SPC Method:  

• All forms of SPC control charts  

• Variable and attribute charts  

• Average (X), Range (R), standard deviation (s), Shewhart, CuSum, combined 
Shewhart-CuSum, exponentially weighted moving average (EWMA)  

• Selection of measures for SPC  
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• Process and machine capability analysis (Cp and Cpk)  

• Process characterization  

• Variation reduction  

• Experimental design  

• Quality problem solving  

• Cause and effect diagrams  

 
SPC is used to monitor the consistency of processes used to manufacture a product as 
designed. It aims to get and keep processes under control. No matter how good or bad the 
design, SPC can ensure that the product is being manufactured as designed and intended. 
Thus, SPC will not improve a poorly designed product's reliability, but can be used to 
maintain the consistency of how the product is made and, therefore, of the manufactured 
product itself and its as-designed reliability.  

3.4.1 Methods and Control Charts 

Control charts are the basis of statistical process controls methodologies, and are used to 
distinguish between random/uncontrollable variations and controlled/correctable 
variations in a system. Control chart detects and monitors process variation over time. It 
also plays a role as a tool for ongoing control of a process. There are many types of SPC 
control charts, though centering charts are used most often. The remainder of this article 
will focus on the different types of centering and dispersion charts. Figure 1 displays 
single point centering charts and Figure 2 displays subgroup sampling charts. Each figure 
has a brief description of the chart type within each of the two chart families (centering 
and dispersion). In the centering chart, the centerline is given by the average of the data 
samples, where as in the dispersion chart the centerline is the frequency distribution from 
that average.  
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Figure1: Control chart types and descriptions for the single point sampling method(click 
to enlarge)[1].  
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Figure2: Control chart types and descriptions for the subgroup sampling method(click to 
enlarge)[1].  

 
A very useful type of centering chart is the Xbar chart, also known as the Shewhart chart 
mentioned earlier in the article. Figure 3 gives an example of an Xbar chart (on top), as 
well as an example of a dispersion chart (on bottom). The charts are used in combination 
with a system of rule based checks to determine whether the system is in statistical 
control. These rules can be seen in Figure 4 for both the single point centering and 
subgroup sampling methods. Using these rules, one can inspect a given chart over a 
period of time and determine whether the system is in control. If the system is not in 
control they must then check the controllable aspects of the system to see where the 
problem is occurring.  
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Figure3: The centering Xbar chart (Shewhart Chart) on top is used to determine whether 
the centering of the process is stable. The dispersion (R) chart on bottom is used to 
determine whether the spread of the process is stable (click to enlarge)[1].  
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Figure 4: Table showing the criteria that indicate if a system is not in statistical control 
for different types of centering charts (click to enlarge)[1].  

Note: We only need to see if any one of the criteria objectives are achieved to claim that 
the system is statistically out of control.  

As can be seen from the figures above, the primary tool of SPC is the control chart. 
Several different descriptive statistics are used in control charts along with several 
different types of control charts that test for different causes of failure. Control charts are 
also used with product measurements to analyze process capability and for continuous 
process improvement efforts.  

3.5 Worked out Example 1 

KLMM Industries has recent data on their widget making process. The data is shown 
below. The allowable range of widget width is 19.5-22.5 cm.  
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1) Please from this data calculate the mean and write the mean with its allowable range? 
2) Next calculate the standard deviation for this data. 3) Does this process fall within 4.5 
standard deviations? 4) 6 standard deviations?  

 
Solution:  

1)  
This is also calculated using the average function in excel, from this the average is 
calculated to be 20.9945  

2)  
This is also calculated using the STDEV function in excel, from this the standard 
deviation is calculated to be 0.3206  
3) Yes  
4) No  
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3.6 Worked out Example 2 

A chemical engineer at Cool Processes Inc. is in charge of monitoring the flowrate of the 
cooling water for a reaction. He's new at the company and has asked you for your input. 
He says that the process is currently in statistical control and does not need to be 
changed. Below is the centering control chart he has made of the process. Do you agree 
or disagree with his opinion? Explain.  
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Solution:  

Even though the process appears to be within a reasonable range of oscillation, and none 
of the data points are exceeding the process limitations, the system is not in statistical 
control. Centering (X) charts show that a process is not in statistical control if "three or 
more consecutive points fall on the same side of the centerline and all are located closer 
to the control limit than to the centerline."(Liptak 2006). The data points circled in the 
plot below violate that rule.  

 

3.7 Worked Out Example 3 

This example will also serve as a small tutorial for using Minitab.  

ABC Production is coming out with a new product. One of the chemical engineers has 
hypothesized that the product thickness is dependent on the process temperature and the 
concentration of “compound Z.” There are currently controls regulating the temperature 
between 77 and 80°C, and the concentration of Z between 0.0066 and .0073 g/L. Product 
specifications require that the thickness limits are 1.94 to 2.10 cm. You have been 
assigned the task of determining if these are good parameters to control. Use the data 
from random samples and use Minitab with linear regression to make your conclusion.  
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Solution: Conclusion: Temperature is much more influential on the thickness than the 
concentration, so it may be more worthwhile to refine the temperature control than to 
focus on the concentration controllers. Another option would be to investigate other 
system parameters (i.e., time in reactor, pressure, etc.) to see if they hold more influence 
on the thickness.  

Using Minitab  

1) Open Minitab and input data  
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2) Select the “Regression” option from the “Stat” menu and the “Regression” tab  
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3)The regression window will open; add the “thickness” column for the response, and the 
Temperature and Concentration columns to the predictors.  

 

 

 
4)Click the “Options” button and select “PRESS and predicted R-squared,” then click 
“OK” on both dialog boxes.  
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5)The results will appear in the session window:  
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Interpreting the data  

Some of the most important values in the returned data are the p values. These values test 
the null hypothesis that there is no effect by the inputs (concentration and temperature 
here) on the output (thickness). The lower the value of p, the more correlation there is 
between each variable and the result. In this case, the regression has a p value of 0 (under 
analysis of variance), so the model is significant and at least one of the coefficients is not 
zero. The p values in the predictor section show a zero value for Temperature (high 
correlation with thickness) but a 0.3 value for concentration (low correlation with 
thickness. This indicates that the concentration controller is not significant.  

Next we will in spect the R2 values. The R-Sq value of 97.7% indicates that the 
predictors (concentration and temperature) explain that percent of the variance in 
thickness. The adjusted value (97.3%) accounts for the number of predictors (here, 2) in 
the model. Since both are high, the model that is given at the beginning of the readout fits 
the data well.  

The predicted R value is also important because it measures the amount of overfit of the 
model. If this value were not close to the R-Sq value, then the model would only be 
applicable for this set of data points but would probably not be accurate for any other 
combination of data points. Since the “R-Sq(pred)” value is close to the R-Sq value, this 
model is good.  
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3.8 Sage's Corner 

More about Six Sigma...  

http://www.youtube.com/v/j1OUMb7UxVc 
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Section 4. Bayes Rule, conditional probability, independence 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4.1 Introduction 

Probability is the likely percentage of times an event is expected to occur if the 
experiment is repeated for a large number of trials. The probability of rare event is close 
to zero percent and that of common event is close to 100%. Contrary to popular belief, it 
is not intended to accurately describe a single event, although people may often use it as 
such. For example, we all know that the probability of seeing the head side of a coin, if 
you were to randomly flip it, is 50%. However, many people misinterpret this as 1 in 2 
times, 2 in 4 times, 5 in 10 times, etc. of seeing the head side of the coin appear. So if you 
were to flip a coin 4 times and it came up heads every single time, is this 50% probability 
incorrect? No! It's just that your sample size is small. If you were to flip a coin 10,000 
times, you would begin to see a more even distribution of heads and tails. (And if you 
don't, you should probably get a different coin.) Now, as engineers, even if we know the 
probability of the system, we don't have time to perform 10,000 trials to verify it. 
However, you'd be surprised at the small number of trials that are required to get an 
accurate representation of the system. The following sections describe the relationship 
between events and their probabilities. These relationships will then be used to describe 
another probability theory known as Bayes’ Theorem.  

4.2 Types of Probability 

4.2.1 Combination 

Combinatorics is the study of all the possible orderings of a finite number of objects into 
distinct groups. If we use combinatorics to study the possible combinations made from 
ordering the letters A, B, and C we can begin by counting out all the orderings  

{(A B C),(A C B), (B C A),(B A C), (C B A),(C A B)}  

giving us a total of 6 possible combinations of 3 distinct objects. As you can imagine the 
counting method is simple when the number of objects is small yet, when the number of 
objects being analyzed increases the method of counting by hand becomes increasingly 
tedious. The way to do this mathematically is using factorials. If you have n distinct 
objects then you can order them into n! groups. Breaking the factorial down for our first 
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example we can say, first there are 3 objects to choose from, then 2, then 1 no matter 
which object we choose first. Multiplying the numbers together we get 3*2*1=3!. Now 
consider finding all the possible orderings using all the letters of the alphabet. Knowing 
there are 26 letters in the English alphabet, the number of possible outcomes is simply 
26!, a number so large that counting would be difficult.  

Now what if there are n objects and m that are equivalent and you wish to know the 
number of possible outcomes. By example imagine finding the number of distinct 
combinations from rearranging the letters of PEPPER. There are 6 letters, 2 Es and 3 Ps 
but only 1 R. Starting with 6! we need to divide by the repeat possible outcomes  

possible arrangements  

where on the bottom, the 3! is for the repeated Ps and the 2! is for the repeated Es. Note: 
You can cancel same integer factorials just like integers.  

The next topic of importance is choosing objects from a finite set. For example,if 4 
hockey teams are made from 60 different players, how many teams are possible? This is 
found using the following relation:  

possible 
teams  

Generally, this type of problem can be solved using this relation:  

called n choose r  

n = number of objects r = number of groups  

Using this equation, for the example above the math would be:  

 

 

 

possible teams  
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4.2.2 Joint Probability 

Joint probability is the statistical measure where the likelihood of two events occurring 
together and at the same point in time are calculated. Because joint probability is the 
probability of two events occurring at the same time, it can only be applied to situations 
where more than one observation can be made at the same time. When looking at only 
two random variables, A and B, this is called bivariate distribution, however this can be 
applied to numerous events or random variables being measured at one time (multivariate 
distribution). The probability of two events, A and B, both occurring is expressed as:  

 

Joint probability can also be expressed as:  

 

This is read as the probability of the intersection of A and B.  

If A, B, and C are independent random variables, then  

 

Example Problem 

Two cards are selected randomly from a standard deck of cards (no jokers). Between 
each draw the card chosen is replaced back in the deck. What is the probability of 
choosing a four then a five? Let P(A) denote the probability that the first card is a four 
and P(B) denote the probability that the second card is a five.  

Solution 

If there are 52 cards in a standard card deck with 4 suits, then:  

and  

Knowing that the events are independent, each probability is multiplied together to find 
the overall probability for the set of events. Therefore:  
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The probability of choosing a four then a five from the deck with replacement is 1/169.  

4.2.3 Conditional Probability 

Conditional probability is the probability of one event occuring, given that another event 
occurs. The following expression describes the conditional probability of event A given 
that event B has occurred:  

 

If the events A and B are dependent events, then the following expression can be used to 
describe the conditional probability of the events:  

 

 

This can be rearranged to give their joint probability relationship:  

 

This states that the probability of events A and B occurring is equal to the probability of 
B occurring given that A has occurred multiplied by the probability that A has occurred.  

A graphical representation of conditional probability is shown below:  
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Conditional probability is often derived from tree diagrams or contingency tables. 
Suppose you manufacture 100 piston shafts. Event A: feature A is not defective Event B: 
feature B is not defective  

 

P(A Not Def | B Def) = 6 / (80+6) = 0.0698  

P(A Not Def | B Not Def) = 5 / (9+5) = 0.3571  
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Example Problem 

Two fair, or unbiased, dice are tossed. Some example outcomes are (1,6) and (3,2). The 
probability of each possible outcome of the dice is 1/36. When the first die is rolled it 
results in a value of 2. Once the second die is rolled, what it the probability that the sum 
of the dice is 7?  

Solution 

Since it is known that the first value is 2, the possible combination of the two die are as 
follows:  

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)  

This results in six outcomes with equal probabilities since the second die is fair. 
Therefore, the conditional probability of the outcomes above is 1/6. The conditional 
probability of the remaining 30 combinations is 0 since the first die is not a 2 in these 
cases. Finally, since only one of these six outcomes can sum up to 7, (2,5), the probability 
is 1/6 for rolling a sum of 7 given the value of the first die is a 2.  

Example Problem 

The probability that a rare species of hamster will give birth to one male and one female 
is 1/3. The probability that the hamster will give birth to a male is 1/2. What is the 
probability that the hamster will give birth to a female knowing that the hamster has 
given birth to a male? Let A denote the probability of giving birth to a male and B denote 
the probability of giving birth to a female.  

Solution 

Probability of giving birth to a male  

Probability of giving birth to a female given that birth of a male has 
already occurred  

Probability of giving birth to one male and one female  

These events are dependent so the following equation must be used:  

 

Rearranging this equation to find would give:  
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Plugging in the known values would give:  

 

 

Therefore, the probability of giving birth to a female, given that birth of a male already 
occurred is 2/3.  

 

4.3 Law of Iterative Expectation  

An important application of conditional probability is called the "Law of Iterative 
Expection".Given simply, it is: E[X]=E[E[X|Y]]. If the random variable distribution of X 
is unknown, but we are given the distribution of the conditional variable of X, then by 
finding the expection of the conditional variable twice, we can return to the expectation 
of the original random variable X. By looking at the expectation of the random variable 
X, we can deduce the distribution of the random variable X.  

The Law of Iterative Expectation is quite useful in mathematics and often used to prove 
important relationships. Note the example below:  

Use the Law of Iterative Expection to find Var[X] given only X|Y.  

Solution  

E[Var(X|Y)] = E[X^2]-E[(E[X|Y])^2]  

Var(E[X|Y)])=E[(E[X|Y])^2]-(E[X])^2  

E[Var(X|Y)]+ Var(E[X|Y]) = E[X^2]-E[(E[X|Y])^2] + E[(E[X|Y])^2]-(E[X])^2  

Var[X]= E[(E[X|Y])^2] + E[(E[X|Y])^2] (by definition)  

thus Var[X] = E[Var(X|Y)]+ Var(E[X|Y])  
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4.3.1 Marginal Probability 

Marginal probability is the unconditional probability of one event; in other words, the 
probability of an event, regardless of whether another event occurs or not. Finding the 
marginal probability of an event involves summing all possible configurations of the 
other event to obtain a weighted average probability. The marginal probability of an 
event A is expressed as:  

 

The marginal probability (of A) is obtained by summing all the joint probabilities. 
Marginal probability can be used whether the events are dependent or independent. If the 
events are independent then the marginal probability is simplified to simply the 
probability. The following example will clarify this computation.  

Example Problem 1 

The joint probabilities for rain and wind are given in the following table  

 

Marginal probability of no rain = sum of Joint probabilities = .1 + .2 + .05+.01 = .36  

Similarly, marginal probability of light rain = .05+.1+.15+.04 = .34  

Similarly, marginal probability of heavy rain = .3.  

4.3.2 Marginalizing Out a Factor 

In a system with two or more factors affecting the probability of the output of another 
factor, one of these initial factors can be marginalized out to simplify calculations if that 
factor is unknown.  

For instance, consider a system where A and B both affect the output of C. If the 
condition of B is unknown but its probability is known, it can be marginalized out to put 
the system in terms of how only A affects C, using the equation below:  
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Example Problem 2 

The table below shows the probablitiy of having a large, small or no sand storm, if there 
is high, medium or no wind, and depending on if there is rain. The next table show the 
probability of rain.  

 

 

From this it is possible to calculate the probability of a large, small or no sand storm 
defendant just on the wind speed:  

Similarly as to above:  
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P(Sandstorm Size|Wind Speed)= P(Sandstorm Size|Wind Speed, 
Rain)*P(Rain)+P(Sandstorm Size|Wind Speed, No Rain)*P(No Rain)  

 

4.4 Relationships Between Events 

Knowing whether two events are independent or dependent can help to determine which 
type of probability (joint, conditional, or marginal) can be calculated. In some cases, the 
probability of an event must be calculated without knowing whether or not related events 
have occurred. In these cases, marginal probability must be used to evaluate the 
probability of an event.  

4.4.1 Independence 

If the two events are considered independent, each can occur individually and the 
outcome of one event does not affect the outcome of the other event in any way.  

Let's say that A and B are independent events. We'll examine what this means for each 
type of probability.  

Independence in Conditional Probability 

Independent events technically do not have a conditional probability, because in this case, 
A is not dependent on B and vice versa. Therefore, the probability of A given that B has 
already occurred is equal to the probability of A (and the probability of B given A is 
equal to the probability of B). This can be expressed as:  

 

 
Independence in Joint Probability 

Independent events can have a joint probability, even though one event does not rely on 
the other. For example, joint probability is used to describe an event such as tossing a 
coin. The outcome when the coin is tossed the first time is not related to the outcome 
when the same coin tossed a second time. To calculate the joint probability of a set of 
events we take the product of the individual probabilities of each event in the set. This 
can be expressed as:  
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Independent events can also occur in a case where there are three events. For example, if 
two dice are being rolled with a sum of 6 (Event A). Let event B represent that the first 
die is a 1 and let event C represent that the second rolled die is a 5. To prove if these 
events are independent, the following relation is considered:  

 

 

 

 

 

If any of these relations are false than the event is not independent. When considering 
events of more than three, the same relation would follow but with an additional relation 
to event D.  

4.4.2 Dependence 

If the two events are considered dependent, then the outcome of the second event 
depends on the probability of the first event. The probabilities of the individual events 
must be analyzed with conditional probability.  

Let's now say that A and B are dependent events. We'll examine what this means for each 
type of probability.  

Dependence in Conditional Probability 

Conditional probability only applies to dependent events. In other words, A must depend 
on B in order to determine the probability of A occurring given that B has already 
occurred. Therefore, for dependent events A and B, one can just apply the equations as 
seen in the conditional probability section.  
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Dependence in Joint Probability 

Joint probability can also be calculated for dependent events. For example, dependent 
joint probability can be used to describe cards being drawn from a deck without replacing 
the cards after each consecutive drawing. In this case, the probability of A and B 
happening is more complex, since the probability of the B happening depends on the 
probability of A happening. It can be expressed as:  

 

Note that this equation is found by rearranging the conditional probability equation.  

4.5 Bayes’ Theorem 

Most probability problems are not presented with the probability of an event "A," it is 
most often helpful to condition on an event A"." At other times, if we are given a desired 
outcome of an event, and we have several paths to reach that desired outcome, Baye’s 
Theorem will demonstrate the different probabilities of the pathes reaching the desired 
outcome. Knowing each probability to reach the desired outcome allows us to pick the 
best path to follow. Thus, Baye’s Theorem is most useful in a scenario of which when 
given a desired outcome, we can condition on the outcome to give us the separate 
probabilities of each condition that lead to the desired outcome.  

The following is Bayes' Theorem:  

 

Where  

probability of A conditioned on Bj  

the law of total probability  

 

4.5.1 Derivation of Bayes’ Theorem 

The derivation of Bayes’ theorem is done using the third law of probability theory and 
the law of total probability.  
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Suppose there exists a series of events: B1,B2,...,Bn and they are mutually exclusive; that 

is,  

This means that only one event, Bj, can occur. Taking an event "A" from the same sample 
space as the series of Bi, we have:  

 

Using the fact that the events ABi are mutually exclusive and using the third law of 
probability theory:  

P(A) =  ∑ P(ABj) 
 j  

Conditioning on the above probability, the result below is also called "the law of total 
probability"  

P(A) =  ∑ P(A | Bj)P(Bj) 
 j  

Using the definition of conditional probabilites: 

 

Putting the above two equations together, we have the Baye's Theorem:  

 

4.5.2 Real world/Chemical Applications 

Bayes' rule can be used to predict the probability of a cause given the observed effects. 
For example, in the equation assume B represents an underlying model or hypothesis and 
A represents observable consequences or data. So,  

 



 462 

Where  

: probability of obtaining observed data given certain model  

: probability that certain model gave rise to observed data  

 : probability of occurence of the model prior to taking the data into 
account  

Another application: Bayes' rule estimation is used to identify species in single 
molecule Fluorenscence microscopy. More information can be found on [1]  

4.5.3 Underlying Principles and Significance of Bayes’ Rule 

As stated previously Bayes’ Rule allows for changing the probability of an event based 
on new information about existing knowledge or expertise. For example, in the previous 
subsection the probability of the occurrence of the model, P(model), would be obtained 
through many trials conducted previously and thus be considered existing knowledge. 
The probability of the data, P(data), would then be considered new information. Bayes’ 
Rule essentially uses this new information to upgrade the existing knowledge and then 
determine the probability of the new information based on the upgraded existing 
knowledge. Traditional, or Frequentist, statistics would differ from Bayesian statistics by 
comparing P(data) to P(model) and determine, with 95% confidence, if P(data) is 
statistically significant to P(model).  

Bayesian theory is being used by many companies and institutions to better classify 
errors and calculate uncertainty. It has proven to perform better than averaging 
techniques and is used in safety systems as well as computing end states. A few web sites 
below provide a breadth of information regarding the use of Bayesian statistics.  

http://drambuie.lanl.gov/~bayes/tutorial.htm - Virtually no probability background is 
required to understand this article  

http://aiche.com/aiche/2006/techprogram/P69620.HTM  

http://www.sciencedirect.com/science?_obArticleURL  

http://www.dct.tudelft.nl/~verheijen/research/Uerheijen2003a.pdf  

4.6 Worked out Example 1 

A true-false question is posed to a team of two ChE students on a quiz show. Both the 
students will, independently, choose their answer. Team member A knows the correct 
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answer, while team member B has the wrong answer. Use Marginal Probability to find 
the best strategy for the team?  

4.6.1 Strategy 1 

Choose one of them and let that person answer the question without knowing what the 
other student thought was the correct answer.  

4.6.2 Strategy 2 

Have both students consider the question and then give the common answer they agree 
on, or if they disagree, flip a coin to determine which answer to give.  

4.6.3 Solution 
Strategy 1 

We will break down the different possibilities for this situation using the following 
variables:  

C is the event that they submit the correct answer  

A is the event that student A is chosen to answer  

B is the event that student B is chosen to answer  

 

because there is an equal chance for either student to 
be chosen  

because student A is correct  

because student B is incorrect  

 

 

Strategy 2 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Since we know the students will disagree on their answer, they must flip a coin in order 
to decide. Therefore the probability is simply 1/2.  

Both strategies provide a 1/2 chance in getting the answer correct, therefore they are 
equally accurate.  

4.7 Worked out Example 2 

A biologist is studying human cells that are virally infected by a deadly disease, which is 
present amoung .01% of the population. When preparing a sample, he mishandles a vial 
with infected cells and it ends up breaking, cutting through the protective gloves and 
cutting his hand. Even though he immediately washed his hands, he is worried that he has 
contracted the disease. Luckily for him, his laboratory has been developing a test for the 
disease and has performed trials with infected and non-infected patients alike. So, the test 
is administered and to the biologist’s surprise, the test turns up negative. He becomes 
relieved, but then remembers that the test does not always work, so he decides to use 
Bayes’ Rule to determine the probability that he has the disease. He goes into the 
laboratory database to get all of the data he needs to determine this.  

He wants to determine the probability that he tested negative but is actually positive for 

the disease, or  

From Bayes' Rule,  

 

To find the overall probability of a negative test, you need to use marginal probability 
and sum over all events, that is both having the disease and not having the disease:  

 

Assuming that all people without the virus do not test positive, and that 99% of infected 
patients test postive, what is the probability that the biologist is actually positive with the 
disease?  

 

 

The chance that the biologist has the disease is roughly one in a million.  
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4.8 Worked out Example 3 

If there are 52 cards in a standard card deck with 4 suits, then the probably of picking a 
card of a particular numerical (5 of spades, 5 of clubs, 5 of diamonds, 5 of hearts) value is 
P(A) = 1/13. The probability associated with any subsequent draw of a card is only 
dependent upon the remaining cards in the deck. If the same card is taken from the deck 
four times in a row and not returned (resulting in no fives in the deck), what is the 
probability of picking a four, returning it to the deck and then picking a 6.  

 
This is an example of independence in joint probability.  

The probability of each independent event is given below.  

 

 

To find the probability of both events happening, one must multiply the probability of 
each independent event.  

 

4.9 Worked out Example 4 

A Gambler has two coins in his pocket, a fair coin and a two-headed coin. He picks one 
at random from his pocket, flips it and gets heads. (a) What is the probability that he 
flipped the fair coin? (b) If he flips the same coin a second time and again gets heads, 
what is the probability that he flipped the fair coin?  

Call F the event he picked the fair coin and B the event he picked the biased coin. There 
are two coins in his pocket so the probability of picking the either coin is 0.50. Let H_1 
be the event "the first flip is heads" and H_2 be the event "the second flip is heads".  

For (a)  

 

Where and , so  



 466 

 

For (b)  

This question is solved in the same way as (a)  

 

4.10 Worked out Example 5 

Consider the situation where you're going on a bus tour of the local refinery and the 
person you like has asked you to find them because they're going to save a seat for you. 
There are three buses that are taking the ChemE students on the tour and you need to 
immediately decide which is the best one to get on. The first bus has room for 25 
students, the second has space for 45 and the third has space for 55. To decide which is 
the best bus, find the expected value (or expected number) of passengers for the bus your 
friend is on, given the following expression:  

The expected value of X is the sum of the 
products of x_i multiplied by p(x_i)  

 

Therefore, the expected number of passengers for the bus your friend is on equals the 
sum of the passengers on each bus divided by the total number of buses, assuming equal 
probability of your friend being on any of the 3 buses. This shows that you should get on 
the second bus in order to find your friend.  

Alternative method Now consider that you don't want to give each bus an equal chance 
that your friend is on it. The objective in this alternative method is to find the probability 
that your friend is on each bus.  
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Now using the new probability we can find a more accurate expected number of 
passengers on the bus your friend is on.  

 

This shows a similar result, you should get on the second bus, but the probabilities 
associated to each bus are adjusted to account for the number of passengers on each one.  

 

4.11 Multiple Choice Question 1 

What is conditional probability?  

a. A way of calculating probability under varying conditions  

b. The probability of an event, given that another event has occurred  

c. Probability that can not be determined  

d. Probability that is always very small  

4.12 Multiple Choice Question 2 

In Bayes' rule, what is P(A)?  

a. The probability of A  

b. The probability of A, given B  

c. The probability of B, given A  

d. The marginal probability of A  

Answer: A  

4.13 Multiple Choice Question 3 

Which type of probability does this statement infer to: What is the probability that a 
temperature sensor fails given that a flow sensor has failed?  

a. Joint Probability  

b. Conditional Probability  

c. Marginal Probability  
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Answer: B  

4.14 Sage's Corner 

An example of Bayes' Rule, illustrated by the Monty Hall problem:  

http://video.google.com/googleplayer.swf?docId=6163049683683917121 
A copy of the slides can be found here: Unnarrated Slides  

 
A brief descri0tion of Bayes' Rule, with two examples:  

http://video.google.com/googleplayer.swf?docId=1332101152106816762 

An unnarrated copy of the slides can be found here: Bayes Rule  
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Section 5. Bayesian network theory 

 Note: Video lecture available for this section!  

Authors: Sarah Hebert, Valerie Lee, Matthew Morabito, Jamie Polan  

Date Released: 11/29/07  

5.1 Introduction 

Bayesian network theory can be thought of as a fusion of incidence diagrams and Bayes’ 
theorem. A Bayesian network, or belief network, shows conditional probability and 
causality relationships between variables. The probability of an event occurring given 
that another event has already occurred is called a conditional probability. The 
probabilistic model is described qualitatively by a directed acyclic graph, or DAG. The 
vertices of the graph, which represent variables, are called nodes. The nodes are 
represented as circles containing the variable name. The connections between the nodes 
are called arcs, or edges. The edges are drawn as arrows between the nodes, and represent 
dependence between the variables. Therefore, for any pairs of nodes indicate that one 
node is the parent of the other so there are no independence assumptions. Independence 
assumptions are implied in Bayesian networks by the absence of a link. Here is a sample 
DAG:  
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The node where the arc originates is called the parent, while the node where the arc ends 
is called the child. In this case, A is a parent of C, and C is a child of A. Nodes that can 
be reached from other nodes are called descendents. Nodes that lead a path to a specific 
node are called ancestors. For example, C and E are descendents of A, and A and C are 
ancestors of E. There are no loops in Bayesian networks, since no child can be its own 
ancestor or descendent. Bayesian networks will generally also include a set of probability 
tables, stating the probabilities for the true/false values of the variables. The main point of 
Bayesian Networks is to allow for probabilistic inference to be performed. This means 
that the probability of each value of a node in the Bayesian network can be computed 
when the values of the other variables are known. Also, because independence among the 
variables is easy to recognize since conditional relationships are clearly defined by a 
graph edge, not all joint probabilities in the Bayesian system need to be calculated in 
order to make a decision.  

5.2 Joint Probability Distributions 

Joint probability is defined as the probability that a series of events will happen 
concurrently. The joint probability of several variables can be calculated from the product 
of individual probablities of the nodes:  

 

 

 
Using the sample graph from the introduction, the joint probablity distribution is:  

 

 

If a node does not have a parent, like node A, its probability distribution is described as 
unconditional. Otherwise, the local probability distribution of the node is conditional on 
other nodes.  

5.3 Equivalence Classes 

Each Bayesian network belongs to a group of Bayesian networks known as an 
equivalence class. In a given equivalence class, all of the Bayesian networks can be 
described by the same joint probability statement.  

As an example, the following set of Bayesian networks comprises an equivalence class:  
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Network 1  

Network 2  

Network 3  

 
The causality implied by each of these networks is different, but the same joint 
probability statement describes them all. The following equations demonstrate how each 
network can be created from the same original joint probability statement:  

 
Network 1  

P(A,B,C) = P(A) * P(B | A) * P(C | B)  

 
Network 2  

P(A,B,C) = P(A) * P(B | A) * P(C | B)  

 

 

 
P(A,B,C) = P(A | B) * P(B) * P(C | B)  

 
Network 3  

Starting now from the statement for Network 2  
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P(A,B,C) = P(A | B) * P(B) * P(C | B)  

 

 

 
P(A,B,C) = P(A | B) * P(B | C) * P(C)  

 
All substitutions are based on Bayes rule.  

The existence of equivalence classes demonstrates that causality cannot be determined 
from random observations. A controlled study – which holds some variables constant 
while varying others to determine each one’s effect – is necessary to determine the exact 
causal relationship, or Bayesian network, of a set of variables.  

5.4 Bayes' Theorem  

Bayes' Theorem, developed by the Rev. Thomas Bayes, an 18th century mathematician 
and theologian, it is expressed as:  

 

where we can update our belief in hypothesis H given the additional evidence E and the 
background information c. The left-hand term, P(H|E,c) is known as the "posterior 
probability," or the probability of H after considering the effect of E given c. The term 
P(H|c) is called the "prior probability" of H given c alone. The term P(E|H,c) is called the 
"likelihood" and gives the probability of the evidence assuming the hypothesis H and the 
background information c is true. Finally, the last term P(E|c) is called the 
"expectedness", or how expected the evidence is given only c. It is independent of H and 
can be regarded as a marginalizing or scaling factor.  

It can be rewritten as  

 

where i denotes a specific hypothesis Hi, and the summation is taken over a set of 
hypotheses which are mutually exclusive and exhaustive (their prior probabilities sum to 
1).  
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It is important to note that all of these probabilities are conditional. They specify the 
degree of belief in some proposition or propositions based on the assumption that some 
other propositions are true. As such, the theory has no meaning without prior 
determination of the probability of these previous propositions.  

5.5 Bayes' Factor 

In cases when you are unsure about the causal relationships between the variables and the 
outcome when building a model, you can use Bayes Factor to verify which model 
describes your data better and hence determine the extent to which a parameter affects the 
outcome of the probability. After using Bayes' Theorem to build two models with 
different variable dependence relationships and evaluating the probability of the models 
based on the data, one can calculate Bayes' Factor using the general equation below:  

 

The basic intuition is that prior and posterior information are combined in a ratio that 
provides evidence in favor of one model verses the other. The two models in the Bayes' 
Factor equation represent two different states of the variables which influence the data. 
For example, if the data being studied are temperature measurements taken from multiple 
sensors, Model 1 could be the probability that all sensors are functioning normally, and 
Model 2 the probability that all sensors have failed. Bayes' Factors are very flexible, 
allowing multiple hypotheses to be compared simultaneously.  

BF values near 1, indicate that the two models are nearly identical and BF values far from 
1 indicate that the probability of one model occuring is greater than the other. 
Specifically, if BF is > 1, model 1 describes your data better than model 2. IF BF is < 1, 
model 2 describes the data better than model 1. In our example, if a Bayes' factor of 5 
would indicate that given the temperature data, the probability of the sensors functioning 
normally is five times greater than the probability that the senors failed. A table showing 
the scale of evidence using Bayes Factor can be found below:  
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Although Bayes' Factors are rather intuitive and easy to understand, as a practical matter 
they are often quite difficult to calculate. There are alternatives to Bayes Factor for model 
assessment such as the Bayesian Information Criterion (BIC).  

The formula for the BIC is:

  

 
x = the observed data; n = the number of data points in x, the number of observations, or 
equivalently, the sample size; k = the number of free parameters to be estimated. If the 
estimated model is a linear regression, k is the number of regressors, including the 
constant; p(x|k) = the likelihood of the observed data given the number of parameters; L 
= the maximized value of the likelihood function for the estimated model.  
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This statistic can also be used for non-nested models. For further information on 
Bayesian Information Criterion, please refer to:[[1]]  

5.6 Advantages and Limitations of Bayesian Networks 

The advantages of Bayesian Networks are as follows:  

• Bayesian Networks visually represent all the relationships between the 
variables in the system with connecting arcs.  

• It is easy to recognize the dependence and independence between various 
nodes.  

• Bayesian networks can handle situations where the data set is incomplete 
since the model accounts for dependencies between all variables.  

• Bayesian networks can maps scenarios where it is not feasible/practical to 
measure all variables due to system constraints (costs, not enough sensors, 
etc.)  

• Help to model noisy systems.  

• Can be used for any system model ‐ from all known parameters to no known 
parameters.  

The limitations of Bayesian Networks are as follows:  

• All branches must be calculated in order to calculate the probability of any 
one branch.  

• The quality of the results of the network depends on the quality of the prior 
beliefs or model. A variable is only a part of a Bayesian network if you believe 
that the system depends on it.  

• Calculation of the network is NP‐hard (nondeterministic polynomial‐time 
hard), so it is very difficult and possibly costly.  

• Calculations and probabilities using Baye's rule and marginalization can 
become complex and are often characterized by subtle wording, and care 
must be taken to calculate them properly.  

5.7 Inference 

Inference is defined as the process of deriving logical conclusions based on premises 
known or assumed to be true. One strength of Bayesian networks is the ability for 
inference, which in this case involves the probabilities of unobserved variables in the 
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system. When observed variables are known to be in one state, probabilities of other 
variables will have different values than the generic case. Let us take a simple example 
system, a television. The probability of a television being on while people are home is 
much higher than the probability of that television being on when no one is home. If the 
current state of the television is known, the probability of people being home can be 
calculated based on this information. This is difficult to do by hand, but software 
programs that use Bayesian networks incorporate inference. One such software program, 
Genie, is introduced in Learning and analyzing Bayesian networks with Genie.  

5.8 Marginalization 

Marginalization of a parameter in a system may be necessary in a few instances:  

• If the data for one parameter (P1) depends on another, and data for the 
independent parameter is not provided.  

• If a probability table is given in which P1 is dependent upon two other 
system parameters, but you are only interested in the effect of one of the 
parameters on P1.  

Imagine a system in which a certain reactant (R) is mixed in a CSTR with a catalyst (C) 
and results in a certain product yield (Y). Three reactant concentrations are being tested 
(A, B, and C) with two different catalysts (1 and 2) to determine which combination will 
give the best product yield. The conditional probability statement looks as such:  

 

The probability table is set up such that the probability of certain product yield is 
dependent upon the reactant concentration and the catalyst type. You want to predict the 
probability of a certain product yield given only data you have for catalyst type. The 
concentration of reactant must be marginalized out of P(Y|R,C) to determine the 
probability of the product yield without knowing the reactant concentration. Thus, you 
need to determine P(Y|C). The marginalization equation is shown below:  

 

where the summation is taken over reactant concentrations A, B, and C.  

The following table describes the probability that a sample is tested with reactant 
concentration A, B, or C:  
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This next table describes the probability of observing a yield - High (H), Medium (M), or 
Low (L) - given the reactant concentration and catalyst type:  

 

 
The final two tables show the calculation for the marginalized probabilities of yield given 
a catalyst type using the marginalization equation:  

 

 

5.9 Dynamic Bayesian Networks 

The static Bayesian network only works with variable results from a single slice of time. 
As a result, a static Bayesian network does not work for analyzing an evolving system 
that changes over time.  

Below is an example of a static Bayesian network for an oil wildcatter:  
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http://www.norsys.com/netlibrary/index.htm  

An oil wildcatter must decide either to drill or not. However, he needs to determine if the 
hole is dry, wet or soaking. The wildcatter could take seismic soundings, which help 
determine the geological structure at the site. The soundings will disclose whether the 
terrain below has no structure, which is bad, or open structure that's okay, or closed 
structure, which is really good. As you can see this example does not depend on time.  

Dynamic Bayesian network (DBN) is an extension of Bayesian Network. It is used to 
describe how variables influence each other over time based on the model derived from 
past data. A DBN can be thought as a Markov chain model with many states or a discrete 
time approximation of a differential equation with time steps.  

An example of a DBN, which is shown below, is a frictionless ball bouncing between 
two barriers. At each time step the position and velocity changes.  
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http://www.norsys.com/netlibrary/index.htm  

An important distinction must be made between DBNs and Markov chains. A DBN 
shows how variables affect each other over time, whereas a Markov chain shows how the 
state of the entire system evolves over time. Thus, a DBN will illustrate the probabilities 
of one variable changing another, and how each of the individual variables will change 
over time. A Markov chain looks at the state of a system, which incorporates the state of 
each individual variable making up the system, and shows the probabilities of the system 
changing states over time. A Markov chain therefore incorporates all of the variables 
present in the system when looking at how said system evolves over time. Markov chains 
can be derived from DBNs, but each network represents different values and probabilites.  
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There are several advantages to creating a DBN. Once the network has been established 
between the time steps, a model can be developed based on this data. This model can then 
be used to predict future responses by the system. The ability to predict future responses 
can also be used to explore different alternatives for the system and determine which 
alternative gives the desired results. DBN's also provide a suitable environment for model 
predictive controllers and can be useful in creating the controller. Another advantage of 
DBN's is that they can be used to create a general network that does not depend on time. 
Once the DBN has been established for the different time steps, the network can be 
collapsed to remove the time component and show the general relationships between the 
variables.  

A DBN is made up with interconnected time slices of static Bayesian networks. The 
nodes at certain time can affect the nodes at a future time slice, but the nodes in the future 
can not affect the nodes in the previous time slice. The causal links across the time slices 
are referred to as temporal links, the benefit of this is that it gives DBN an unambiguous 
direction of causality.  

For the convenience of computation, the variables in DBN are assumed to have a finite 
number of states that the variable can have. Based on this, conditional probability tables 
can be constructed to express the probabilities of each child node derived from conditions 
of its parent nodes.  

Node C from the sample DAG above would have a conditional probability table 
specifying the conditional distribution P(C|A,B). Since A and B have no parents, so it 
only require probability distributions P(A) and P(B). Assuming all the variables are 
binary, means variable A can only take on A1 and A2, variable B can only take on B1 
and B2, and variable C can only take on C1 and C2. Below is an example of a conditional 
probability table of node C.  

 

The conditional probabilities between observation nodes are defined using a sensor node. 
This sensor node gives conditional probability distribution of the sensor reading given the 
actual state of system. It embodies the accuracy of the system.  

The nature of DBN usually results in a large and complex network. Thus to calculate a 
DBN, the outcome old time slice is summarized into probabilities that is used for the later 
slice. This provides a moving time frame and forms a DBN. When creating a DBN, 
temporal relationships between slices must be taken into account. Below is an 
implementation chart for DBN.  
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The graph below is a representation of a DBN. It represents the variables at two different 
time steps, t-1 and t. t-1, shown on the left, is the initial distribution of the variables. The 
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next time step, t, is dependent on time step t-1. It is important to note that some of these 
variables could be hidden.  

 

Where Ao, Bo, Co are initial states and Ai, Bi, Ci are future states where i=1,2,3,…,n.  

 
The probability distribution for this DBN at time t is…  

 

If the process continues for a larger number of time steps, the graph will take the shape 
below.  
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Its joint probability distribution will be...  

 

DBN’s are useful in industry because they can model processes where information is 
incomplete, or there is uncertainty. Limitations of DBN’s are that they do not always 
accurately predict outcomes and they can have long computational times.  

The above illustrations are all examples of "unrolled" networks. An unrolled dynamic 
Bayesian network shows how each variable at one time step affects the variables at the 
next time step. A helpful way to think of unrolled networks is as visual representations of 
numerical solutions to differential equations. If you know the states of the variables at 
one point in time, and you know how the variables change with time, then you can 
predict what the state of the variables will be at any point in time, similar to using Euler's 
method to solve a differential equation. A dynamic Bayesian network can also be 
represented as a "rolled" network. A rolled network, unlike an unrolled network, shows 
each variabl's effect on each other varibale in one chart. For example, if you had an 
unrolled network of the form:  
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then you could represent that same network in a rolled form as:  
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If you examine each network, you will see that each one provides the exact same 
information as to how the variables all affect each other.  

5.10 Applications 

Bayesian networks are used when the probability that one event will occur depends on 
the probability that a previous event occurred. This is very important in industry because 
in many processes, variables have conditional relationships, meaning they are not 
independent of each other. Bayesian networks are used to model processes in a wide 
variety of applications. Some of these include…  

1. Gene regulatory networks  

2. Protein structure  

3. Diagnosis of illness  

4. Document classification  

5. Image processing  

6. Data fusion  

7. Decision support systems  

8. Gathering data for deep space exploration  

9. Artificial Intelligence  

10. Prediction of weather  
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11. On a more familiar basis, Bayesian networks are used by the friendly Microsoft office 
assistant to elicit better search results.  

 

12. Another use of Bayesian networks arises in the credit industry where an individual 
may be assigned a credit score based on age, salary, credit history, etc. This is fed to a 
Bayesian network which allows credit card companies to decide whether the person's 
credit score merits a favorable application.  

5.11 Summary: A General Solution Algorithm for the Perplexed 

Given a Bayesian network problem and no idea where to start, just relax and try 
following the steps outlined below.  

Step 1: What does my network look like? Which nodes are parents (and are they 
conditional or unconditional) and which are children? How would I model this as an 
incidence diagram and what conditional probability statement defines it?  

Step 2: Given my network connectivity, how do I tabulate the probabilities for each state 
of my node(s) of interest? For a single column of probabilities (parent node), does the 
column sum to 1? For an array of probabilities (child node) with multiple possible states 
defined by the given combination of parent node states, do the rows sum to 1?  

Step 3: Given a set of observed data (usually states of a child node of interest), and 
probability tables (aka truth tables), what problem am I solving?  

• Probability of observing the particular configuration of data, order 
unimportant 

  Solution:  Apply multinomial distribution  

• Probability of observing the particular configuration of data in that particular 
order 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  Solution:  Compute the probability of each individual 
observation, then take the product of these  

• Probability of observing the data in a child node defined by 2 (or n) parents 
given only 1 (or n‐1) of the parent nodes 

  Solution:  Apply marginalization to eliminate other 
parent node  

• Probability of a parent node being a particular state given data in the form of 
observed states of the child node 

  Solution:  Apply Bayes' Theorem 
              Solve for Bayes' Factor to remove 
incalculable denominator terms generated by applying Bayes’ 
Theorem, and to compare               the parent node state 
of interest to a base case, yielding a more meaningful data 
point  

 
Step 4: Have I solved the problem? Or is there another level of complexity? Is the 
problem a combination of the problem variations listed in step 3? 

• If problem is solved, call it a day and go take a baklava break 
• If problem is not solved, return to step 3  

Graphically:  
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5.12 Worked out Example 1 

A multipurpose alarm in a plant can be tripped in 2 ways. The alarm goes off if the 
reactor temperature is too high or the pressure in a storage tank is too high. The reactor 
temperature may be too high because of a low cooling water flow (1% probability), or 
because of an unknown side reaction (5% probability). The storage tank pressure might 
be too high because of a blockage in the outlet piping (2% probability). If the cooling 
water flow is low and there is a side reaction, then there is a 99% probability that a high 
temperature will occur. If the cooling water flow is normal and there is no side reaction, 
there is only a 3% probability a high temperature will occur. If there is a pipe blockage, a 
high pressure will always occur. If there is no pipe blockage, a high pressure will occur 
only 2% of the time.  

Create a DAG for the situation above, and set up the probability tables needed to model 
this system. All the values required to fill in these tables are not given, so fill in what is 
possible and then indicate what further values need to be found.  

 

 
Answer:  
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The following probability tables describe the system, where CFL = Cold water flow is 
low, SR = Side reaction present, PB = Pipe is blocked, HT = High temperature, HP = 
High pressure, A = Alarm. T stands for true, or the event did occur. F stands for false, or 
the event did not occur. A blank space in a table indicates an area where further 
information is needed.  
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An advantage of using DAGs becomes apparent. For example, you can see that there is 
only a 3% chance that there is a high temperature situation given that both cold water 
flow is not low and that there is no side reaction.However, as soon as the cold water 
becomes low, you have at least a 94% chance of a high temperature alarm, regardless of 
whether or not a side reaction occurs. Conversely, the presence of a side reaction here 
only creates a 90% chance of alarm trigger. From the above probability calculations, one 
can estimate relative dominance of cause-and-effect triggers. For example you could now 
reasonably conjecture that the cold water being low is a more serious event than a side 
reaction.  

5.13 Worked out Example 2 

The DAG given below depicts a different model in which the alarm will ring when 
activated by high temperature and/or coolant water pipe leakage in the reactor.  
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The table below shows the truth table and probabilities with regards to the different 
situations that might occur in this model.  

 

The joint probability function is:  

P(A,HT,CP) = P(A | HT,CP)P(HT | CP)P(CP)  

A great feature of using the Bayesian network is that the probability of any situation can 
be calculated. In this example, write the statement that will describe the probability that 
the temperature is high in the reactor given that the alarm sounded.  

Answer:  
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5.14 Worked out Example 3 

Certain medications and traumas can both cause blood clots. A blood clot can lead to a 
stroke, heart attack, or it could simply dissolve on its own and have no health 
implications.  

a. Please create a DAG that represents this situation.  

Answer:  

 

 
b. The following probability information is given where M = medication, T = trauma, BC 
= blood clot, HA = heart attack, N = nothing, and S = stroke. T stands for true, or this 
event did occur. F stands for false, or this event did not occur.  
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What is the probability that a person will develop a blood clot as a result of both 
medication and trauma, and then have no medical implications?  

Answer: P(N, BC, M, T) = P(N | BC) P(BC | M, T) P(M) P(T) = (0.25) (0.95) (0.2) (0.05) 
= 0.2375%  

5.15 Worked out Example 4 

Suppose you were given the following data.  

Catalyst p(Catalyst)  
A  0.40  
B  0.60  

 

Temperature  Catalyst  P(Yield = H)  P(Yield = M)  P(Yield = L)  
H  A  0.51  0.08  0.41  
H  B  0.30  0.20  0.50  
M  A  0.71  0.09  0.20  
M  B  0.92  0.05  0.03  
L  A  0.21  0.40  0.39 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L  B  0.12  0.57  0.31  

How would you use this data to find p(yield|temp) for 9 observations with the following 
descriptions?  

# Times Observed  Temperature  Yield  
4x  H  H  
2x  M  L  
3x  L  H  

An DAG of this system is below:  

 

Answer: Marginalization! The state of the catalyst can be marginalized out using the 
following equation:  

p(yield | temp) =  ∑ p(yield | temp,cati)p(cati) 
 i = A,B  

The two tables above can be merged to form a new table with marginalization:  

Temperature  P(Yield = H)  P(Yield = M)  P(Yield = L)  

H  0.51*0.4 + 0.3*0.6 = 
0.384  

0.08*0.4 + 0.2*0.6 = 
0.152  

0.41*0.4 + 0.5*0.6 = 
0.464  

M  0.71*0.4 + 0.92*0.6 = 
0.836  

0.09*0.4 + 0.05*0.6 = 
0.066  

0.20*0.4 + 0.03*0.6 = 
0.098  

L  0.21*0.4 + 0.12*0.6 = 
0.156  

0.40*0.4 + 0.57*0.6 = 
0.502  

0.39*0.4 + 0.31*0.6 = 
0.342 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5.16 Worked Out Example 5 

A very useful use of Bayesian networks is determining if a sensor is more likely to be 
working or broken based on current readings using the Bayesian Factor discussed earlier. 
Suppose there is a large vat in your process with large turbulent flow that makes it 
difficult to accurately measure the level within the vat. To help you use two different 
level sensors positioned around the tank that read whether the level is high, normal, or 
low. When you first set up the sensor system you obtained the following probabilities 
describing the noise of a sensor operating normally.  

Tank Level (L) p(S=High) p(S=Normal)  p(S=Low)  
Above Operating Level Range  0.80  0.15  0.05  
Within Operating Level Range  0.15  0.75  0.10  
Below Operating Level Range  0.10  0.20  0.70  

When the sensor fails there is an equal chance of the sensor reporting high, normal, or 
low regardless of the actual state of the tank. The conditional probability table for a fail 
sensor then looks like:  

 

Tank Level (L) p(S=High) p(S=Normal)  p(S=Low)  
Above Operating Level Range  0.33  0.33  0.33  
Within Operating Level Range  0.33  0.33  0.33  
Below Operating Level Range  0.33  0.33  0.33  

From previous data you have determined that when the process is acting normally, as you 
believe it is now, the tank will be operating above the level range 10% of the time, within 
the level range 85% of the time, and below the level range 5% of the time. Looking at the 
last 10 observations (shown below) you suspect that sensor 1 may be broken. Use 
Bayesian factors to determine the probability of sensor 1 being broken compared to both 
sensors working.  

 

Sensor 1 Sensor 2  
High  Normal  
Normal  Normal  
Normal  Normal  
High  High  
Low  Normal 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Low  Normal  
Low  Low  
High  Normal  
High  High  
Normal  Normal  

 
From the definition of the Bayesian Factor we get.  

 

For this set we will use the probability that we get the data given based on the model.  

 

If we consider model 1 both sensors working and model 2 sensor 2 being broken we can 
find the BF for this rather easily.  

p(data | model 1) = p(s1 data | model 1)*p(s2 data | model 1)  

 
For both sensors working properly:  

The probability of the sensor giving each reading has to be calculated first, which can be 
found by summing the probability the tank will be at each level and multiplying by 
probability of getting a specific reading at that level for each level.  

p(s1 = high | model 1) = [(.10)*(.80) + (.85)*(.15) + (.05)*(.10) = 0.2125  

p(s1 = normal | model 1) = [(.10)*(.15) + (.85)*(.75) + (.05)*(.20) = 0.6625  

p(s1 = low | model 1) = [(.10)*(.05) + (.85)*(.10) + (.05)*(.70) = 0.125  

Probability of getting sensor 1's readings (assuming working normally)  

p(s1data | model1) = (.2125)4 * (.6625)3 * (.125)3 = 5.450 * 10 − 6  

The probability of getting each reading for sensor 2 will be the same since it is also 
working normally  
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p(s2data | model1) = (.2125)2 * (.6625)7 * (.125)1 = 3.162 * 10 − 4  

p(data | model1) = (5.450 * 10 − 6) * (3.162 * 10 − 4) = 1.723 * 10 − 9  

 
For sensor 1 being broken:  

The probability of getting each reading now for sensor one will be 0.33.  

p(s1data | model2) = (0.33)4 * (0.33)3 * (0.33)3 = 1.532 * 10 − 5  

The probability of getting the readings for sensor 2 will be the same as model 1, since 
both models assume sensor 2 is acing normally.  

p(data | model2) = (1.532 * 10 − 5) * (3.162 * 10 − 4) = 4.844 * 10 − 9  

 

 

A BF factor between 1/3 and 1 means there is weak evidence that model 2 is correct.  

5.17 True or False? 

1. Is the other name for Bayesian Network the "Believer" Network?  

2. The nodes in a Bayesian network can represent any kind of variable (latent variable, 
measured parameter, hypothesis..) and are not restricted to random variables.  

3. Bayesian network theory is used in part of the modeling process for artificial 
intelligence.  

Answers:  

1. F  

2. T  

3. T  

5.18 Sage's Corner 
http://www.youtube.com/v/x_3E0sE6ugs 
Unnarrated Slides: 
http://controls.engin.umich.edu/wiki/index.php/Image:Bayesian_Network_Theory.
ppt 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http://video.google.com/googleplayer.swf?docId=-8662996094538220092 
Example Adapted from <http://www.dcs.qmw.ac.uk/~norman/BBNs/BBNs.htm> 
Unnarrated Slides: 
http://controls.engin.umich.edu/wiki/index.php/Image:Bayesian.ppt 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6.1 Introduction 

Genie (Graphical network interface) is a software tool developed at the University of 
Pittsburgh for Microsoft Windows and available free of charge at Genie. It is useful for 
decision analysis and for graphically representing the union of probability and networked 
occurrences. Particularly, Genie can be used for the analysis of Bayesian networks, or 
directed acylic graphs (i.e. occurrences in a web of happenings are conditionally 
independent of each other). Bayesian networks or Dynamic Bayesian Networks (DBNs) 
are relevant to engineering controls because modelling a process using a DBN allows for 
the inclusion of noisy data and uncertainty measures; they can be effectively used to 
predict the probabilities of related outcomes in a system. In Bayesian networks, the 
addition of more nodes and inferences greatly increases the complexity of the 
calculations involved and Genie allows for the analysis of these complicated systems. 
Additionally, the graphical interface facilitates visual understanding of the network 
(Charniak, 1991).  

This link gives an example of a complex Bayesian network depicted in the graphical 
interface of Genie. As can be seen, Genie arranges the network of nodes and inferences in 
a topology that is easily visualized and is useful for both simple and extremely complex 
systems.  

6.2 Using Genie to Construct and Analyze Dynamic Bayesian Networks 

This section will include instructions for downloading and installing the Genie software 
as well as describe the procedure for using Genie to analyze simple Bayesian networks.  

6.2.1 Downloading and Installing Genie 

The Genie software download is available the Genie website, depicted below:  
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To download Genie, click on the “Downloads” link on the left menu of the page and 
highlighted in red in the figure above.  

A registration page will appear which requires some basic user information. After this has 
been entered, click on the Register link.  

A Downloads page with several download options will appear. Click on the GeNIe 2.0 
link highlighted in red on the figure below. This will initiate the download.  

NOTE: The Genie Software download is only available for Windows.  
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Install the software by following the steps indicated in the Genie installation program.  

NOTE: You will not be able to install the software onto University of Michigan 
computers without administrative rights. You must install this software on your home PC.  

The installation of the Genie software is now complete. Please note the help section of 
the software features many tutorials describing how to use a wide array of functions. 
However, this article will be focused on the analysis of Dynamic Bayesian Networks.  

• All informational materials used to create this tutorial come from GeNIe  

 

6.2.2 Using GeNIe to Analyze Dynamic Bayesian Networks 

If the program was installed in the default location given in the installation wizard a 
shortcut to GeNIe can be found in the start menu listed under All Programs. Click on the 

GeNIe 2.0 Icon as seen below:  
 
The main interface will appear as shown in the figure below:  
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Note the important tool bars highlighted on the figure above: the menu bar (yellow), the 
standard toolbar (red), and the format toolbar (blue).  

Consider this simple illustration of how to build a Dynamic Bayesian Network using 
Genie:  

Polly popular is the most popular girl on the UM campus who only dates other UM 
students. It is common knowledge that Polly only accepts 30% of the invitations she 
receives to go on a date. Of the invitations that she accepts, 40% of them come from guys 
with high GPAs, 40% of them come from guys with medium GPAs and 20% of them 
come from guys with low GPAs. Of the invitations that she rejects, 10% of them come 
from guys with high GPAs, 30% of them come from guys with medium GPAs, and 60% 
of them come from guys with low GPAs.  

NOTE: In this example, the variable of GPA is discretized into categories of high, 
medium, and low. This is necessary for analysis using Genie because otherwise there 
would exist infinite states for each node in the DBN (Charniak, 1991).  

Creating a Bayesian network allows for determinations to be made about probabilities of 
Polly accepting or rejecting certain date invitations. Shown below is how to use Genie to 
find the probability of Polly accepting a date invitation from a guy if she knows the guy 
inviting her has a high GPA.  

First, a node is created for the variable called acceptance of invitation. Select the 
“chance” node from the standard toolbar as is shown in the figure below highlighted in 
red.  

 

Left-click on a clear part of the graph area of the screen. An oval will appear with 
“Node1” inside as seen in the figure below.  
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The edit mode for the node should come up automatically; if not,simply double-click on 
the node to pull up the edit screen as depicted in the figure below.  

 

Enter an identifier for the node (must be a valid variable name in a programming 
language) and enter a name for the node (can be a string of any length). For this example, 
the identifier is entered as “Acceptance” and the name is entered as “Acceptance of 
Invitation”.  

To define the probabilities of the node, click on the definition tab highlighted in blue as 
shown below. The names of the states can be edited by double clicking on the name 
fields (highlighted in red in the figure below) and the probabilities can be edited by 
clicking on the probability field (highlighted in yellow in the figure below).  
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In this example, “State0” is changed to “Accept” and “State1” is changed to “Reject”. 
The default probabilities are entered as 0.3 for Accept and 0.7 for Reject.  

To create a second node for the variable GPA, simply click the change node again and 
place a second node under the “Acceptance” node. Define the name and identifier of this 
node as done with the “Acceptance” node. Then define the probabilities for the “GPA” 
node by first adding another outcome by clicking the “add outcome” button highlighted 
in blue in the figure below. Change state0, state1, and state2 to HighGPA, MediumGPA, 
and LowGPA respectively. To finish defining this node, fill in the probabilities listed in 
the problem statement (shown in the figure below) and press ok.  

After the creation and definition of both nodes, connect these two nodes with an 
influence arc to represent that GPA affects how Polly accepts or rejects the invitations 

she receives. To do this, click on the Arc tool (found on the standard toolbar), , and 
click on the “Acceptance” node and drag the arrow to the new “GPA” node.  



  505 

 

The Bayesian network describing this problem is now fully defined within the Genie 
program. To determine the probability of Polly accepting a date invitation from a guy if 
she knows the guy has a high GPA, first right click on the GPA node, scroll down to "Set 
Evidence", and select "HighGPA". This is shown in the figure below.  
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Then, update the network by clicking the update icon in the standard toolbar, . After 
the update, view the results by holding the mouse pointer over the check mark on the 
corner of the Acceptance node, as shown in the Figure below.  
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The results can also be accessed by double clicking the Acceptance node and selecting 
the value tab, shown in the figure below.  

 

As can be seen in the figure above, Polly will accept the date invitation 63.16% of the 
time when she knows the guy inviting her has a high GPA. Other probabilities related to 
this example can be determined similarly.  

The logic and procedure involved in this simple problem can be applied to complex 
systems with many interconnected nodes. Please see the Worked Out Examples sections 
for more examples of how to use Genie to analyze Bayesian networks.  

• All informational materials used to create this tutorial come from GeNIe  

6.3 Worked out Example 1 

For the reactor shown below, the probability that the effluent stream will contain the 
acceptable mole fraction of product is 0.5. For the same reactor, if the effluent stream 
contains the acceptable mole fraction, the probability that the pressure of the reactor is 
high is 0.7. If the effluent stream does not contain the acceptable fraction, the probability 
that the pressure is low is 0.85. If the pressure of the reactor is high, the probability that 
the temperature of the feed is high is 0.9 and if the pressure of the reactor is low, the 
probability that temperature of the feed is low is 0.75. Given that the temperature of the 
feed is low, what is the probability that the effluent stream contains the acceptable mole 
fraction of product?  
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Solution:  

The variables to be included in the Bayesian network are the acceptable mole fraction of 
product in the effluent stream, the pressure of the reactor, and the temperature of the 
reactor. The variables are connected in an acyclic network as shown in the image below. 
After the nodes were created and the incidence arcs were defined, the probability was 
calculated by updating the network and moving the pointer over the checkmark on the 
node. As can be seen in the figure, the probability of the effluent stream containing the 
acceptable mole fraction of product given that the feed temperature is low is 67%.  
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A GeNIe file containing the full solution of the problem is located here. In this file, the 
values entered into Genie for the probabilities and stages can be accessed by double-
clicking on the nodes.  

6.4 Worked out Example 2 

The following example is complicated and contains many layers of information. It is 
intended to illustrate how many elements can be put together in a Bayesian Network and 
analyzed using Genie such that the problem is not impossibly complicated. Assume that 
detailed statistical experiments were conducted to find all the stated probabilities.  

Consider a CSTR with a cooling jacket and an exothermic reaction with A --> B. The 
feed stream is pure A and the cooling stream in the jacket has a sufficient flow rate high 
such that the ambient temperature is constant.  
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The pumps transporting the reactor feed stream are old, and sometimes do not pump at 
their full capacity. 98% of the time the pumps work normally, but at other times the feed 
flow rate is slightly lower than normal. The preheating process for the feed stream is 
inefficient, and sometimes does not heat the reactants to 80°C. There is a 95% chance the 
feed stream is slightly cooler than desired. Finally, the pumps for the cooling water 
sometimes lose power, causing the ambient temperature for the reactor to climb higher 
than usual. There is a 1% chance of this power loss occurring.  

The concentration of A in the reactor depends on the feed flow rate. If this flow rate is 
normal, then there is a 98% chance CA is normal, and a 1% chance each that it is slightly 
higher or lower than normal. If the flow rate is low, then there is a 40% chance that CA 
will be higher than normal and a 60% chance that CA will be normal.  

The reactor temperature depends on the feed temperature and the ambient temperature. If 
both T0 and Ta are normal, there is a 98% chance T is normal, and a 1% chance each that 
it is slightly higher or lower than normal. If T0 is normal and Ta is high, there is a 90% 
chance T is normal and a 10% chance it is high. If Ta is normal and T0 is low, there is a 
80% chance T is normal and a 20% T is low. Finally, if T0 is low and Ta is high, there is 
a 90% chance T is normal, a 8% chance T is low, and a 2% chance T is high.  

The conversion depends on CA and T. If one of these variables is high and the other low, 
there is an equal chance that X will be low, normal, or high. If both CA and T are normal, 
there is a 98% chance X is normal, and a 1% chance each that it is slightly higher or 
lower than normal. If both CA and T are low, there is equal chance that X will be low or 
normal. If both CA and T are high, there is equal chance that X will be normal or high. If 
CA is normal and T is low, there is a 75% chance X is normal and a 25% chance X is 
low. If CA is normal and T is high, there is a 75% chance X is normal and a 25% chance 
X is high. Finally, if T is normal and CA is low or high, there is a 85% chance X is 
normal and a 15% chance that X is low or high, respectively.  

Create a model in Genie for this system that can be used to determine probabilities of 
related events occuring.  

 
Solution:  

A GeNIe file containing the Bayesian Network of this problem is located here.  

This model can be used to answer questions such as (1) if a composition sensor for B in 
the exit stream tells us that the conversion is slightly low, what is the probability that the 
feed temperature is normal and (2) if a temperature sensor in the reactor tells us that the 
reactor temperature is high what is the probability that the ambient temperature is 
normal?  
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6.5 miniTuba 

MiniTuba is a program that allows the creation of Bayesain Networks thought time, with 
only the final data sets. This was created by Zuoshuang Xiang, Rebecca M. Minter, 
Xiaoming Bi, Peter Woolf, and Yongqun He, to analysis medical data, but can be used to 
create Bayesian Networks for any propose. In oder to use this program go to 
http://www.minituba.org/ and go to the Sandbox demo Tab. From here one can either 
start a new project or merly modify an old project. This wiki will talk though how to 
create a new project.  

 
First Log in: to do this click the Log In link at the bottom of the page and enter 
demo@e.d.u as the user name and demo as the password this should bring up this screen:  

 

and click My Projects and then Creat New Project.  

The user needes to know how many variables (EX: Temperature, Pump speed, Yield, 
flowrate in ChemE), data sets (EX: Reactors, Tanks ect) and the average number of time 
steps that will be analized.  
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In this example we will have a CSTR whose yeild may be affected by the reactor 
Volume, the motor speed, the temperature or the concentraion. This means that there are 
5 variable. Lets say that we have 5 reactors runing this experiment with differeing either 
high or low Moter speed, temperature, and yeild and either high medium or low volume 
and concentrion. In this example Yeild is only affected by the moter speed and 
Temperature with the folloing probability  

 

 
Enter the requested data in miniTuba and then click open project from the list. Then click 
"load/updata data"  

this example will use the following data:  

 

Media:CSTRExample.xls  

To insert the data, simply copy and paste in the data to open box, then click LOAD 
DATA. In Order to run the analysis click "Start DBN botton"  

 
Here you can slect which data series and vaiables you would like to analize. Now 
miniTuba gives several different options for the data. The data can be analyises and a 
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child a parent or both. A Child means that the data isnt effected by the other datathat , 
Parent means the data doesnt affect the other data, and both means that the data can be 
affected and effect other variables. In our example, the motor speed is the only thing that 
we know is not affected by teh other variables, so we will select it as a parent.  

Discretization Policy tells MiniTuba how to bin the. In our case, as things are exactly 
high, med or low represtented by 0,1,2 it is easy to desice how to descretize the data, but 
it is ok if the data isnt allready bin (ie in 0s 1s and 2s). Quantile spits the data into even 
chucks (ie if you select quantile 2, it will find the mean and then everything above that is 
in one bin and everything below that mean is in a different bin). Interval bins things that 
are in equal sized intervals around each other.  

Select Natrual fit for slipe fitting (this will allow you to have some data points missing 
ex: no volume reading in 1 data set) Lets select 2 intervals for moter speed, temperature 
and yeild adn then 3 intervals for volume and concentraion.  

MiniTuba also give you the option to force it to come up with some relationships weather 
MiniTuba thinks they should or not. MiniTuba also allows you to choose the method 
used to solve this, we will select simulated anneling Number of Instances allows you to 
choose the number of computers used to solve the problem, we will just leave it at 1 In 
the Demo version, the max calculation time is 1 min.  

When everything is done, click Run Bayesian Analysis. By clicking Check Progress teh 
following screen will show up. Click Updata every so often to check weather the solution 
has been computed.  

 

 

 

This will output the following screen when it is done  
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As you can see, the yield depends on the motor speed and the temperature alone, just like 
we crated the modle to show. Top Ten networks, shows the 10 most likely networks. 
Click Score Distribution of Top Ten Networks shows the relative probabiltity of each 
network, and the probability that the number 1 network is the correct network out of the 
top 10. In our example the best network has a probablitity of 0.77 as seen below.  
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6.6 Sage's Corner 

An example of using Genie to analyze a Bayesian network  

http://video.google.com/googleplayer.swf?docId=9222502903336100020 
For the powerpoint slides without narration, please click here  

A brief narration for better understanding GENIE  

http://www.youtube.com/v/FCy_p1BeDrM 
Un‐narrated slides can be found at: Unnarrated Slides 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7.1 Introduction 

Basic probability can be used to predict simple events, such as the likelihood a tossed 
coin will land on heads rather than tails. Instinctively, we could say that there is a 50% 
chance that the coin will land on heads.  

But let’s say that we’ve just watched the same coin land on heads five times in a row, 
would we still say that there is a 50% chance of the sixth coin toss will results in heads? 
No – intuitively, we sense that there is a very low probability (much less than 50%) that 
the coin will land on heads six times in a row.  

What causes us to rethink the probability of the coin landing on heads? The same coin is 
being tossed, but now we are taking into account the results of previous tosses. Basic 
probability can be used to predict an isolated event. But more advanced probability 
concepts must be used to assess the likelihood of a certain sequence of events occurring. 
This wiki article provides an introduction to concepts such as Bayes rule, Markov chains, 
and hidden Markov models, which are more useful for predicting real world scenarios 
(which are rarely singular, isolated events).  

7.2 Bayes' Rule 

Recall the wiki article that discusses Bayes Rule:  
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Bayes’ rule is a foundational concept for finding the probability of related series of 
events. It relates the probability of event A conditional to event B and the probability of 
event B conditional to event A, which are often not the same probabilities.  

 
Another interpretation of Bayes’ rule: it’s a method for updating or revising beliefs (i.e. 
probability of landing on heads) in light of new evidence (knowing that the coin landed 
on heads the last five tosses).  

 
Please refer to the Bayes Rule wiki for a more detailed explanation behind this rule.  

7.3 Markov Chains 

A Markov chain is a particular way of modeling the probability of a series of events. A 
Markov chain is a sequence of random values whose probabilities at a time interval 
depend only upon the value of the number at the previous time. A Markov chain, named 
after Andrey Markov, is a stochastic process with the Markov property. This means that, 
given the present state, future states are independent of the past states. In other words, the 
description of the present state fully captures all the information that could influence the 
future evolution of the process, so that future states of the system will be reached through 
a probabilistic (determined from current data) process instead of a deterministic one 
(from past data).  

At each point in time, the system could either change its state from the current state to a 
different state, or remain in the same state. This happens in accordance with the specified 
probability distribution. These changes of state are called transitions, and the probabilities 
associated with various state changes are called transition probabilities.  

For example, let’s say we want to know the probability of an elevator moving more than 
five floors up in a 30-floor building (including the lobby). This is an example of a 
Markov chain because the probability does not depend on whether the elevator was on 
the 6th floor at 7:00 am or on the 27th floor at 10:30 pm. Instead the probability is 
dependent on what floor the elevator is on right before it starts to move. More 
specifically, the fact that the elevator is on the top floor at t1 results in a zero probability 
that the elevator will be five floors higher at t2.  

The figure below helps to visualize the concept of a Markov Model.  
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x1, x2, x3 = states  

a12, a21, a23, a32 = transition probabilities  

A transition probability is simply the probability of going from one state to another state. 
Please note that there may be other paths or transition probabilities for state x1, say to 
state x3 or back to itself. The sum of the transition probabilities must always equal to 1.  

∑ a1,i = a11 + a12 + a13 + ...a1n 
i = 1  

7.4 Transition Probability  

The transition probabilities of each state for one system can be compiled into a transition 
matrix. The transition matrix for a system can represent a one-step transition or a 
multiple-step transition. A n-step transition matrix is simply a one-step transition matrix 
rised to the n-th power.  

For state i to make a transition into state j, the transition probability Pij must be greater 
than 0. so:  

,  

∑ Pi,j = 1,i = 0,1,... 
j = 0  

Let P be the matrix of a one-step transition matrix,  
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P=   

Pi,1 would denote the probability of going from state i to 1  

Example: Will It Rain Tomorrow? [ref: Ross]  

Suppose that whether or not it rains today depends on previous weather conditions 
through the last two days. Specifically, suppose that if it has rained for the past two days, 
then it will rain tomorrow with probability 0.7; if it rained today but not yesterday, then it 
will rain tomorrow with probability 0.5; if it rained yesterday but not today, then it will 
rain tomorrow with probability 0.4; if it has not rained in the past two days, then it will 
rain tomorrow with probability 0.2.  

The transition matrix for the above system would be:  

state 0: if it rained both today and yesterday  

state 1: if it rained today but not yesterday  

state 2: if it rained yesterday but not today  

state 3: if it did not rain either yesterday or today  

P=   

7.5 Applications of Markov Chains 

Since this concept is quite theoretical, examples of applications of this theory are 
necessary to explain the power this theory has. Although these following applications are 
not chemical control related, they have merit in explaining the diversity of operations in 
which Markov chains can be used. Hopefully, by seeing these examples, the reader will 
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be able to use Markov chains in new, creative approaches to solve chemical controls 
problems.  

 
Queuing Theory  

Markov chains can be applied to model various elements in something called queuing 
theory. Queuing theory is simply the mathematical study of waiting lines (or queues).  

This theory allows for the analysis of elements arriving at the back of the line, waiting in 
the line, and being processed (or served) at the front of the line. This method uses the 
variables including the average waiting time in the queue or the system, the expected 
number waiting or receiving service and the probability of encountering the system in 
certain states, such as empty, full, having an available server or having to wait a certain 
time to be served. These variables are all unique to the system at hand. A link that 
explains this theory in more detail can be found below:  

Queueing Theory  

Although Queuing Theory is generally used in customer service, logistics and operations 
applications, it can be tailored to chemical processing. For instance, it is essential to 
model how long a particular product will be in an assembly line before it makes it to the 
desired end process. Thus, this theory is robust for all kinds of uses.  

 

7.6 Queuing Problem Example  

On a sunny Tuesday morning in the Computer Engineering Building, a group of 
Chemical Engineering students are finishing their engineering laboratory reports and 
have stayed up all night writing ambivalent fluid mechanics questions, they need some 
prestigious coffee for refreshment instead of Red Bull. Coffee shop called "Dreamcaster's 
Cafè" was opened by a University of Michigan Chemical Engineering graduate. Business 
is going very well for "Dreamcaster's Cafè" and there are many people, m people, waiting 
in line in front of the Chemical Engineering students. The service time for the first person 
in line (not necessarily a Chemical Engineering student) is an exponential distribution 

with an average waiting time of . Since the Chemical Engineering students have to 
return to the Computer Engineering Building to finish their report, they have a finite 
patience waiting in line and their patience is an exponential distribution with an average 

of . The group of Chemical Engineering students does not care how long the service 
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time is. Find the probability that the ith Chemical Engineering student to wait long 
enough to get coffee.  

Solution  

 

Google’s Page Ranking System  

The PageRank of a webpage as used by Google is defined by a Markov chain.  

PageRank is the probability to be at page i in the following Markov chain on all (known) 
webpages. If N is the number of known webpages, and a page i has ki links then it has 
transition probability  

(1 − q) / ki + q / N  

for all pages that are linked to and q/N for all pages that are not linked. The constant q is 
around 0.15.  
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Children’s Games  

Markov chains are used in the children’s games “Chutes and Ladders,” “Candy Land” 
and “Hi Ho! Cherry-O!” These games utilize the Markov concept that each player starts 
in a given position on the game board at the beginning of each turn. From there, the 
player has fixed odds of moving to other positions.  

To go into further detail, any version of Snakes and Ladders can be represented exactly as 
a Markov chain, since from any square the odds of moving to any other square are fixed 
and independent of any previous game history. The Milton Bradley version of Chutes and 
Ladders has 100 squares, with 19 chutes and ladders. A player will need an average of 
45.6 spins to move from the starting point, which is off the board, to square 100.  

 

One last game of interest is Monopoly. This can be modeled using Markov chains. Check 
out the following link to see a simulation of the probability of landing on a particular 
property in the Monopoly game:  
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Monopoly Simulation  

7.7 Hidden Markov Models 

Building further on the concept of a Markov chain is the hidden Markov model (HMM). 
A hidden Markov model is a statistical model where the system being modeled is 
assumed to be a Markov process with unknown parameters or casual events. HMMs are 
primarily helpful in determining the hidden parameters from the observable parameters.  

Again, the figure below may help visualize the Hidden Markov Model concept. 

 

x1, x2, x3 = hidden/unknown states  

a12, a21, a23, a32 = transition probabilities  

y1, y2, y3 = observable states  

e1, e2, e3 = emission probabilities  

The key point of the figure above is that only the blue circles are seen, but you suspect or 
know that these observable states are directly related or dependent on some hidden state. 
These hidden states (the red circles) are what actually dictates the outcome of the 
observable states. The challenge is to figure out the hidden states, the emission 
probabilities and transition probabilities.  

For example, say you have a data acquisition program that continuously records the outlet 
temperature of your product stream which you are heating up through a heat exchanger. 
The heat exchanger provides a constant supply of heat. You observe that the temperature 
has some step disturbances and is not always constant. The temperature is the observable 
parameter, but the cause of its deviations/states is actually the stream's flowrate. When 
the flowrate fluctuates, the outlet temperature also fluctuates since the heat exchanger is 
providing the same amount of heat to the stream. So, the stream flowrate is the hidden 
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parameter (since you do not have access to this measured variable) and the probability 
that the flowrates switches from say 100 to 150 to 300 L/h are the transition probabilities. 
The emission probability is the probability that the observed outlet temperature is directly 
caused by the flowrate. This emission probability is not necessarily 1 since temperature 
variations could also be due to noise, etc.  

Another common scenario used to teach the concept of a hidden Markov model is the 
“Occasionally Dishonest Casino”. If a casino uses a fair die, each number has a 1/6 
probability of being landed on. This type of probability that represents a known 
parameter is known as emission probability in HMMs. Sometimes a casino can tip the 
odds by using a loaded die, where one number is favored over the other five numbers and 
therefore the side that is favored has a probability that is higher than 1/6.  

 
But how does one know that the casino is being dishonest by using a loaded die? Pretend 
that the die is loaded in such a way that it favors the number 6. It would be difficult to 
differentiate between a fair die and loaded die after watching only one roll. You may be 
able to get a better idea after watching a few tosses and see how many times the die 
landed on 6. Let’s say that you saw the following sequence of die tosses:  

 
465136  

 
It is still difficult to say with certainty whether the die is loaded or not. The above 
sequence is a feasible for both a fair die and a loaded die. In this particular case, the 
above numbers that represent what was rolled are the observable parameters. The hidden 
parameter is the type of die used just because we do not know which type produced the 
above sequence of numbers.  

 
Instead of relying on a sneaking suspicion that the casino is being dishonest, one can use 
a hidden Markov model to prove that a loaded die is being used occasionally. Please note 
that if a loaded die was used all the time it would be more blatantly obvious. In order to 
get away with this “slight” unfairness, the casino will switch the fair die with a loaded 
one every so often. Let’s say that if a fair die is being used there is a 5% chance that it 
will be switched to a loaded die and a 95% chance that it will remain fair. These are 
known as transition probabilities because they represent the likelihood of a causal event 
changing to another causal event.  

 
Below is a picture representing the transition probabilities (probability of staying or 
changing a type of die) as well as the emission probabilities (probability of landing on a 
number).  
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Using the basic diagram above that show the emission and transition properties, 
conditioned statements in Excel can be used to model the probability that a loaded die is 
being used. Please refer to example two for the hidden Markov model Excel sheet.  

HHMs can be modeled using Matlab. Follow the link to the site which contains 
information in installing the HHM toolbox in Matlab:  

HHMs in Matlab  

7.8 Worked out Example 1: "What should I wear?" 

Being a student of the University of Michigan, one of your daily concerns is the weather. 
The weather affects important issues such as, choice of clothing, shoes, washing your 
hair, and so many more. Considering the bizarre weather in Ann Arbor, you wish to be 
able to calculate the probability that it will rain given the data of the last three 
consecutive days. Applying your chemical engineering skills and empowered by the 
knowledge from this Wiki article, you sit down and decide to be the next Weather-
Person.  

You know the following information since you have been an avid fan of the Weather 
Channel since age 5.  

 

You then record the weather for the past 3 days.  
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Solution  

Since the last day was a blizzard you use a matrix expressing a 100% chance in the past, 
and multiply this by the probabilities of each weather type.  

 

This means that there is a 60% chance of sun, a 25% chance of rain and a 15% chance of 
a blizzard. This is because a Markov process works based on the probability of the 
immediately previous event. Thus, you decide that is a low enough risk and happily 
decide to wear your best new outfit AND wash your hair.  

7.9 Worked out Example 2: "What should I wear for the weekend?" 

Turns out it does rain the next day and you get your favorite clothes soaked. However, 
you are leaving for a weekend with your family and must decide what to wear for the 
next two days. What is the prediction for the next two days?  

Solution  

Predicting for the first day is like the previous example substituting rain in for a blizzard.  
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In order to predict for the second day we must use our previous data to predict how the 
weather will act. Since we predict two days ahead we multiply the probabilities twice, 
effectively squaring them.  

 

Alternatively, we can take the prediction from the previous day and multiply that by the 
probability of weather.  

 

Both ways give you the same answer. Therefore, you decide to pack for both sunny and 
rainy weather.  

7.10 Worked out Example 3: OSEH Example 

Now, back to REAL chemical engineering applications, the probability theories described 
above can be used to check if a piece of equipment is working. For example, you are an 
OSEH inspector and you have to analyze a set of data recording the pollutant levels of a 
plant. If they use the scrubber they have, the probability of pollutant levels being high is 
low. However, if the scrubber is not used, the probability of pollutant levels being high 
increases. You have gotten some inside information that the operators use the scrubbers 
only 70% off the time. Your task is to create a model based on the data recordings and 
using probability theories to predict WHEN they switch their scrubbers ON and OFF, so 
that you can catch them red-handed in the act!  

There are 6 possible pollutant levels: none, low, med-low, med, med-high, and high. If 
the level = high, then this is above the allowable limit. Every other level is considered 
allowable. If the scrubber is ON, there is equal chance that any of the states will occur. If 
the scrubber is OFF, there is a 50% chance that a high pollutant level will be recorded.  

Given the following data:  
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Solution  

Formulas used are listed below:  

(1) 

 

 
(2) 

 

 
(3) 

 

 

(4)  

 
Please refer to the attached Excel File for the predictive model. OSEHExample  

From our results in the Excel file, we graphed the predicted vs actual times when the 
scrubber was turned off. The value of "1" was chosen arbitrarily to represent when the 
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scrubber was OFF and "2" when it was "ON". 

 

7.11 Multiple Choice Question 1 

What is the key property of a Markov chain?  

A) Probability of each symbol depends on FUTURE symbols.  

B) Probability of each symbol depends on ALL preceding symbols.  

C) Probability of each symbol depends on NONE of the preceding symbols.  

D) Probability of each symbol depends only on the value of the PREVIOUS symbol.  

7.12 Multiple Choice Question 2 

What kind of parameters does emission probability represent?  

A) unknown parameters  

B) Markov parameters  

C) known parameters  

D) Bayes' parameters  
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7.13 Sage's Corner 
The Occasionally Dishonest Casino explained and applied to 
a short example:  
http://video.google.com/googleplayer.swf?docId=-2874032065834002418 
Please click the following link for a copy of the 
PowerPoint slides: Occasionally Dishonest Casinos  
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8.1 Introduction 

Random variables whose spaces are not composed of a countable number of points but 
are intervals or a union of intervals are said to be of the continuous type. Continuous 
distributions are probability models used to describe variables that do not occur in 
discrete intervals, or when a sample size is too large to treat each individual event in a 
discrete manner (please see Discrete Distributions for more details on discrete 
distributions). The main difference between continuous and discrete distributions is that 
continuous distributions deal with a sample size so large that its random variable values 
are treated on a continuum (from negative infinity to positive infinity), while discrete 
distributions deal with smaller sample populations and thus cannot be treated as if they 
are on a continuum. This leads to a difference in the methods used to analyze these two 
types of distributions: continuous and discrete distributions is continuous distributions are 
analyzed using calculus, while discrete distributions are analyzed using arithmetic. There 
are many different types of continuous distributions including some such as Beta, 
Cauchy, Log, Pareto, and Weibull. In this wiki, though, we will only cover the two most 
relevant types of continuous distributions for chemical engineers: Normal (Gaussian) 
distributions and Exponential distributions.  

 
In chemical engineering, analysis of continuous distributions is used in a number of 
applications. For example in error analysis, given a set of data or distribution function, it 
is possible to estimate the probability that a measurement (temperature, pressure, flow 
rate) will fall within a desired range, and hence determine how reliable an instrument or 
piece of equipment is. Also, one can calibrate an instrument (eg. temperature sensor) 
from the manufacturer on a regular basis and use a distribution function to see of the 
variance in the instruments' measurements increases or decreases over time.  
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8.2 Normal Distributions 

8.2.1 What is a Gaussian (normal) distribution curve? 

A Gaussian distribution can be used to model the error in a system where the error is 
caused by relatively small and unrelated events.  

This distribution is a curve which is symmetric about the mean (i.e. a Bell shaped curve) 
and has a range measured by standard deviations above and below the mean of the data 
set (please see Basic Statistics for a further discussion on these statistical parameters). To 
better explain, consider that a certain percentage of all data points will fall within one 
standard deviation of the mean. Likewise, more data points will fall within two standard 
deviations of the mean, and so on. However, under this model it would require an infinite 
range to capture ALL the data points thus presenting a minor difficulty in this appraoch.  

The figure below is a possible Gaussian distribution, where the mean (μ) is 10 and 
standard deviation (σ) is 2. F(x) is the number of times a certain value of x occurs in the 
population. The mean is simply the numerical average of all the samples in the 
population, and the standard deviation is the measure of how far from the mean the 
samples tend to deviate. The following sections explain how and why a normal 
distribution curve is used in control and what it signifies about sets of data.  

 
Figure 1: Generic Normal Distribution curve 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8.2.2 The Probability Density Function (PDF) for a normal distribution 

As was mentioned in the Introduction section, distribution curves can be used to 
determine the probability, P(x), of a certain event occurring. When this is done, the 
distribution curve is known as a Probability Density Function (PDF). In the figure shown 
above, the x-axis represents the range of possible events (eg. the range of ages in a 
sample population or the magnitude of noise generated by a temperature sensor). The y-
axis represents the number of times a certain x value occurs in a population. The PDF can 
be described mathematically as follows:  

 

In some cases, it might not be necessary to know the probability of just one event 
occurring. Rather, you may want to know the probability of a range of events (eg. what is 
the probability that the noise generated by my temperature sensor will fall in the range of 
5-10 Hz?). When this happens, you must integrate the above PDF over the desired range, 
in the following manner:  

 

where k1 and k2 are the limits of your desired range. This integral results in the following 
expression:  

 

The Erf function can be found in most scientific calculators and can also be calculated 
using tables of Erf[] values. For example, its use here parallels what we learned in ChE 
342, Heat and Mass Transfer. Determine the value inside the brackets of the erf function 
through simple arithmetic, then take this value and find the corresponding Erf number 
from a table. Finally use this value in the calculation to determine the probability of a 
certain point, x, falling within a range bound from k1 to k2.  

Sample Calculation  

Given a data set with an average of 20 and a standard deviation of 2, what is the 
probability that a randomly selected data point will fall between 20 and 23?  

Solution 1  
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To solve simply substitue the values into the equation above. This yeilds the following 
equation:  

 

 

These Erf values must be looked up in a table and substituted into the equation. Doing 
this yeilds  

 

Thus there is a 43.3255% chance of randomly selecting a number from the data set with a 
value between 20 and 23.  

Graphically speaking, the PDF is just the area under the normal distribution curve 
between k1 and k2. So, for the distribution shown above, the PDF for 8<x<12 would 
correspond the area of the orange shaded region in the figure below:  

 
Figure 2: PDF for 8<x<12 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Solution 2  

Alternatively, rather than using the error function, Mathematica's built-in probability 
density function can be used to solve this problem. This probability density function can 
be applied to the normal distribution using the syntax shown below.  

NIntegrate[PDF[NormalDistribution[μ,σ],x],{x,x1,x2}]  

In this syntax, μ represents the mean of the distribution, σ represents the standard 
deviation of the distribution, and x1 and x2 represent the limits of the range.  

This function can be applied to this problem as shown below.  

 

This shows that the probability of a randomly selected data point falling between 20 and 
23 is 0.4332, or 43.32%. As expected, this value calculated using the built-in probability 
density function in Mathematica matches the value calculated from using the error 
function. Mathematica provides a faster solution to this problem.  

 
An important point to note about the PDF is that when it is integrated from negative 
infinity to positive infinity, the integral will always be equal to one, regardless of the 
mean and standard deviation of the data set. This implies that there is a 100% chance that 
your random variable x will fall between negative infinity and positive infinity. Likewise, 
the integral between negative infinity and the mean is 0.5, or there is a 50% chance of 
finding a value in this region due to the symmetric nature of the distribution.  

8.2.3 The Cumulative Density Function (CDF) for a normal distribution 

To transition our arguement to a more holistic perspective regarding the probability 
density function for a normal distribution, we present the cumulative density function, 
which represents the integral (area under the curve) of the PDF from negative infinity to 
some given value on the y- axis of the graph incrementally accoring to the x axis, which 
remains the same as before. Because of this type of definition, we may circumvent the 
rigorous error function analysis presented above by simply subtracting one CDF points 
from another. For example, if engineers desire to determine the probability of a certain 
value of x falling within the range defined by k1 to k2 and posses a chart feauturing data 
of the relevant CDF, they may simply find CDF(k2)- CDF(k1) to find the relevant 
probability.  
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The Cumulative Density Function (CDF) is simply the probability of the random 
variable, x, falling at or below a given value. For example, this type of function would be 
used if you wanted to know the probability of your temperature sensor noise being less 
than or equal to 5 Hz. The CDF for a normal distribution is described using the following 
expression:  

 

where k is the maximum allowable value for x.  

The main difference between the PDF and CDF is that the PDF gives the probability of 
your variable x falling within a definite range, where the CDF gives the probability of 
your variable x falling at or below a certain limit, k. The following figure is the CDF for a 
normal distribution. You'll notice that as x approaches infinity, the CDF approaches 1. 
This implies that the probability of x falling between negative and positive infinity is 
equal to 1.  

 
Figure 3: CDF plot for a Normal Distribution 

8.2.4 Standard Normal Distribution 

A special type of probability distribution curve is called the Standard Normal 
Distribution, which has a mean (μ) equal to 0 and a standard deviation (σ) equal to 1.  
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This simplified model of distribution typically assists engineers, statisticians, business 
strategists, economists, and other interested professionals to model process conditions, 
and to associate the attention and time needed to adress particular issues (i.e. higher 
probability for a failed condition necessitate additional attention, etc.). Also, our grades in 
many of the courses here at the U of M, both in and outside of the college of engineering, 
are based either strictly or loosely off of this type of distribution. For example, the B 
range typically falls within +/- of one standard deviation.  

The following figure is a Standard Normal Distribution curve:  

 
Figure 4: Standard Normal Distribution Curve 

 

The benefit of the standard normal distribution is it can be used in place of the Erf[] 
function, if you do not have access to a scientific calculator or Erf[] tables. To use the 
Standard Normal Distribution curve, the following procedure must be followed: 

1.Perform a ztransform. This is a transformation which essentially 
normalizes any normal distribution into a standard normal distribution. It is 
done using the following relationship:  

 
 

Mathematically speaking, the z transform normalizes the data by changing all 
the raw data points into data points that dictate how many standard 
deviations they fall away from the mean. So, regardless of the magnitude of 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the raw data points, the standardization allows multiple sets of data to be 
compared to each other.  
2.Use a standard normal table to find the pvalue. A standard normal 
table has values for z and corresponding values for F(x), where F(x) is known 
as the p‐value and is just the cumulative probability of getting a particular x 
value (like a CDF). A standard normal table may look like the following table 
(it should be noted that if you are dealing with a Standard Normal Table that 
contains only positive z values, the following property can be used to convert 
your negative z values into positive ones: F(‐z)=1‐F(z)):  

Table 1: Standard Normal Table 

 
 

A more detailed standard normal table can be found here (Note: This table is 
the same table used in the 'Basic Statistics' wiki).  
3. What if I want the probability of z falling between a range of x=a and 
x=b?. First, find your two z values that correspond to a and b. So these would 

be  and  , respectively. The probability of 
x falling in between a and b is just: F(zb) – F(za), where F(zb) and F(za) are 
found from the standard normal tables.  

Sample Calculation  

Lets take the same scenario as used above, where you have a data set with an average of 
20 and standard deviation of 3 and calculate the probability of a randomly selected data 
point being between 20 and 23.  
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Solution  

To do this simply subtract the two Z scores:  

 

 

These Z scores correspond to probabilities of 0.933 and 0.5 respectively. Their 
difference, 0.433, is the probability of a randomly selected value falling between the two. 
Notice that this is almost identical to the answer obtained using the Erf method. Note that 
obtaining this answer also required much less effort. This is the main advantage of using 
Z scores.  

8.3 Properties of a Normal Distribution 

There are several properties for normal distributions that become useful in 
transformations.  

1 If X is a normal with mean μ and σ2 often noted then the 
transform of a data set to the form of aX + b follows a 

.  

2 A normal distribution can be used to approximate a binomial distribution (n trials with 
probability p of success) with parameters μ = np and σ2 = np(1 − p). This is derived using 
the limiting results of the central limit theorem.  

3 A normal distribution can be used to approximate a Poisson distribution (parameter λ) 
with parameters μ = σ2 = λ. This is derived using the central limit theorem.  

4 The a sum of random variables following the same normal distribution ˜N(nμ,nσ2). This 

result shows how the sample mean .  

5 The square of a standard normal variable is a chi-squared variable with one degree of 
freedom.  
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6 Combining 4 and 5 yields the sum of n squared standard normal variables is a chi-
squared variable with n degrees of freedom. This has application for chi-square testing as 
seen other sections of this text.  

8.4 Exponential Distribution 

The exponential distribution can be thought of as a continuous version of the geometric 
distribution without any memory. It is often used to model the time for a process to occur 
at a constant average rate. Events that occur with a known probability for a given x value 
build the theory developed previously (i.e. F(x) vs. x, F(x) in this case is different than 
before), where x may indicate distance between mutations on a DNA strand., for one 
example application, rate of instrument failure, or time required for a radioactive particle 
to decay (the decay RATE) for the below applications.  

However, do remember that the assumption of a constant rate rarely holds as valid in 
actuality. The rate of incoming phone calls differs according to the time of day. But if we 
focus on a time interval during which the rate is roughly constant, such as from 2 to 4 
p.m. during work days, the exponential distribution can be used as a good approximate 
model for the time until the next phone call arrives.  

One can implement the exponential distribution function into Mathematica using the 
command: ExponentialDistribution[lambda].  

Or, for a more grass-roots understanding of the function reference the following website, 
detailing the number of sharks seen in area one square mile in different one hour time 
periods. Use the "Fish" button to run the applet. To change the parameter lambda, type in 
the value and hit the "Clear" button.  

http://www.math.csusb.edu/faculty/stanton/m262/poisson_distribution/Poisson_old.html  

8.4.1 The Probability Density Function (PDF) 

A few notes are worth mentioning when differentiating the PDF from the two-parameter 
Exponential Distribution function. As λ is decreased in value, the distribution is stretched 
out to the right, and as λ is increased, the distribution is pushed toward the origin. This 
distribution has no shape parameter as it has only one shape, i.e. the exponential, and the 
only parameter it has is the failure rate, λ. The distribution starts at T = 0 at the level of 
f(T = 0) = λ and decreases thereafter exponentially and monotonically as T increases, and 
is convex. The PDF for an exponential distribution is given in the form below, where λ is 
the rate parameter and x is random variable:  
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Figure 5: PDF (λ = 0.25) for Exponential Distribution 

Here, x could represent time while the rate parameter could be the rate in which decay 
occurs. The rate parameter must be constant and greater than 0. The PDF decreases 
continuously in this diagram because of its definition as a decay example. Exponential 
decay typically models radioactive particles which lose mass per unit of time. Thus F(x) 
represents the mass of the particle with x equalling elapsed time since the start of the 
decay. As time passes, the mass falls due to radioactive decay (particle emits radiation as 
a form of energy release, any energy that results subtracts from mass, E = MC2).  

8.4.2 The Cumulative Distribution Function (CDF) 

The CDF for an exponential distribution is expressed using the following:  
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Figure 6: CDF (λ = 1) for Exponential Distribution 

Following the example given above, this graph describes the probability of the particle 
decaying in a certain amount of time (x).  

 

8.5 Properties of the Exponential Distribution 

Among the distribution functions, the exponential distribution funtion has two unique 
properties, they are the memoryless property and a constant hazard rate.  

 
--The Memoryless Property--  

If a random variable, X, survived for "t" units of time, then the probability of X surviving 
an additional "s" units of time is the same as the probability of X suriving "s" units of 
time. The random variable has "forgotten" that it has survived for "t" units of time, thus 
this property is called the "memoryless" property.  

A random variable, X, is memoryless if  

P { X > s+t | X > t} = P { X > s } for all s,t (1)  

From using (1) above and the definition of conditional probability:  
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(2)  

and so:  

P{X > s+t} = P{X > s}P{X > t} (3)  

to prove the above property, we suppose that there is a function such that F(x)=P{X > x}.  

by equation 3 above, we have  

F(x+t) = F(s)F(t) (4)  

By elementary calculus, the only continuous solution for this kind of functiona equation 
is  

F(x) = e − λx (5)  

It is thus proven the only distribution that can solve equation (4), or the memoryless 
property, is an exponential function.  

 
--The Constant Hazard Rate Property--  

Suppose the random variable, X, survived for "t" units of time, and r(t) represents the 
conditional probability that the t-year-old variable will fail. Mathematically the hazard 
rate, or the failure rate, is defined as:  

(6)  

For the exponential distribution, the hazard rate is constant since  

f(t) = e − λx,  

and  

 

r(t) = λ  
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the above proved that r(t) is constant for exponential distribution.  

8.5.1 Standard Exponential Distribution 

When an exponential distribution has λ = 1, this is called the standard exponential 
distribution. The equation and figure for this function is described below:  

 

 
Figure 7: Standard Exponential Distribution Curve 

This type of distribution is a way of standardizing your graph. This parallels our previous 
example of standard normal distribution, however, since time is now the x variable, it 
may not be negative (as an assumption of our hypothetical scenario). Thus, decay occurs 
only for positive time (as the radioactive particle emits mass).  

8.6 Worked out Example 1 

You are the lead process engineer for a leading pharmaceutical company, and your 
newest responsibility is to characterize one of your bioreactors. Part of this 
characterization is to determine the temperature variance within the reactor during the last 
step in an isothermal reaction. After taking data during this reaction for two weeks 
straight, you determine that the average temperature of the reaction is 30 C, with a 
standard deviation of your set of data being 3 C. Also, the data fits an normal distribution 
(ie. it is not skewed either side of the average) The higher-ups, ie. the ones who give you 
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the raises, decide that this reactor needs to operate within 6 degrees of its average 
operating temperature at least 60% of the time. Given the data that you have taken, does 
the reactor meet these standards, or will you be pulling some 80 hour weeks in the near 
future trying to fix the process? 

SOLUTION 

The information given in this problem is as follows:  

• Average: 30  
• Standard Deviation: 3  
• We want to find the probability of the temperature falling between 24 and 36 

C  

Using the PDF for a Normal Distribution, we can say that:  

 
 

This expression can easily be solved using a table of Erf[] values as well as the property 
of the Erf function that states Erf(-x)=-Erf(x). Another simple approach would be to use 
Mathematica with the syntax shown below.  

 

Solving for P(24<T<36), we get the probability of the temperature falling within two 
standard deviations of the average to be about 95% Since this value is much greater than 
the required 60%, you can be rest assured that your reactor is running well.  

8.7 Worked out Example 2 

You are an engineer at a plant producing a volatile fuel. In your first week on the job both 
the primary control and redundancy control fail in the same day, necessitating the 
significant inconvenience of shutting down the reactor in order to prevent a much more 
inconvenient explosion. Your boss wants you to decide whether to simply replace both 
sensors or add an additional sensor to ensure that such problems are avoided in the future. 
While adding another sensor would certainly help solve the problem there is an extra cost 
associated with purchasing and installing the sensor. A very helpful fellow engineer with 
a penchant for statistics helps you out by informing you that these dual instrument 
failures occur at the rate of one per 3.8 * 108 hours. What is the probability that this type 
of failure will happen again in the next 50 years (the estimated life of the plant)? What is 
your recommendation to your boss?  
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SOLUTION  

Because you are given the probability of the event occuring and are interested in the 
amount of time separating two events using an exponential distribution is appropriate. To 
solve this you use the CDF expression:  

 

In this case λ is given in hours and x in years, so you must first convert one of the units. 
Also the rate give is in events per hour. λ must be entered into the equation as the inverse 
(probability per time unit). Entering the appropriate numbers yeilds the following 
equation:  

 

There is a 0.115% chance of both sensors failing in the same day sometime in the next 50 
years. Based in this data you can conclude that you are probably safe simply replacing the 
two sensors and not adding a third.  

 

8.8 Worked Out Example 3 

You work at a chemical plant that uses the famous reaction A + B -> C to produce C. As 
part of your process you operate a mixing tank to dilute reactant A before sending it to 
the reactor. Reactant B is a byproduct from another process in the plant and comes in at a 
variable rate. This causes fluctuations in the level of the mixing tank for reactant A as the 
flow in and out of the tank has to be adjusted. In the past this has caused overflows in 
mixing tank A that your boss has tasked you with avoiding. You'ved decided the easiest 
way to avoid overflows is to simply buy a larger mixing tank. Currently the mixing tank 
is 50 gallons. After some experimentation you find the normal operating conditions of the 
tank are 45 gallons of reactant A with a 3 gallon standard deviation. However, to 
minimize costs the tank needs to be as small as possible. What is smallest tank you can 
buy that avoids overflows 99.99% of the time?  

Solution:  

Known values: 
μ = 45gal. 
σ = 3gal.  

Using a z-table you find that the smallest z-value that gives an F(x) of 0.9999 is 3.71. 
You then rearrange the z equation given below to solve for x and plug in all known 
values.  
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x = z * σ + μ 
 

x = 3.71 * 3 + 45 = 56.1 
 

In order to prevent overflows 99.99% of the time the smallest tank that can be used is 
56.1 gal.  

8.9 Multiple Choice Question 1 

Please briefly summarize the primary difference between continuous and discrete 
distributions, and their respective methods of analysis:  

a. Continuous distributions and discrete distributions are always both analyzed through 
calculus methods only. Continuous distributions are distinct from discrete distributions in 
that the sample size is too small to treat each individual event in a discrete manner.  

b. Continuous distributions are analyzed by applying calculus methods whereas discrete 
distributions are commonly addressed via arithmetic methods. Continuous distributions 
are distinct from discrete distributions in that the sample size is too large to treat each 
individual event in a discrete manner.  

c. By performing a standard z- transform, the interested student may begin the process of 
characterizing the probability of z falling between the specific range from x = ‘a’ and x = 
‘b’.  

d. Error functions allow us to determine the likelihood of a data point falling within 
certain bounds without having to complete the rigorous of the probability distribution 
function. Continuous distributions may be addressed in this manner since their sample 
size is too confusing to be addressed in a discrete manner.  

8.10 Multiple Choice Question 2 

Please explain the primary philosophical difference between the parameters of the 
probability distribution function (PDF) and the cumulative distribution function (CDF).  

a. Who uses the word philosophical in a chemical engineering problem? The author of 
this question is most likely confused and trying too hard, so I will protest by not 
answering.  
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b. The PDF and CDF are identical in application, and as such, must also have identical 
parameters.  

c. The PDF and CDF both commonly measure the probability of sensor noise being at or 
below a specific value. They are different in the fact that the CDF contains a specific 
range of use, ranging from k1 to k2, whereas the PDF does not, as it rises from negative 
infinity to a value, k.  

d. The major difference the PDF and CDF is that the PDF provides the probability of the 
variable x falling within a defined range. Alternatively, CDF gives the probability of the 
variable x falling at or below a certain limit, k.  

 

8.11 Sage's Corner 

Therapeutic Insulin Production  
http://www.youtube.com/v/b3aDqdOzP5I 

A Brief Problem on Continuous Exponential Distribution 
Functions  
http://video.google.com/googleplayer.swf?docId=6018713000402551106 

A copy of the slides can be found here:Slides without narration  

Normal Distribution Functions in Excel  

 

If YouTube doesn't work, click here Normal Distribution Functions in Excel  

8.12 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9.1 What are Discrete Distributions? 

In order to explain the meaning and utility of dicrete distributions, it is necessary to first 
introduce the topic of Random Variables. The term random in Random Variable refers 
to the idea that each individual outcome has an equal chance of occuring. Therefore, each 
outcome is randomly determined. For example, a fair coin has an equal probability of 
flipping up heads as it does flipping up tails. Hence, the random variable is determined by 
the outcome of flipping a coin. However, it is frequently the case in chemical engineering 
that when a process is performed we are only interested in some function of the outcome 
rather than the outcome itself. For example, in a chemical reactor we might want to know 
the probability that two molecules collide and react to form a product at a certain 
temperature, however it is more useful to know the sum of the these collisions that form 
product rather than the individual occurences. This is analgous to rolling two dice and 
wanting to know the sum of the dice rather than the individual numbers rolled. These 
discrete values defined on some sample space compose what are called Random 
Variables.  

9.1.1. Random Variable Example 

Suppose that our experiment consists of tossing 4 fair coins. If we define a variable X and 
let it denote the number of heads flipped, then X is a random variable with possible 
discrete values of 0,1,2,3,4 with respective probabilities:  
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We can do the same for the probability of rolling sums of two dice. If we let Y denote the 
sum, then it is a random variable that takes on the values of 2, 3, 4, 5, 6, 7, 8, 9, 10, & 12. 
Rather than writing out the probability statements we can represent Y graphically:  

 

The graph plots the probability of the Y for each possible random value in the sample 
space (y-axis) versus the random value in the sample space (x-axis). From the graph one 
can infer that the sum with the greatest probability is Y = 7. 

These are just two ways one can describe a random variable. What this leads into is 
representing these random variables as functions of probabilities. These are called the 
discrete distributions or probability mass functions. Furthermore, independent random 
events with known probabilities can be lumped into a discrete Random Variable. The 
Random Variable is defined by certain criteria, such as flipping up heads a certain 
number of times using a fair coin. The probability of a certain random variable equaling a 
discrete value can then be described by a discrete distribution. Therefore, a discrete 
distribution is useful in determining the probability of an outcome value without having 
to perform the actual trials. For example, if we wanted to know the probability of rolling 
a six 100 times out of 1000 rolls a distribution can be used rather than actually rolling the 
dice 1000 times.  
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Note: Here is a good way to think of the difference between discrete and continuous 
values or distributions. If there are two continuous values in a set, then there exists an 
infinite number of other continuous values between them. However, discrete values can 
only take on specific values rather than infinite divisions between them. For example, a 
valve that can only be completely open or completely closed is analogous to a discrete 
distribution, while a valve that can change the degree of openness is analogous to a 
continuous distribution.  

The three discrete distributions we discuss in this article are the binomial distribution, 
hypergeometric distribution, and poisson distribution.  

9.2 Binomial Distribution 

This type of discrete distribution is used only when both of the following conditions are 
met:  

1. The test has only two possible outcomes  
2. The sample must be random  

If both of the above conditions are met, then one is able to use this distribution function 
to predict the probability of a desired result. Common applications of this distribution 
range from scientific and engineering applications to military and medical ones. For 
example, a binomial distribution may be used in determining whether a new drug being 
tested has or has not contributed ("yes" or "no" labels) to alleviating symptoms of a 
disease.  

Since only two outcomes are possible, they can be denoted as MS and MF for the number 
of successes and number of failures respectively. The term p is the frequency with which 
the desired number, MS or MF will occur. The probability of a collection of the two 
outcomes is determined by the following equation. 

 
 
k in the above equation is simply a proportionality constant. For the binomial distribution 
it can be defined as the number of different combinations possible  
 

 

! is the factorial operator. For example, 4! = 4 * 3 * 2 * 1 and x! = x * (x − 1) * (x − 2) * 
… * 2 * 1. In the above equation, the term (MS + MF)! represents the number of ways one 
could arrange the total number of MS and MF terms and the denominator, NS!MF!, 
represents the number of ways one could arrange results containing MS successes and MF 
failures. Therefore, the total probability of a collection of the two outcomes can be 
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described by combining the two above equations to produce the binomial distribution 
function.  
 

 
 
Which can be simplified as the equation  
 

 
 
In the above equation, n represents the total number of possibilities, or MS + MF, and k 
represents the number of desired outcomes, or MS. These equations are valid for all non-
negative integers of MS , MF , n , and k and also for p values between 0 and 1. 
 
Below is a sample binomial distribution for 30 random samples with a frequency of 
occurrence being 0.5 for either result. This example is synonymous to flipping a coin 30 
times with k being equal to the number of flips resulting in heads.  

 

 
 
An important note about these distributions is that the area under the curve, or the 
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probability of each integer added together, always sums up to 1.  
 
One is able to determine the mean and standard deviation, which is described in the Basic 
Statistics article, as shown below.  
 

 

 
 
An example of a common question that may arise when dealing with binomial 
distributions is “What is the probability of a certain result occurring 33 – 66% of the 
time?” In the above case, it would be synonymous to the likelihood of heads turning up 
between 10 and 20 of the trials. This can be determined by summing the individual 
probabilities of each integer from 10 to 20.  
 

 

 
 
The probability of heads resulting in 33 – 66% of the trials when a coin is flipped 30 
times is 95.72%.  

 
The probability for binomial distribution can also be calculated using Mathematica. This 
will simplify the calculations, save time, and reduce the errors associated with calculating 
the probability using other methods such as a calculator. The syntax needed to calculate 
the probability in Mathematica is shown below in the screen shot. An example is also 
given for various probabilities based on 10 coin tosses.  
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where k is the number of events, n is the number of independent samples, and p is the 
known probability. The example above also generates a set of values for the probabilities 
of getting exactly 0 to 10 heads out of 10 total tosses. This will be useful because it 
simplifies calculating probabilities such as getting 0-6 heads, 0-7 heads, etc. out of 10 
tosses because the probabilities just need to be summed according to the exact 
probabilities generated by the table.  

 
In addition to calling the binomial function generated above, Mathematica also has a built 
in Binomial Distribution function that is displayed below:  

PDF[BinomialDistribution[n,p],k] where n,p, and k still represent the same variables as 
before  

This built in function can be applied to the same coin toss example.  

 

As expected, the probabilities calculated using the built in binomial function matches the 
probabilities derived from before. Both methods can be used to ensure accuracy of 
results.  

9.3 Poisson Distribution 

Note: The variables used in this section are defined the same way as seen above in 
the "Binomial Distribution" section.  

A Poisson distribution has several applications, and is essentially a derived limiting case 
of the binomial distribution. It is most applicably relevant to a situation in which the total 
number of successes is known, but the number of trials is not. An example of such a 
situation would be if you know the mean expected number of cancer cells present per 
sample and wanted to determine the probability of finding 1.5 times that amount of cells 
in any given sample, you would use a Poisson distribution.  

In order to derive the Poisson distribution, you must first start off with the binomial 
distribution function. 
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Due to the fact that the Poisson distribution does not require an explicit statement of the 
total number of trials, you must eliminate n out of the binomial distribution function. This 
is done by first introducing a new variable (μ), which is defined as the expected number 
of successes during the given interval and can be mathematically described as:  
 

 

We can then solve this equation for p, substitute into equation 5, and obtain equation 7, 
which is a modified version of the binomial distribution function.  
 

 
 
If we keep μ finite and allow the sample size to approach infinity we obtain equation 8, 
which is equal to the Poisson distribution function. (Notice to solve the Poisson 
distribution, you do not need to know the total number of trials)  
 

 

In the above equation:  

• e is the base of the natural logarithm (e = 2.71828...)  
• k is the number of occurrences of an event  
• k! is the factorial of k  
• μ is a positive real number, equal to the expected number of occurrences that 

occur during the given interval.  

 
Using the Poisson distribution a probability versus number of successes plot can be made 
for several different numbers of successes.  



 556 

 

 
This graph represents several key characteristics of a Poisson process.  

1. The number of successes is independent of the time since the last event.  
2. Probabilities, or outcomes, are discrete.  
3. The probability of two or more successes in a short interval is extremely 

small (approximately zero).  

These rules hint that the Poisson processes only model rare events, yet this is not true. 
What these characteristics say is that if you are limited to a small interval window, you 
will observe less than two events. It is important to know that the Poisson distribution is 
actually an approximation of the binomial distribution. As n increases and p decreases, 
the Poisson distribution becomes equal to the binomial distribution.  

9.4 Hypergeometric Distribution 

Note: The definitions of the variables in this section are different than the previous 
sections. 

A hypergeometric distribution function is used only if the following three conditions can 
be met:  

1. Only two outcomes are possible 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2. The sample must be random  
3. Selections are not replaced  

Hypergeometric distributions are used to describe samples where the selections from a 
binary set of items are not replaced. This distribution applies in situations with a discrete 
number of elements in a group of N items where there are K items that are different. As a 
simple example imagine we are removing 10 balls from a jar of mixed red and green balls 
without replacing it. What is the chance of selecting 2 green balls? 5 red balls? In general 
terms, if there are K green balls and N total balls , the chance of selecting k green balls by 
selecting n balls is given by 
 

 

As another example, say there are two reactants sitting in a CSTR totaling to N 
molecules. The third reactant can either react with A or B to make one of two products. 
Say now that there are K molecules of reactant A, and N-K molecules of reactant B. If 
we let n denote the number of molecules consumed, then the probability that k molecules 
of reactant of A were consumed can be described by the hypergeometric distribution. 
Note: This assumes that there is no reverse or side reactions with the products. 

In mathematical terms this becomes 
 

 
 
where, 

• N = total number of items  
• K = total number of items with desired trait  
• n = number of items in the sample  
• k = number of items with desired trait in the sample 

This can be written in shorthand as 
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Where 
 

 

The formula can be simplified as follows: There are possible samples (without 

replacement). There are ways to obtain k green balls and there are 

ways to fill out the rest of the sample with red balls.  

 
If the probabilities P are plotted versus k, then a distribution plot similar to the other 
types of distributions is seen. 
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Question: 
 
Suppose that you have a bag filled with 50 marbles, 15 of which are green. What is the 
probability of choosing exactly 3 green marbles if a total of 10 marbles are selected? 
Answer: 
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9.4.1 Fisher's exact 

A special case of the hypergeometric distribution is the Fisher's exact method. Fisher's 
exact is the probability of sampling a specific configuration of a 2 by 2 table with 
constrained marginals. Marginals in this case refer to the sums for each row and each 
column. Therefore, every Fisher's exact will have 4 marginals, those 4 being the sum of 
the first column, the sum of the second column, the sum of the first row, and the sum of 
the second row. Since these values are constant, that also means that the sum of all the 
elements in the table will always equal the same thing. This is clarified with the image 
below:  

 

 

 
In the image above, constant marginals would mean that E, F, G, and H would be held 
constant. Since those values would be constant, I would also be constant as I can be 
thought of as the sum of E and F or G and H are of which are constants.  

In theory this test can be used for any 2 by 2 table, but most commonly, it is used when 
necessary sample size conditions for using the z-test or chi-square test are violated. The 
table below shows such a situation:  

From this pfisher can be calculated:  

 

where the numerator is the number of ways the marginals can be arranged, the first term 
in the denominator is the number of ways the total can be arranged, and the remaining 
terms in the denominator are the number of ways each observation can be arranged.  

As stated before, this calculated value is only the probability of creating the specific 2x2 
from which the pfisher value was calculated.  

Another way to calculate pfisher is to use Mathematica. The syntax as well as an example 
with numbers can be found in the screen shot below of the Mathematica notebook. For 
further clarification, the screen shot below also shows the calculated value of pfisher with 
numbers. This is useful to know because it reduces the chances of making a simple 
algebra error.  
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Another useful tool to calculate pfisher is using available online tools. The following link 
provides a helpful online calculator to quickly calculate pfisher. [1]  

Using Mathematica or a similar calculating tool will greatly simplify the process of 
solving for pfisher.  

After the value of pfisher is found, the p-value is the summation of the Fisher exact value(s) 
for the more extreme case(s), if applicable. The p-value determines whether the null 
hypothesis is true or false. An example of this can be found in the worked out 
hypergeometric distribution example below.  

 
Finding the p-value  

As elaborated further here: [2], the p-value allows one to either reject the null hypothesis 
or not reject the null hypothesis. Just because the null hypothesis isn't rejected doesn't 
mean that it is advocated, it just means that there isn't currently enough evidence to reject 
the null hypothesis.  

In order to fine the p-value, it is necessary to find the probabilities of not only a specific 
table of results, but of results considered even more "extreme" and then sum those 
calculated probabilities. An example of this is shown below in example 2.  

What is considered "more extreme" depends on the situation. In the most general sense, 
more extreme means further from the expected or random result.  

Once the more extreme tables have been created and the probability for each value 
obtained, they can be added together to find the p-value corresponding to the least 
extreme table.  

It is important to note that if the probabilities for every possible table were summed, the 
result would invariably be one. This should be expected as the probability of a table being 
included in the entire population of tables is 1.  

• Example 1 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The example table below correlates the the amount of time that one spent studying for an 
exam with how well one did on an exam.  

 

 

 
There are 5 possible configurations for the table above, which is listed in the 
Mathematica code below. All the pfisher for each configuration is shown in the 
Mathematica code below.  

 

 

• Example 2  

What are the odds of choosing the samples described in the table below with these 
marginals in this configuration or a more extreme one?  
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Solution  

First calculate the probability for the initial configuration.  

 

Then create a new table that shows the most extreme case that also maintains the same 
marginals that were in the original table.  

 

Then calculate the probability for the most extreme case.  

 

Finally add the two probabilties together.  

pfisher = 0.000643704 + 0.00000564653 = 0.00064  

9.5 Maximum Entropy Function 

The maximum entropy principle uses all the testable information about multiple given 
probability distributions to describe the true probability distribution by maximizing the 
information entropy. To derive a distribution with the maximum entropy principle, you 
obtain some testable information I about some quantity x. This information is expressed 
as m constraints on the expectation values of the functions fk. This makes the Bayesian 
probability distribution to satisfy:  
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We also know that all of these probabilities must sum to 1, so the following constraint is 
introduced:  

 

Then the probability distribution with maximum information entropy that satisfies all 
these constraints is:  

 

The normalization constant is determined by the classical partition function:  

 

The λk parameters are Lagrange multipliers with values determined by:  

 

All of the well-known distributions in statistics are maximum entropy distributions given 
appropriate moment constraints. For example, if we assume that the above was 
constrained by the second moment, and then one would derive the Gaussian distribution 
with a mean of 0 and a variance of the second moment.  

The use of the maximum entropy distribution function will soon become more 
predominant. In 2007 it had been shown that Bayes’ Rule and the Principle of Maximum 
Entropy were compatible. It was also shown that maximum entropy reproduces every 
aspect of orthodox Bayesian inference methods. This enables engineers to tackle 
problems that could not be simply addressed by the principle of maximum entropy or 
Bayesian methods, individually, in the past.  
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9.6 Summary 

The three discrete distributions that are discussed in this article include the Binomial, 
Hypergeometric, and Poisson distributions. These distributions are useful in finding the 
chances that a certain random variable will produce a desired outcome.  

9.6.1 Binomial Distribution Function 

 
The Binomial distribution function is used when there are only two possible outcomes, a 
success or a faliure. A success occurs with the probability p and a failure with the 
probability 1-p. Suppose now that in n independent trials the binomial random variable X 
represents the number of successes. The following equation applies to binomial random 
variables: 
 

 
 

 

9.6.2 Poisson Distribution Function 

 
The Poisson distribution can be used in a large variety of situations. It can also be used to 
approximate the Binomial Distribution when n is large and p is small yielding a moderate 
np. 

The following example is a situation in which the Poisson Distribution applies: Suppose a 
CSTR is full of molecules and the probability of any one molecule reacting to form 
product is small (say due to a low temperature) while the number of molecules is large, 
then the probability distribution function would fit the Poisson Distribution well (Note: 
all the molecules are the same here, unlike in the hypergeometric example to follow). 
Other examples include, the number of wrong telephone numbers that are dialed each day 
or the number of people in a community that live to 100 years of age. The following 
equation is the Poisson Distribution function: 
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9.6.3 Summary of Key Distributions 

 

9.6.4 Summary of Distribution Approximations 

There are many useful approximations for discrete random variables. An important 
approximation is that which yields a normal distribution because it allows for confidence 
intervals and probabilities to be continuous. Additionally, since the normal distribution is 
so well understood it is used for convenience when speaking to those who have yet to 
study probability theory. Below is a table of useful approximations. The majority of the 
theory behind these approximations is in the application of the Central Limit Theorem 
and Large Number Law but these are outside the scope of this text.  
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The above chart can be read as "A random variable under the following distribution can 
is approximately a <blank> random variable when the following requirements are met." 
For example, the final line of the table can be read: "A random variable following a 
Poisson distribution with parameter λ is approximately a continuous Normal random 
variable where the mean is λ and the variance is λ assuming that there are at least 100 
samples that have been taken."  

9.7 Worked out Binomial Distribution Example 

In order for a vaccination of Polio to be efficient, the shot must contain at least 67% of 
the appropriate molecule, VPOLIO. To ensure efficacy, a large pharmaceutical company 
manufactured a batch of vaccines with each syringe containing 75% VPOLIO. Your 
doctor draws a syringe from this batch which should contain 75% VPOLIO. What is the 
probability that your shot, will successfully prevent you from acquiring Polio? Assume 
the syringe contains 100 molecules and that all molecules are able to be delivered from 
the syringe to your blood stream.  

9.7.1 Solution 

This can be done by first setting up the binomial distribution function. In order to do this, 
it is best to set up an Excel spreadsheet with values of k from 0 to 100, including each 
integer. The frequency of pulling a VPOLIO molecule is 0.75. Randomly drawing any 
molecule, the probability that this molecule will never be VPOLIO, or in other words, the 
probability of your shot containing 0 VPOLIO molecules is  
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Note that 0!=1  
 
 
Your spreadsheet should contain probabilities for all off the possible values of VPOLIO 
in the shot. A link to our spreadsheet can be seen at the end of this article. A graph of our 
distribution is shown below.  

 
The next step is to sum the probabilities from 67 to 100 of the molecules being VPOLIO. 
This is calculation is shown in the sample spreadsheet. The total probability of at least 67 
of the molecules being VPOLIO is 0.9724. Thus, there is a 97.24% chance that you will 
be protected from Polio.  

Media:Binomial_Distribution_Example1.xls  

 

9.8 Gaussian Approximation Of A Binomial Distribution Example 

Calculation of the binomial function with n greater than 20 can be tedious, whereas 
calculation of the Gauss function is always simple. To illustrate this, consider the 
following example.  

Suppose we want to know the probability of getting 23 heads in 36 tosses of a coin. This 
probability is given by the following binomial distribution:  
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To use a Gaussian Approximation, we must first calculate the mean and standard 
deviation.  
 

 

 
 
Now we can approximate the probability by the Gauss function below.  
 

 
 
This approximation is very close and requires much less calculation due to the lack of 
factorials. The usefulness of the Gaussian approximation is even more apparent when n is 
very large and the factorials involve very intensive calculation.  

9.9 Worked out Hypergeometric Distribution Example 

A teacher has 12 students in her class. On her most recent exam, 7 students failed while 
the other 5 students passed. Curious as to why so many students failed the exam, she took 
a survey, asking the students whether or not they studied the night before. Of the students 
who failed, 4 students did study and 3 did not. Of the students who passed, 1 student did 
study and 4 did not. After seeing the results of this survey, the teacher concludes that 
those who study will almost always fail, and she proceeds to enforce a "no-studying" 
policy. Was this the correct conclusion and action?  

9.9.1 Solution 

This is a perfect situation to apply the Fisher's exact test to determine if there is any 
association between studying and performance on the exam. First, create a 2 by 2 table 
describing this particular outcome for the class, and then calculate the probability of 
seeing this exact configuration. This is shown below.  
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Next, create 2 by 2 tables describing any configurations with the exact same marginals 
that are more extreme than the one shown above, and then calculate the probability of 
seeing each configuration. Fortunately, for this example, there is only one configuration 
that is more extreme, which is shown below.  

 

 

 

 
Finally, test the significance by calculating the p-value for the problem statement. This is 
done by adding up all the previously calculated probabilities.  

 

 

 
Thus, the p-value is greater than 0.05, which is the standard accepted level of confidence. 
Therefore, the null hypothesis cannot be rejected, which means there is no significant 
association between studying and performance on the exam. Unfortunately, the teacher 
was wrong to enforce a "no-studying" policy.  
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9.10 Worked out Poisson Example  

The hormone PREGO is only found in the female human body during the onset of 
pregnancy. There is only 1 hormone molecule per 10,000 found in the urine of a pregnant 
woman. If we are given a sample of 5,000 hormone molecules what is the probability of 
finding exactly 1 PREGO? If we need at least 10 PREGO molecules to be 95% positive 
that a woman is pregnant, how many total hormone molecules must we collect? If the 
concentration of hormone molecules in the urine is 100,000 molecules/mL of urine,what 
is the minimum amount of urine (in mL) necessary to insure an accurate test(95% 
positive for pregnancy)? 

9.10.1 Solution 

 

This satisfies the characteristics of a Poisson process because 
 
1.)PREGO hormone molecules are randomly distributed in the urine 
2.)Hormone molecule numbers are discrete 
3.)If the interval size is made smaller (i.e. our sample size is reduced), the probability of 
finding a PREGO hormone molecule goes to zero  
 
Therefore we will assume that the number of PREGO hormone molecules is distributed 
according to a Poisson distribution. 
 
To answer the first question, we begin by finding the expected number of PREGO 
hormone molecules: 
 

 
 
Next we use the Poisson distribution to calculate the probability of finding exactly one 
PREGO hormone molecule: 
 

 
 
The second problem is more difficult because we are calculating n. We begin as before 
by calculating the expected number of PREGO hormone molecules: 
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Now we apply the Poisson Distribution Function equation: 
 

 
 
It is easiest to solve this in Mathematica: 
 

 
 
The function FindRoot[] was used in Mathematica because the Solve[] function has 
problems solving polynomials of degree order greater than 4 as well as exponential 
functions. However, FindRoot[] requires an initial guess for the variable trying to be 
solved, in this case n was estimated to be around 100,000. As you can see from the 
Mathematica screen shot the total number of hormone molecules necessary to be 95% 
sure of pregnancy (or 95% chance of having atleast 10 PREGO molecules) was 169,622 
molecules. 
 
For the last step we use the concentration of total hormone molecules found in the urine 
and calculate the volume of urine required to contain 169,622 total hormone molecules as 
this will yield a 95% chance of an accurate test: 
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9.11 Example: Gaussian Approximation to a Poisson Distribution  

To illustrate the Gaussian approximation to the Poisson distribution, consider a 
distribution where the mean (μ) is 64 and the number of observations in a definite 
interval (N) is 72. Determine the probability of these 72 observations?  

Using the Poisson Distribution  

 

 

This can be difficult to solve when the parameters N and μ are large. An easier 
approximation can be done with the Gauss function:  

 

where, X=μ and σ= .  

9.12 Multiple Choice Question 1 

All of the following are characteristics of the Poisson distribution EXCEPT: 
a) The number of successes is independent of the interval 
b) There are imaginary numbers 
c) Probabilities, or outcomes, are discrete 
d) Two or more success in a short interval is extremely small 

9.13 Multiple Choice Question 2 

If there are K blue balls and N total balls , the chance of selecting k blue balls by 
selecting n balls in shorthand notation is given by: 
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a)  

b)  

c)  

d)  

 

9.14 Discrete Distribution Presentation: Clown Time 
http://www.youtube.com/v/6WOieU664Ew 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Section 10. Multinomial distributions 

 Note: Video lecture available for this section!  
Authors: Hillary Kast, Andrew Kim, Adhi Paisoseputra, Stephanie Van Kirk  
Stewards: Gillian Berberich, Katie Feldt, Christopher Mark, Jason Wong  

Date Released: 11/20/07; Revised: 11/29/07  

10.1 Introduction 

Statistical events generate two types of outcomes: continuous or discrete. Continuous 
outcomes can take an infinite number of values; for instance, a person's height can take 
any real number, so there are infinite possibilities. Typical events generating continuous 
outcomes may follow a normal, exponential, or geometric distribution. Discrete outcomes 
can only on take prescribed values; for instance, a dice roll can only generate an integer 
between 1 to 6. Discrete outcomes are typically distributed either binomially or 
multinomially. It is with multinomial distribution that this article is concerned.  

10.2 Multinomial Distributions: Mathematical Representation 

Multinomial distributions specifically deal with events that have multiple discrete 
outcomes. The Binomial distribution is a specific subset of multinomial distributions in 
which there are only two possible outcomes to an event.  

Multinomial distributions are not limited to events only having discrete outcomes. It is 
possible to categorize outcomes with continuous distributions to different degrees (high, 
medium, low). For instance, the water level - a continuous entity - in a storage tank can 
be made discrete by categorizing them into either "desirable" or "not desirable." 
Multinomial distributions, therefore, have expansive applications in process control.  

10.2.1 Probability Density Function 

One way of describing the probability of an outcome occurring in a trial is the probability 
density function. The probability density function (PDF) mathematically represents the 
probability of having a specified outcome. The probability density function is a useful 
way to find the probability of simultaneous occurrence of specific results (i.e. having n1 = 
1, n2 = 1, and n3 = 1 with 3 trials as opposed to other outcomes, such as n1 = 3, n2 = 0, n3 = 
0 or n1 = 0, n2 = 1, n3 = 2).  

 

where  
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N is the number of trials  
k is the number of possible outcomes  
ni is the number of occurrences of outcome i  
pi is the probability of observing outcome i  

We know that the the sum of the probabilities of all possible outcomes that can occur in a 
trial must be unity (since one outcome must occur). The probability density function 
yields this result for both continuous and discrete outcomes. However, it is important to 
note that to get this result for continuous outcomes, one must take the integral of the 
probability density function over all possible outcomes. To get this unity result for 
discrete outcomes, one must sum the probabilities of each outcome (similar to taking 
Riemann sums).  

10.2.2 Cumulative Distribution Function 

While the probability density function calculates the probability of a single outcome, the 
cumulative distribution function (CDF) is a useful way to find the probability that an 
outcome lies within a given range of values.  

 

where  

N is the number of trials  
k is the number of possible outcomes  
ni is the number of occurrences of outcome i  
pi is the probability of seeing outcome i  
ci is the maximum number of occurrences of outcome i  

10.2.3 Visualizing Probability Density Function with Mathematica 

Before using the functions for multinomial probability distributions, a special package 
must be loaded using the following command (depending on the version of 
Mathematica):  

<< Needs["MultivariateStatistics`"] (Mathematica 6.0)  

<< Statistics`MultiDiscreteDistributions` (Mathematica 5.2)  

Note that the ` (tilde) is the key next to 1 and not the single quote character '.  

 
Table of pertinent Mathematica commands:  
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Command  Description  

PDF[multinomial,x]  
probability density function at x, where x is 
scalar‐, vector‐, or matrix‐valued depending on 
distribution  

CDF[multinomial,x]  cumulative distribution function at x  

Mean[multinomial]  mean  

Variance[multinomial]  variance  

StandardDeviation[multinomial]  standard deviation  
 

To plot the multinomial distribution probability density function (PDF) in Mathematica, 
follow three simple steps:  

Defining the Multinomial Distribution  

multinomial = MultinomialDistribution[n,{p1,p2,...pk}] where k is the number of 
possible outcomes, n is the number of outcomes, and p1 to pk are the probabilities of that 
outcome occurring. n and p1 to pk are usually given as numbers but can be given as 
symbols as long as they are defined before the command.  

Defining the PDF of the Multinomial Distribution  

pdf=PDF[multinomial, {x1,x2,...,xk}]; The x here simply refers to the variable so this 
command can be typed as is, and leave the x as a variable not a number.  

Plotting the PDF  

Plot3D[pdf, {x1, 0, 6}, {x2, 0, 5}, AxesLabel -> {x1, x2, probability}] the 0,6 and 0,5 are 
the ranges of x1 and x2 on the plot respectively, and the AxesLabel argument is to help 
us see which is which on the plot created. This command can also be typed as is, by 
leaving all the x's as variables.  

• Note that this will only work if you have 2 variables. If there are more 
variables, constraints can be set so that it can be plotted. For 3 variables, set 
the third variable x3 as n‐x1‐x2. See the attached Mathematica notebook for 
more information.  

Media:Multinomial.nb  

10.2.4 Other Characteristics 

Statistics have historically been useful in descriptive and inferential analysis of data. 
Likewise, multinomial distribution is also applicable to the aforementioned areas: 
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descriptive statistics, inferential statistics, and six-sigma. Several key variables are used 
in these applications:  

The expected value below describes the mean of the data. Discrete random variables can 
take on a range of values; the mean of the data describes the location of the data within 
this range.  

 

The data's standard deviation describes the variance of the data. The standard deviation of 
the data describes the spread of the data with respect to the center value (the mean of the 
data).  

 

Using the above parameters, it is possible to find the probability of data lying within n 
standard deviations of the mean. By setting n equal to 6, six sigma quality control can be 
implemented on the event and outcomes in question.  

10.2.5 Derivation of Binomial Distribution 

As was stated above, the binomial distribution is simply a special case of the multinomial 
distribution. Using the multinomial distribution, the probability of obtaining two events 
n1 and n2 with respective probabibilites p1 and p2 from N total is given by:  

 

If we label the event of interest, say n1 in this case, as "k," then, since only two outcomes 
are possible, n2 must equal N-k. Finally, If we label the probability of obtaining k as 
simply "p," then the probability of obtaining event n2 (p2) must be 1-p, because again 
only two outcomes are possible. With these subsitutions, the above equation simplifies to  

 

Which is the familiar binomial distribution, where k is the number of events of interest, N 
is the total number of events, and p is the probability of attaining the event of interest.  
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10.3 Applications of Multinomial Distributions 

As mentioned before, multinomial distributions are a generalized version of binomial 
distributions. In chemical engineering applications, multinomial distributions are relevant 
to situations where there are more than two possible outcomes (temperature = {high, 
med, low}). Multinomial systems are a useful analysis tool when a “success-failure” 
description is insufficient to understand the system. A continuous form of the 
multinomial distribution is the Dirichlet distribution.  

Using Bayes' Rule is one of the major applications of multinomial distributions. For 
example, Bayes' Rule can be used to predict the pressure of a system given the 
temperature and statistical data for the system. Bayes' Rule can be used to determine the 
probability of an event or outcome as mentioned above. Additional details on Bayes' Rule 
can be found at Bayes' Rule, conditional probability, independence.  

10.3.1 Bayes' Rule Example 

In case you’ve forgotten how to use Bayes’ Rule, here is an example that shows how to 
use it to solve a problem with a multinomial outcome which results from combining dual 
possibilities (such as desired flow vs. undesired flow and configuration A vs. 
configuration B).  

You are given a flow apparatus with two possible specific valve configurations, A and B. 
For specific valve configuration A, desired flow rates are achieved 98.5% of the time. 
And for specific valve configuration B, the desired flow rates are achieved 89.3% of the 
time. An operator might use the configuration from A 79% of the time when desired flow 
rates are achieved. Can you determine the probability that a randomly chosen 
configuration is the same as the one in specific valve configuration B and produces 
undesirable flow rates?  

Worked Out Solution  

We'll be using the following symbols:  

FU: {undesirable flow rates} 
FD: {desirable flow rates} 
CB: {configuration from Apparatus B}  

Thus we want to find : , which is the probability of undesirable 
flow rates and valve configuration B.  

If we use Apparatus A 79% of the time then the probability of using Apparatus B would 

be 21% or : , which is the probability of using 
configuration B and getting desired flow rates.  
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Additionally, we are given : , which is the probability 
of a desired flow rate, given that configuration B is used.  

Then 

, which is the probability that an undesirable flow rate is obtained, given that 
configuration B is used.  

The information from above is then used below: 

, which is the probability of getting an undesirable flow rate and configuration B which is 
found by taking the probability of getting an undesirable flow rate given that 
configuration B is used and multiplying that by the probability of a desirable flow rate 
and configuration B.  

10.4 Worked Out Example 1 

from Perry's, page 3-72 
Consider the scenario in which you toss a fair die 12 times. What is the probability that 
each face value (1-6) will occur exactly twice?  

 

10.4.1 Solutions to Example 1 

The probability can be determined using a multinomial distribution in which 6 outcomes 
are possible. The individual probabilities are all equal given that it is a fair die, p = 1/6. 
The total number of trials N is 12, and the individual number of occurrences in each 
category n is 2.  

 

Therefore, the probability of rolling exactly 2 of each face value on a fair die is about 
0.35%.  

10.5 Worked Out Example 2 

A bowl has 2 maize marbles, 3 blue marbles and 5 white marbles. A marble is randomly 
selected and then placed back in the bowl. You do this 5 times. What is the probability of 
choosing 1 maize marble, 1 blue marble and 3 white marbles?  
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10.5.1 Solutions to Example 2 
N is the number of trials = 5  
k is the number of possible outcomes = 3  
ni is the number of occurrences of outcome i  
pi is the probability of seeing outcome i  

The three possible outcomes are choosing a maize marble, a blue marble or a white 
marble.  

We must determine ni and pi to solve the multinomial distribution.  

The number of occurrences of the outcome are the number of times we wish to see each 
outcome. These are given in the problem statement.  

nmaize = 1  
nblue = 1  
nwhite = 3  

The probability of seeing each outcome is easy to find. For example, there are two maize 

marbles in the bowl of 10, so the probability of choosing a maize marble is .  

pmaize =   

pblue =   

pwhite =   

We can now solve the multinomial distribution as shown below. The probability of 
choosing 1 maize marble, 1 blue marble and 3 white marbles is 0.15.  

 

10.6 Worked Out Example 3 

Two valves are used to control the flow of liquid out of a storage tank (Tank 1) in to 
another storage tank (Tank 2) and controlled by Valves 1 and 2 as seen below. The valves 
exist in two states: open and closed.  
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The following table describes the four different valve configurations and the frequency of 
the desired flow for each valve configuration based on experimental data.  

Configuration  Valve 
1  

Valve 
2  

Probability of that configuration having the 
best flow 

1  Open  Closed  0.305  

2  Open  Open  0.476  

3  Closed  Open  0.218  

4  Closed  Closed  0.001  
 

To reduce costs, two different apparatuses with a similar configuration, but with different 
pipe dimensions are being considered to replace the original apparatus. Below are data 
tables for each potential replacement apparatus with different valve configurations and 
the number of times out of 100 measurements that the valve configuration gave the 
desired flow.  

Apparatus 1 
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Configuration  Valve 1  Valve 2  # of Best 
Flow 

1  Open  Closed  42  

2  Open  Open  37  

3  Closed  Open  21  

4  Closed  Closed  0  
 

Apparatus 2 

Configuration  Valve 1  Valve 2  # of Best 
Flow 

1  Open  Closed  20  

2  Open  Open  22  

3  Closed  Open  56  

4  Closed  Closed  2  
 

Based on the information above, which apparatus is more like the desired model? By how 
much?  

 

10.6.1 Solution to Example 3  

With the 4 different valve configurations, multinomial distribution can be utilized to 
calculate the probability of a measurement. The goal here is to find the model with the 
highest probability density function, because that one is more like the desired model.  

The probability of a measurement can be calculated as follows given that there are 4 
different possible valve configurations (see section on pdf for more information on where 
this equation came from):  

 
 

 
 
ni = total number of measurements with the best flow rate from each valve configuration 



  585 

i = configuration 
pi = probability of that configuration having the best flow 
N = Total # of observations 

The calculation for the probability of each apparatus can be done similarly: 
 
Apparatus 1: 

 
 
Apparatus 2: 

 
 
Based on the calculations above for both apparatuses, Apparatus 1 is more like the 
desired model. Apparatus 1 has a higher probability density function, based on the 
relative likelihood of each configuration flow.  

 
 
This figure shows Mathematica code that can be used in order to solve the probability of 
a multinomial distribution. The n values are the number of occurances of each outcome 
and the p values are the probabilities of eachout come. The function is set for a 
multinomial distribution with five different outcomes. However, it can be used for 
multinomial distributions with fewer outcomes by setting the unused n values to 0 and the 
unused p values to any number other than 0. This figure also shows the probabilities 
calculated from Apparatus 1 and Apparatus 2.  
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10.7 Worked out Example 4 

A runaway reaction occurs when the heat generation from an exothermic reaction 
exceeds the heat loss. Elevated temperature increases reaction rate, further increasing 
heat generation and pressure buildup inside the reactor. Together, the uncontrolled 
escalation of temperature and pressure inside a reactor may cause an explosion.  

The precursors to a runaway reaction - high temperature and pressure - can be detected 
by the installation of reliable temperature and pressure sensors inside the reactor. 
Runaway reactions can be prevented by lowering the temperature and/or pressure inside 
the reactor before they reach dangerous levels. This task can be accomplished by sending 
a cold inert stream into the reactor or venting the reactor.  

Les Lloyd is a process engineer at the Miles Reactor Company that has been assigned to 
work on a new reaction process. Using historical data from all the similar reactions that 
have been run before, Les has estimated the probabilities of each outcome occurring 
during the new process. The potential outcomes of the process include all permutations of 
the possible reaction temperatures (low and high) and pressures (low and high). He has 
combined this information into the table below:  

Outcome  Temperature  Pressure  Probability  

1  high  high  0.013  

2  high  low  0.267  

3  low  high  0.031  

4  low  low  0.689  
 

Worried about risk of runaway reactions, the Miles Reactor Company is implementing a 
new program to assess the safety of their reaction processes. The program consists of 
running each reaction process 100 times over the next year and recording the reactor 
conditions during the process every time. In order for the process to be considered safe, 
the process outcomes must be within the following limits:  

Outcome  Temperature  Pressure  Frequency  

1  high  high  n1 = 0  

2  high  low   

3  low  high   
4  low  low  n4 = 100 − n1 − n2 − n3 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Help Les predict whether or not the new process is safe by answering the following 
question: What is the probability that the new process will meet the specifications of the 
new safety program?  

10.7.1 Solution to Example 4  

The probability of the safety guidelines being met is given by the following CDF 
expression:  

 

where  

N is the number of trials  
k is the number of possible outcomes  
ni is the number of occurrence of outcome i  
pi is the probability of seeing outcome i  
ci is the maximum number of occurrence of outcome i  

 
This CDF expression can be evaluated using the following commands in Mathematica:  

<< Needs["MultivariateStatistics`"] 
<< multinomial = MultinomialDistribution[100, {0.013, 0.267, 0.031, 0.689}] 
<< CDF[multinomial, {0, 20, 2, 78}]  

 
The result is:  

 

 
Based on this probability calculation, it appears unlikely that this new process will pass 
the new safety guidelines.  

10.8 Sage's Corner 
http://www.youtube.com/v/aAlQpREhy5c 
For slides of this presentation by Group Si:Media:Multinomial Distribution.ppt 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Section 11. 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means 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11.1 Introduction 

Engineers often must compare data sets to determine whether the results of their analyses 
are statistically equivalent. A sensor outputs a series of values and the engineer must both 
determine whether the sensor is precise and whether the values are accurate according to 
a standard. To make this evaluation, statistical methods are used. One method compares 
the probability distributions and another uses the Students t-test on two data sets. 
Microsoft Excel also has functions that perform the t-test that output a fractional 
probability to evaluate the null hypothesis (Basic Statistics).  

11.2 Distributions 

11.2.1 General Distributions 

Distributions are governed by the probability density function:  

 

where  

is the standard deviation of a data set  

is the mean of the data set  

is the input value  

This equation gives a typical bell curve. Changing will alter the shape of the curve, as 
shown in the graph below.  
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Changing will shift the curve along the x-axis, as shown below.  
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Changing both variables will have a result similar to the graph below.  
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For a more indepth look at distributions, go to (Distributions).  

11.2.2 Overlapping Distributions 

The overlap between two distribution curves helps determine the probability of the two 
data sets being from the same distribution. The probability value increases as overlapping 
increases. The overlap is shown as the purple region in the graph below.  
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11.3 Comparison of Two Means 

11.3.1 Probability 

The similarity of two data sets can be determined by finding the probability of overlap. 
This is illustrated by the following equation:  

 

The functions contained within the integral are the probability distributions of each 
respective data set. The equation sums the lesser probability distribution from each data 
set. After using this equation, the solution will be a value with a range between 0 and 1 
indicating the magnitude of overlapping probability. A value of 0 demonstrates that the 
two data sets do not overlap at all. A value of 1 demonstrates that the two data sets 
completely overlap. Values between 0 and 1 give the extent of overlap between the two 
data sets. This probability is not the same as the confidence interval that can be computed 
with t-tests.  
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11.3.2 Student's T‐Test 

The Student’s t-test is extremely useful for comparing two means. There are various 
versions of the student t-test, depending on the context of the problem. Generally, the test 
quantifies the signal to noise ratio - where the signal is the difference of means and the 
noise is a function of the error around the means. If the signal is large and the noise is 
small, one can be more confident that the difference between the means is "real" or 
significant. To prove a significant difference, we need to disprove the null hypothesis. 
The "null hypothesis" (Ho) is that there is no difference between the two means. If we are 
able to disprove the "null hypothesis" then we will be able to say that the two groups are 
statistically different within a known level of confidence.  

The extremities at either ends of a probability distribution are referred to as the "tails" of 
the distribution. The assessment of the significance of a calculated t-value will depend 
upon whether or not both tails of the distribution need to be considered. This will depend 
on the form of the null hypothesis. If your null hypothesis is an equality, then the case 
where one mean is larger and smaller must be considered; i.e. only one tail of the 
distribution should be accounted for. Conversely, if the null hypothesis is an inequality, 
then you are only concerned with the domain of values for a mean either less than or 
greater than the other mean; i.e. both tails of the distribution should be accounted for.  
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More Info: the student t-distribution 

The t-distribution is the resulting probability distribution with a small sample population. 
This distribution is the basis for the t-test, in order to find the statistical significance 
between two means of data. This distribution is in the form of a generalised hyperbolic 
function (Which goes into details that would only clutter here. For more information, the 
wikipedia site holds a lot of information on the subject: 
http://en.wikipedia.org/wiki/Generalised_hyperbolic_distribution).  

The t-distribution is commonly used when the standard deviation is unknown, or cannot 
be known (ie: a very small population set). When the data sets are large, or a standard 
deviation is assumed, the t-distribution is not very useful for a statistical analysis, and 
other methods of analysis should be used. An example of the t-distribution can be seen 
below:  

 

 

Comparing Two Unknown True Means when Sample Standard Deviations are 
approximately Equal 

The first accepted assumption is that when two sample means are being compared, the 
standard deviations are approximately equal. This method requires the average, standard 
deviation, and the number of measurements taken for each data set. The deviations are 
then pooled into one standard deviation. The equation for this t-test is as follows:  
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Where:  

 

Where:  

is the average of the first data set  

is the average of the second data set  

is the number of measurements in the first data set  

is the number of measurements in the second data set  

is the standard deviation of the first data set  

is the standard deviation of the second data set  

is a result of the t-test; it relates to values from the Student's t-distribution  

Also note that the variance is defined as the square of the standard deviation.  

Using t-distribution tables (sample shown below), the confidence level for the two means 
can then be determined. This confidence level determines whether the two means are 
significantly different. The confidence level can be found with the degrees of freedom for 
the measurements and the t-value computed above. The degree of freedom is equal to two 
less than the total number of measurements from the two data sets, as shown below:  

 

The following table is an image of a t value table, which can also be found (here):  
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For example, if you had two data sets totaling 10 measurements and you calculated a t-
value of 2.305 the confidence level would be 95%. This means that there is a 95% chance 
that the two data sets are statistically different and only a 5% chance that the two data 
sets are statistically similar. Also, degrees of freedom between the values listed on the 
table can be found by interpolating between those two values.  

Note that there are some drawbacks when evaluating two means to see if they are 
significant or not. This problem mainly stems from the standard deviation. If say a set of 
values has a certain mean x, but the standard deviation was high due to the fact that some 
numbers in may have been greatly out of the range of the mean. This standard deviation 
may imply, from the student's t-test, that the mean x is significantly different from the 
mean of another set of data, when in actuality it may not seem that different. Hence, this 
must be taken into account when comparing two means using the student's t-test.  



 598 

Comparing Two Unknown True Means (μ1 = ? and μ2 = ?) with Known True Unequal 

Standard Deviations ( ) 

The z-test is used when the difference between a sample mean and the population mean is 
large enough to be statistically significant. The t-test and z-test are essentially the same 

but in the z-test the actual population means ( ) and standard deviations( ) are 
known. Since the estimate for difference in standard deviation used here is biased, two 
sample z-tests are rarely used.  

The two sample z-statistic is described by:  

 

Where:  

is the average of the first data set  

is the average of the second data set  

is the number of measurements in the first data set  

is the number of measurements in the second data set  

is the known standard deviation of the first population  

is the known standard deviation of the second population  

 
A different table is used to look up the probability of significance, please refer to Z-score 
table. If p < 0.05 (using a 95% confidence interval), we can declare a significant 
difference exists. The p-value is the probability that the observed difference between the 
means is caused by sampling variation, or the probability that these two samples came 
from the same population.  

Comparing Two Unknown True Means (μ1 = ? and μ2 = ?) with Unknown True 
Standard Deviations (σ1 = ? and σ2 = ?) 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This is known as the two sample t-statistic, which is used in statistical inference for 
comparing the means of two independent, normally distributed populations with 
unknown true standard deviations. The two sample t-statistic is described by:  

 

Where:  

is the average of the first data set  

is the average of the second data set  

is the number of measurements in the first data set  

is the number of measurements in the second data set  

is the standard deviation of the first data set  

is the standard deviation of the second data set  

 

Comparing the Mean of Differences for Paired Data 

This is used in statistical analysis for the case where a single mean of a population occurs 
when two quantitative variables are collected in pairs, and the information we desire from 
these pairs is the difference between the two variables.  

Two examples of paired data:  

1. Each unit is measured twice. The two measurements of the same data are taken under 
varied conditions.  

2. Similar units are paired prior to the experiment or run. During the experiment or run 
each unit is placed into different conditions.  

 
The mean of differences t-statistic is described by:  
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Where:  

is the the mean of the differences for a sample of the two measurements  

is the standard deviation of the sampled differences  

is the number of measurements in the sample  

 

Summary of Two Sample Mean Tests 

 

11.3.3 Excel Method 

Instead of using the t-distribution tables to interpolate values, it is often easier to use 
built-in tools in Excel. The following three functions can be used for most of the common 
situations encountered when comparing two means:  

• The TDIST function is useful when you have calculated a t‐value and you 
want to know the probability that the t‐value is significant. 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• The TINV function is useful when you know the probability of significance 
you are interested in, and you desire the t‐value (essentially the reverse of 
the TDIST function). This is helpful if you are designing an experiment and 
would like to determine the number of experimental runs needed to test for 
the difference of two means. 

• The TTEST function is useful if you have two sets of data and you would like 
to know the probability that the mean of the two data sets are significantly 
different. 

TDIST Function 

The TDIST function has the syntax "=TDIST(x,deg_freedom,tails)"  

Where:  

• x is the t‐value of the statistic 
• deg_freedom is the number of degrees of freedom of the t‐statistic. For 

comparing sample means  and  , with sample sizes  and 

respectively, has  degrees of freedom. 
• tails is the number of tails to be summed for probability. If null hypothesis is 

an equality, 2 tails will be used. If the null hypothesis is an inequality, 1 tail 
will be used. 

The output of the function is the fractional probability of the Students t-distribution. For 
example, if the function returned a value of 0.05, this would correspond to a 95% or 
equivalently (1 - 0.05) confidence level for rejecting the null hypothesis.  

TINV Function 

The TINV function has the syntax "=TINV(probalility, deg_freedom)"  

Where:  

• probability is the fractional probability of the Students t‐distribution. This is 
identical to the output of the "TDIST" function. 

• deg_freedom is the number of degrees of freedom of the t‐statistic. For 

comparing sample means  and  , with sample sizes  and 

respectively, has  degrees of freedom. 

The output of the function is the t-value of the Student's t-distribution.  

TTEST Function 

The TTEST function has the syntax "=TTEST(array 1, array 2, tails, type)"  
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Where:  

• array 1 is the first data set 
• array 2 is the second data set 
• tails is the number of tails to be summed for probability (1 or 2). If null 

hypothesis is an equality 2 tails will be used, if the null hypothesis is an 
inequality 1 tail will be used. 

• type is the type of t‐test to be performed the values that correspond to each 
type of test are listed below. 

     If type equals |   This test is performed             
1        |          Paired             2        |    Two-
sample equal variance (homoscedastic)             3        
|    Two-sample unequal variance (heteroscedastic)   

For our purposes we will only be concerned with type = 3. This corresponds to unequal 
variance (independent data sets). The other two types are useful and may prove 
interesting for the curious, but are beyond our scope.  

Alternatively if you are not fond of Excel, a website located here will do the TTEST 
calculation for you.  

The output of the function is the fractional probability of the Student's t-distribution. For 
example, if the function returned a value of 0.05, this would correspond to a 95% or 
equivalently (1 - 0.05) confidence level for rejecting the null hypothesis.  

This function is very useful when the data-sets of the two means to be compared are 
known.  

11.4 Worked out Example 1 

You are a product quality engineer at a company that manufactures powdered laundry 
detergent in 100 ounce boxes. You are in charge of determining whether the product 
meets the specifications the company promises the customer. In the past, 100 samples 

of the process established normal process conditions. The data is given below. 
Note that weighing samples using an imprecise scale does not affect your results. Also 
assume that the standard deviations are close enough to pool them.  
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You randomly sample 25 of the products and you get the following data:  
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The data can also be found in the first tab of this Excel file: Data File  
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Is the process running significantly different from normal with 95% confidence? In this 
example, do not use built-in Excel functions.  

11.4.1 Solution 

Using the data, the normal process produces an average product mass of 102.37 

and a variance of 3.17.  

The sample has an average mass of 100.00 with a variance of 4.00.  

These were calculated using the AVERAGE function and VAR function in Excel. See the 
second tab of this Excel file for further explanation: Example 1  

The null hypothesis is that the means are identical and the difference between the two 
means is due purely to chance.  

 
Using the t-test:  

 

 

 

 

 
Looking at the table that is reprinted below for reference:  
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The number of degrees of freedom is:  

 

 

The t-value corresponding to 95% confidence level at 123 degrees of freedom is between 
1.960 and 1.980. Since the calculated t-value, 5.00, is much greater than 1.980, the null 
hypothesis is rejected at the 95% confidence level.  

We conclude that the two means are significantly different. Thus, the process is not 
running normally and it is time to troubleshoot to find the problems occurring in the 
system.  

11.5 Worked out Example 2 

Same problem as "Worked Out Example 1." Instead, use the TTEST function in Excel.  

11.5.1 Solution 

The solution can also be seen in the third tab of this Excel file: Example 2  

Using the TTEST function, with tails = 2 and test type = 3, the function gives a T-test 

value of .  

Since is less than 0.05 (from our 95% confidence level) we can once 
again conclude that we can reject the null hypothesis.  

11.6 Multiple Choice Question 1 

If there are two sets of data, one with 15 measurements and another with 47 
measurements, how many degrees of freedom would you enter in the Excel functions?  

a. 20  
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b. 47  

c. 15  

d. 60  

11.6.1 Answer 

The number of degrees of freedom is calculated as follows:  

 

where n1 is the number of measurements in the first data set and n2 is the number of 
measurements in the second data set.  

Therefore,  

 

the answer is d.  

11.7 Multiple Choice Question 2 

What does the statement "Accurate within 95% confidence" mean?  

a. The average of the data set is statistically equal to the true value within 95%  

b. The value is the average plus or minus 95%  

c. The average is statistically equal to the true value within 5%  

11.7.1 Answer 

The answer is c.  

 

11.8 Sage's Corner 
PowerPoint Presentation #1  
http://video.google.com/googleplayer.swf?docId=4694719892575996020 
For slides of this presentation: Media:Comparison of Two 
Means.ppt  
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12.1 Introduction 

First invented in the early 1900s by psychologist Charles Spearman, factor analysis is the 
process by which a complicated system of many variables is simplified by completely 
defining it with a smaller number of "factors." If these factors can be studied and 
determined, they can be used to predict the value of the variables in a system. A simple 
example would be using a person's intelligence (a factor) to predict their verbal, 
quantitative, writing, and analytical scores on the GRE (variables).  

Analysis of variance (ANOVA) is the method used to compare continuous measurements 
to determine if the measurements are sampled from the same or different distributions. It 
is an analytical tool used to determine the significance of factors on measurements by 
looking at the relationship between a quantitative "response variable" and a proposed 
explanatory "factor." This method is similar to the process of comparing the statistical 
difference between two samples, in that it invokes the concept of hypothesis testing. 
Instead of comparing two samples, however, a variable is correlated with one or more 
explanatory factors, typically using the F-statistic. From this F-statistic, the P-value can 
be calculated to see if the difference is significant. For example, if the P-value is low (P-
value<0.05 or P-value<0.01 - this depends on desired level of significance), then there is 
a low probability that the two groups are the same. The method is highly versatile in that 
it can be used to analyze complicated systems, with numerous variables and factors. In 
this article, we will discuss the computation involved in Single-Factor, Two-Factor: 
Without Replicates, and Two-Factor: With Replicates ANOVA. Below, is a brief 
overview of the different types of ANOVA and some examples of when they can be 
applied.  

12.1.1 Overview and Examples of ANOVA Types 
ANOVA Types 

Single-Factor ANOVA (One-Way):  

One-way ANOVA is used to test for variance among two or more independent groups of 
data, in the instance that the variance depends on a single factor. It is most often 
employed when there are at least three groups of data, otherwise a t-test would be a 
sufficient statistical analysis.  
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Two-Factor ANOVA (Two-Way):  

Two-way ANOVA is used in the instance that the variance depends on two factors. There 
are two cases in which two-way ANOVA can be employed:  

• Data without replicates: used when collecting a single data point for a 
specified condition  

• Data with replicates: used when collecting multiple data points for a specified 
condition (the number of replicates must be specified and must be the same 
among data groups)  

When to Use Each ANOVA Type 

• Example: There are three identical reactors (R1, R2, R3) that generate the 
same product.  

o One‐way ANOVA: You want to analyze the variance of the product 
yield as a function of the reactor number.  

o Two‐way ANOVA without replicates: You want to analyze the variance 
of the product yield as a function of the reactor number and the 
catalyst concentration.  

o Two‐way ANOVA with replicates: For each catalyst concentration, 
triplicate data were taken. You want to analyze the variance of the 
product yield as a function of the reactor number and the catalyst 
concentration.  

ANOVA is a Linear Model 

Though ANOVA will tell you if factors are significantly different, it will do so according 
to a linear model. ANOVA will always assumes a linear model, it is important to 
consider strong nonlinear interactions that ANOVA may not incorporate when 
determining significance. ANOVA works by assuming each observation as overall mean 
+ mean effect + noise. If there are non-linear relationship between these (for example, if 
the difference between column 1 and column 2 on the same row is that column2 = 
column1^2), then there is the chance that ANOVA will not catch it.  

12.2 Key Terms 

Before further explanation, please review the terms below, which are used throughout 
this Wiki.  
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12.3 Comparison of Sample Means Using the F‐Test 

The F-Test is the ratio of the sample variances. The F-statistic and the corresponding F-
Test are used in single-factor ANOVA for purposes of hypothesis testing.  

Null hypothesis (Ho): all sample means arising from different factors are equal  

Alternative hypothesis (Ha): the sample means are not all equal  

 
Several assumptions are necessary to use the F-test:  

• The samples are independent and random  
• The distribution of the response variable is a normal curve within each 

population  
• The different populations may have different means  
• All populations have the same standard deviation  

12.3.1 Introduction to the F‐Statistic 

The F-statistic is the ratio of two variance estimates: the variance between groups divided 
by the variance within groups. The larger the F-statistic, the more likely it is that the 
difference between samples is due to the factor being tested, and not just the natural 
variation within a group. A standardized table can be used to find Fcritical for any system. 
Fcritical will depend on alpha, which is a measure of the confidence level. Typically, a 
value of alpha = 0.05 is used, which corresponds to 95% confidence. If Fobserved > Fcritical, 
we conclude with 95% confidence that the null hypothesis is false. For an explanation of 
how to read an F-Table, see Interpreting the F-statistic (below). In a similar manner, F 
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tables can also be used to determine the p-value for a given data set. The p-value for a 
given data set is the probability that you could obtain this data set if the null hypothesis 
were true: that is, if the results were strictly due to chance. When Ho is true, the F-statistic 
has an F distribution.  

12.3.2 F‐Distributions 

The F-distribution is important to ANOVA, because it is used to find the p-value for an 
ANOVA F-test. The F-distribution arises from the ratio of two Chi squared distributions. 
Thus, this family has a numerator and denominator degrees of freedom. (For information 
on the Chi squared test, click here.) Every function of this family has a a skewed 
distribution and minimum value of zero.  

Figure 1 - F distribution with alpha and Fcritical indicated  

 

12.4 Single‐Factor Analysis of Variance 

In the case of single-factor analysis, also called single classification or one-way, a factor 
is varied while observing the result on the set of dependent variables. These dependent 
variables belong to a specific related set of values and hence, the results are expected to 
be related.  

This section will describe some of the computational details for the F-statistic in one-way 
ANOVA. Although these equations provide insight into the concept of analysis of 
variance and how the F-test is constructed, it is not necessary to learn formulas or to do 
this analysis by hand. In practice, computers are always used to do one-way ANOVA  
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12.4.1 Setting up an Analysis of Variance Table 

The fundamental concept in one-way analysis of variance is that the variation among data 
points in all samples can be divided into two categories: variation between group means 
and variation between data points in a group. The theory for analysis of variance stems 
from a simple equation, stating that the total variance is equal to the sum of the variance 
between groups and the variation within groups –  

Total variation = variation between groups + variation within groups  

An analysis of variance table is used to organize data points, indicating the value of a 
response variable, into groups according to the factor used in each case. For example, 
Table 1 is an ANOVA table for comparing the amount of weight lost over a three month 
period by dieters on various weight-loss programs.  

Table 1 - Amount of weight lost by dieters on various programs over a 3 month period  

Program 1  Program 2  Program 3  

7  9  15  

9  11  12  

5  7  18  

7    

A reasonable question is, can the type of program (a factor) be used to predict the amount 
of weight a dieter would lose on that program (a response variable)? Or, in other words, 
is any one program superior to the others?  

12.4.2 Measuring Variation Between Groups 

The variation between group means is measured with a weighted sum of squared 
differences between the sample means and the overall mean of all the data. Each squared 
difference is multiplied by the appropriate group sample size, ni, in this sum. This 
quantity is called sum of squares between groups or SS Groups.  

 

The numerator of the F-statistic for comparing means is called the mean square between 
groups or MS Groups, and it is calculated as -  
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12.4.3 Measuring Variation Within Groups 

To measure the variation among data points within the groups, find the sum of squared 
deviations between data values and the sample mean in each group, and then add these 
quantities. This is called the sum of squared errors, SSE, or sum of squares within 
groups.  
 

 
 

Where = variance within each group  
 
The denominator of the F-statistic is called the mean square error, MSE, or mean 
squares within groups. It is calculated as  
 

 
 
MSE is simply a weighted average of the sample variances for the k groups. Therefore, if 
all ni are equal, MSE is simply the average of the k sample variances. The square root of 
MSE (sp), called the pooled standard deviation, estimates the population standard 
deviation of the response variable (keep in mind that all of the samples being compared 
are assumed to have the same standard deviation σ).  

12.4.4 Measuring the Total Variation 

The total variation in all samples combined is measured by computing the sum of squared 
deviations between data values and the mean of all data points. This quantity is referred 
to as the total sum of squares or SS Total. The total sum of squares may also be referred 
to as SSTO. A formula for the sum of squared differences from the overall mean is  
 

 
 
where xij represents the jth observation within the ith group, and is the mean of all 
observed data values. Finally, the relationship between SS Total, SS Groups, and SS 
Error is  
 
SS Total = SS Groups + SS Error  
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Overall, the relationship between the total variation, the variation between groups, and 
the variation within a group is illustrated by Figure 2.  

 

Figure 2: Visual illustration of variance in ANOVA, adapted from 
http://www.uwsp.edu/psych/stat/12/anova-1w.htm  

A general table for performing the one-way ANOVA calculations required to compute 
the F-statistic is given below 

Table 2 - One-Way ANOVA Table  

Sour
ce  

Degre
es of 
Freed
om  

Sum of Squares  Mean Sum 
of Squares  FStatistic  

Betw
een 
grou
ps  

k‐1  
   

Withi
n 
grou
ps 
(erro
r)  

N‐k  
  

 

Total  N‐1 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12.4.5 Interpreting the F‐statistic 

Once the F-statistic has been found, it can be compared with a critical F value from a 
table, such as this one: F Table. This F table is calculated for a value of alpha = 0.05, 
indicating a 95% confidence level. This means that if Fobserved is larger than Fcritical from the 
table, then we can reject the null hypothesis and say with 95% confidence that the 
variance between groups is not due to random chance, but rather due to the influence of a 
tested factor. Tables are also available for other values of alpha and can be used to find a 
more exact probability that the difference between groups is (or is not) caused by random 
chance.  

12.4.6 Finding the Critical F value 

In this F Table, the first row of the F table is the number of degrees of between groups 
(number of groups - 1), and the first column is the number of degrees of freedom within 
groups (total number of samples - number of groups).  

 

For the diet example in Table 1, the degree of freedom between groups is (3-1) = 2 and 
and the degree of freedom within groups is (13-3) = 10. Thus, the critical F value is 4.10.  

12.4.7 Computing the 95% Confidence Interval for the Population Means 

It is useful to know the confidence interval at which the means of the different groups are 
reported. The general formula for calculating a confidence interval is 



  617 

. Because 
it is assumed that all populations have the same standard deviation 

can be used to estimate the standard deviation within each 
group. Although the population standard deviation is assumed to be the same, the 
standard error and the multiplier may be different for each group, due to differences in 
group size and degrees of freedom. The standard error of a sample mean is inversely 
proportional to the square root of the number of data points within the sample. It is 

calculated as . The multiplier is determined using a t-
distribution where the degrees of freedom are calculated as df = N-k. 
Therefore,Insertformulahere the confidence interval for a population mean is 

. More details on confidence intervals can be found in 
Comparison of two means  

 
An example for using factor analysis is the following:  

You have two assembly lines. Suppose you sample 10 parts from the two assembly lines. 
Ho: s12 = s2x2 Ha: variances are not equal Are the two lines producing similar outputs? 
Assume a=0.05 F.025,9,9 = 4.03 F1-.025,9,9 = ?  

 

Are variances different?  
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How would we test if the means are different?  
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12.5 Two‐Factor Analysis of Variance 

A two factor or two-way analysis of variance is used to examine how two qualitative 
categorical variables (male/female) affect the mean of a quantitative response variable. 
For example, a psychologist might want to study how the type and volume of background 
music affect worker productivity. Alternatively, an economist maybe be interested in 
determining the affect of gender and race on mean income. In both of these examples, 
there is interest in the effect of each separate explanatory factor, as well as the combined 
effect of both factors.  

12.5.1 Assumptions 

In order to use the two-way ANOVA, the following assumptions are required:  

• Samples must be independent.  
• Population variances must be equal.  
• Groups must have same sample size. The populations from which the 

samples were obtained must be normally distributed (or at least 
approximately so).  

• The null hypothesis is assumed to be true.  

The null hypothesis is as follows:  

• The population means for the first factor have to be equal. This is similar to 
the one‐way ANOVA for the row factor.  

• The population means for the second factor must also be equal. This is 
similar to the one‐way ANOVA for the column factor.  

• There isn’t an interaction between the two factors. This is similar to 
performing an independence test using contingency tables.  

More simply, the null hypothesis implies that the populations are all similar and any 
differences in the populations are caused by chance, not by the influence of a factor. 
After carrying out two-way ANOVA it will be possible to analyze the validity of this 
assumption.  

12.5.2 Terms Used in Two‐Way ANOVA 

The interaction between two factors is the most unique part of a two-way analysis of 
variance problem. When two factors interact, the effect on the response variable depends 
on the value of the other factor. For example, the statement being overweight caused 
greater increases in blood pressure for men than women describes an interaction. In other 
words, the effect of weight (factor) on blood pressure (response) depends on gender 
(factor). 

The term main effect is used to describe the overall effect of a single explanatory 
variable. In the music example, the main effect of the factor "music volume" is the effect 
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on productivity averaged over all types of music. Clearly, the main effect may not always 
be useful if the interaction is unknown. 

In a two-way analysis of variance, three F-statistics are constructed. One is used to test 
the statistical significance of the interaction, while the other two are used to test the 
significance of the two separate main effects. The p-value for each F-statistic is also 
reported--a p-value of <.05 is usually used to indicate significance. When an F-factor is 
found to have statistical significance, it is considered a main effect. The p-value is also 
used as an indicator to determine if the two factors have a significant interaction when 
considered simultaneously. If one factor depends strongly on the other, the F-statistic for 
the interaction term will have a low p-value. An example output of two-way analysis of 
variance of restaurant tip data is given in Table 4.  

Table 4 - Two-Way Analysis of Variance of Restaurant Tipping Data  

Source  DF  Adj SS  Adj MS  FStatistic  PValue  

Message  1  14.7  14.7  .13  .715  

Sex  1  2602.0  2602.0  23.69  0.00  

Interaction  1  438.7  438.7  3.99  .049  

Error  85  9335.5  109.8    

Total  88  12407.9     

In this case, the factors being studied are sex (male or female) and message on the receipt 
( :-) or none). The p-values in the last column are the most important information 
contained in this table. A lower p-value indicates a higher level of significance. Message 
has a significance value of .715. This is much greater than .05, the 95% confidence 
interval, indicating that this factor has no significance (no strong correlation between 
presence of message and amount of tip). The reason this occurs is that there is a 
relationship between the message and the sex of the waiter. The interaction term, which 
was significant with a value of p= 0.049, showed that drawing a happy face increased the 
tip for women but decreased it for men. The main effect of waiter sex (with a p-value of 
approximately 0) shows that there is a statistical difference in average tips for men and 
women.  

 

12.5.3 Two‐Way ANOVA Calculations 

Like in one-way ANOVA analysis the main tool used is the square sums of each group. 
Two-way ANOVA can be split between two different types: with repetition and without 
repetition. With repetition means that every case is repeated a set number of times. For 
the above example that would mean that the :-) was given to females 10 times and males 
10 times, and no message was given to females 10 times and males 10 times  
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Using the SS values as a start the F-statistics for two-way ANOVA with repetition are 
calculated using the chart below where a is the number of levels of main effect A, b is the 
number of levels of main effect B, and n is the number of repetitions.  

Source  SS  DF  Adj MS  FStatistic  

Main Effect A  From data 
given  a‐1  SS/df  MS(A)/MS(W)  

Main Effect B  From data 
given  b‐1  SS/df  MS(B)/MS(W)  

Interaction 
Effect  

From data 
given  (a‐1)(b‐1)  SS/df  MS(A*B)/MS(W)  

Within  From data 
given  ab(n‐1)  SS/df   

Total  sum of others  abn‐1    

 

Without repetition means there is one reading for every case. For example is you were 
investigating whether or not difference in yield are more significant based on the day the 
readings were taken or the reactor that the readings were taken from you would have one 
reading for Reactor 1 on Monday, one reading for Reactor 2 on Monday etc... The results 
for two-way ANOVA without repetition is slightly different in that there is no interaction 
effect measured and the within row is replaced with a similar (but not equal) error row. 
The calculations needed are shown in the table below.  

Source  SS  DF  MS  FStatistic  

Main Effect A  From data 
given  a‐1  SS/df  MS(A)/MS(E)  

Main Effect B  From data 
given  b‐1  SS/df  MS(B)/MS(E)  

Error  From data 
given  (a‐1)(b‐1)  SS/df   

Total  sum of others  ab‐1    

These calculations are almost never done by hand. In this class you will usually use Excel 
or Mathematica to create these tables. Sections describing how to use these programs are 
found later in this chapter.  
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12.6 Other Methods of Comparison 

Unfortunately, the conditions for using the ANOVA F-test do not hold in all situations. In 
this section, several other methods which do not rely on equal population standard 
deviations or normal distribution. It is important to realize that no method of factor 
analysis is appropriate if the data given is not representative of the group being studied.  

12.6.1 Hypotheses About Medians 

In general, it is best construct hypotheses about a population median, rather than the 
mean. Using the median accounts for the sample being skewed based on extreme outliers. 
Median hypotheses should also be used for dealing with ordinal variables (variables 
which are described only as being higher or lower than one other and do not have a 
precise value). When several populations are compared, the hypotheses are stated as -  

H0: Population medians are equal 
Ha: Population medians are not all equal  

12.6.2 Kruskal‐Wallis Test for Comparing Medians 

The Kruskal-Wallis Test provides a method of comparing medians by comparing the 
relative rankings of data in the observed samples. This test is therefore referred to as a 
rank test or non-parametric test because the test does not make any assumptions about the 
distribution of data.  

To conduct this test, the values in the total data set are first ranked from lowest to highest, 
with 1 being lowest and N being highest. The ranks of the values within each group are 
averaged, and the test statistic measures the variation among the average ranks for each 
group. A p-value can be determined by finding the probability that the variation among 
the set of rank averages for the groups would be as large or larger as it is if the null 
hypothesis is true. More information on the Kruskal-Wallis test can be found [here].  

12.6.3 Mood's Median Test for Comparing Medians 

Another nonparametric test used to compare population medians is Mood's Median 
Test. Also called the Sign Scores Test, this test involves multiple steps. 

1. Calculate the median (M) using all data points from every group in the study  
2. Create a contingency table as follows  

 A  B  C  Total  
Number of values greater than M      

Number of values less than or equal to M      

3. Calculate the expected value for each data set using the following formula:  
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4. Calculate the chi-square value using the following formula 

 

A chi-square statistic for two-way tables is used to test the null hypothesis that the 
population medians are all the same. The test is equivalent to testing whether or not the 
two variables are related.  

12.7 ANOVA and Factor Analysis in Process Control 

ANOVA and factor analysis are typically used in process control for troubleshooting 
purposes. When a problem arises in a process control system, these techniques can be 
used to help solve it. A factor can be defined as a single variable or simple process that 
has an effect on the system. For example, a factor can be temperature of an inlet stream, 
flow rate of coolant, or the position of a specific valve. Each factor can be analyzed 
individually to determine the effect that changing the input has on the process control 
system as a whole. The input variable can have a large, small, or no effect on what is 
being analyzed. The amount that the input variable affects the system is called the “factor 
loading”, and is a numerical measure of how much a specific variable influences the 
system or the output variable. In general, the larger the factor loading is for a variable the 
more of an affect that it has on the output variable.  

A simple equation for this would be:  
 
Output = f1 * input1 + f2 * input2 + ... + fn * inputn  
 
Where fn is the factor loading for the nth input.  

Factor analysis is used in this case study to determine the fouling in an alcohol plant 
reboiler. This article provides some additional insight as to how factor analysis is used in 
an industrial situation.  

12.8 Using Mathematica to Conduct ANOVA 

Mathematica can be used for one-way and two-way factor anaylses. Before this can be 
done, the ANOVA package must be loaded into Mathematica using the following 
command:  

Needs["ANOVA`"]  

Once this command is executed, the 'ANOVA' command can be utilized.  
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12.8.1 One‐Way Factor Analysis 

The basic form of the 'ANOVA' command to perform a one-way factor analysis is as 
follows:  

ANOVA[data]  
 
An example set of data with five elements would look like:  

ANOVA[{{1,2},{2,4},{2,5},{3,4},{3,1}}]  
 
An output table that includes the degrees of freedom, sum of the squares, mean sum of 
the squares, F-statistic, and the P-value for the model, error, and total will be displayed 
when this line is executed. A list of cell means for each model will be displayed beneath 
the table.  

12.8.2 Two‐Way Factor Analysis 

The basic form of the 'ANOVA' command to perform a two-way factor analysis is as 
follows:  

ANOVA[data, model, vars]  
 
An example set of data with seven elements would look like:  

ANOVA[{{1,2,2},{1,3,3},{1,4,2},{2,4,1},{2,1,5},{3,3,3},{3,2,1}},{x,y},{x,y}]  
 
An output table will appear similar to the one that is displayed in the one-way analysis 
except that there will be a row of statistics for each variable (i.e. x,y).  
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12.9 ANOVA in Microsoft Excel 2007 

In order to access the ANOVA data analysis tool, install the package:  

1. Click on the Microsoft Office button (big circle with office logo)  
2. Click 'Excel Options' 
3. Click 'Add-ins' on the left side  
4. In the manage drop-down box at the bottom of the window, select 'Excel Add-ins' 
5. Click 'Go...' 
6. On the Add-Ins window, check the Analysis ToolPak box and click 'OK' 

To use this package:  

1. Click on the 'Data' tab and select 'Data Analysis' 
2. Choose the desired ANOVA type- 'Anova: Single Factor', 'Anova: Two Factor with 
Replication', or 'Anova: Two Factor without Replication'(see note below for when to use 
replication)  
3. Select the desired data points including data labels at top of the corresponding 
columns. Make sure the box is checked for 'Labels in first row' in the ANOVA parameter 
window.  
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4. Specify alpha in the ANOVA parameter window. Alpha represents the level of 
significance.  
5. Output the results into a new worksheet.  

NOTE: Anova: Two Factor with Replication is used in the cases where there are multiple 
readings for a single factor. For instance, the input below, there are 2 factors, control 
architecture and unit. This input shows how there are 3 readings corresponding to each 
control architecture (FB, MPC, and cascade). In this sense, the control architecture is 
replicated 3 times, each time providing different data relating to each unit. So, in this 
case, you would want to use the Anova Two Factor with Replication option.  

 

Anova: Two Factor without Replication is used in cases where there is only one reading 
pertaining to a particular factor. For example, in the case below, each sample (row) is 
independent of the other samples since they are based on the day they were taken. Since 
multiple readings were not taken within the same day, the "without Replication" option 
should be chosen.  
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Excel outputs:  

Summary:  
1. Count- number of data points in a set  
2. Sum- sum of the data points in a set  
3. Average- mean of the data points in a set  
4. Variance- standard deviation of the data points in a set  

ANOVA:  
1. Sum of squares (SS)  
2. The degree of freedom (df) 
3. The mean squares (MS) 
4. F-statistic (F) 
5. P-value  
6. Fcritical 

See the figure below for an example of the inputs and outputs using Anova: Single 
Factor. Note the location of the Data Analysis tab. The data was obtained from the 
dieting programs described in Table 1. Since the F-statistic is greater than Fcritical, the null 
hypothesis can be rejected at a 95% confidence level (since alpha was set at 0.05). Thus, 
weight loss was not random and in fact depends on diet type chosen.  
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12.10 Worked out Example 1 

Determine the fouling rate of the reboiler at the following parameters:  
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T = 410K 
Cc = 16.7g / L 
RT = 145min 

Which process variable has the greatest effect (per unit) on the fouling rate of the 
reboiler?  

Note that the tables below are made up data. The output data for a single input was 
gathered assuming that the other input variables provide a negligible output. Although the 
factors that affect the fouling of the reboiler are similar to the ones found the the article 
linked in the "ANOVA and Factor Analysis in Process Controls" section, the data is not.  

Temperature of Reboiler (K)  400  450  500  

Fouling Rate (mg/min)  0.8  0.86  0.95  

 

Catalyst Concentration (g/L)  10  20  30  

Fouling Rate (mg/min)  0.5  1.37  2.11  

 

Residence Time (min)  60  120  180  

Fouling Rate (mg/min)  0.95  2.3  3.81  

 
 
Solution:  

1) Determine the "factor loading" for each variable.  

This can be done using any linearization tool. In this case, the factor loading is just the 
slope of the line for each set of data. Using Microsoft Excel, the equations for each set of 
data are the following:  

Temperature of Reboiler 
y = 0.0015 * x + 0.195  
Factor loading: 0.0015 
 
Catalyst Concentration 
y = 0.0805 * x − 0.2833  
Factor loading: 0.0805 
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Residence Time 
y = 0.0238 * x − 0.5067  
Factor loading: 0.0238 
 

 

2) Determine the fouling rate for the given process conditions and which process variable 
affects the fouling rate the most (per unit). Note that the units of the factor loading value 
are always the units of the output divided by the units of the input.  

Plug in the factor loading values into the following equation:  
Output = f1 * input1 + f2 * input2 + ... + fn * inputn  
 
You will end up with:  
FoulingRate = 0.0015 * T + 0.0805 * Cc + 0.0238 * RT  
 
Now plug in the process variables:  
FoulingRate = 0.0015 * 410 + 0.0805 * 16.7 + 0.0238 * 145  
FoulingRate = 5.41mg / min  
 
The process variable that affects the fouling rate the most (per unit) is the catalyst 
concentration because it has the largest factor loading value.  
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12.11 Worked out Example 2 

Problem:  

The exit flow rate leaving a tank is being tested for 3 cases. The first case is under the 
normal operating conditions, while the second (A) and the third (B) cases are for new 
conditions that are being tested. The flow value of 7 (gallons /hour) is desired with a 
maximum of 10. A total of 24 runs are tested with 8 runs for each case. The tests are run 
to determine whether any of the new conditions will result in a more accurate flow rate. 
First, we determine if the new conditions A and B affect the flow rate. The results are as 
follows:  
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The recorded values for the 3 cases are tabulated. Following this the values for each case 
are squared and the sums for all of these are taken. For the 3 cases, the sums are squared 
and then their means are found.  

These values are used to help determine the table above (the equations give an idea as to 
how they are calculated). In the same way with the help of ANOVA, these values can be 
determine faster. This can be done using the mathematica explained above.  

 
Conclusion:  

Fcritical equals 3.4668, from an F-table. Since the calculated F value is greater than Fcritical, 
we know that there is a statistically significant difference between 2 of the conditions. 
Thus, the null hypothesis can be rejected. However we do not know between which 2 
conditions there is a difference. A post-hoc analysis will help us determine this. However 
we are able to confirmed that there is a difference.  

 

12.12 Worked out Example 3 

As the new engineer on site, one of your assigned tasks is to install a new control 
architecture for three different units. You test three units in triplicate, each with 3 
different control architecture: feedback (FB), model predictive control (MPC) and 
cascade control. In each case you measure the yield and organize the data as follows: 

 

Do the units differ significantly? Do the control architectures differ significantly?  
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Answer: This problem can be solved using ANOVA Two factor with replication analysis. 

 

12.13 Multiple Choice Question 1 

ANOVA analysis works better for?  

 
A. Non-linear models  

B. Linear models  

C. Exponential models  

D. All of the above  
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12.14 Multiple Choice Question 2 

Two-Way ANOVA analysis is used to compare?  

 
A. Any two sets of data  

B. Two One-Way ANOVA models to each other  

C. Two factors on their effect of the output  

D. B and C  

 

12.15 Multiple Choice Answers 

Question 1: B  

Question 2: C  

 

 

12.16 Sage's Corner 

If you are a sage for this page, please link your narrated powerpoint presentation here.  

For just the slides: http://controls.engin.umich.edu/wiki/index.php/Image:Anchor2.ppt  
http://video.google.com/googleplayer.swf?docId=-3237677123667838406 
http://video.google.com/googleplayer.swf?docId=6201287739553253294 

For just the slides: 
http://controls.engin.umich.edu/wiki/index.php/Image:ANOVA_Slides.ppt  
http://www.youtube.com/v/fA7xPxbM6NY 
 
For just the slides: http://controls.engin.umich.edu/wiki/index.php/Image:Mn-anova-
presentation.ppt  
http://www.youtube.com/v/AEbYrMZEyac 
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13.1 Introduction 

The application of control networks to engineering processes requires an understanding 
of the relationships between system variables. One would expect, for example, to find a 
relationship between the steam flow rate to a heat exchanger and the outlet stream 
temperature. How, then, are engineers to quantify the degree of relation between a pair of 
variables? Often times, investigations into the correlation and mutual information of data 
sets can provide the answer. Correlation analysis provides a quantitative means of 
measuring the strength of a linear relationship between two vectors of data. Mutual 
information is essentially the measure of how much “knowledge” one can gain of a 
certain variable by knowing the value of another variable. By utilizing these techniques, 
engineers can increase the selectivity and accuracy of their control systems.  

13.2 Correlation 

13.2.1 Population Correlation Coefficient 

The correlation coefficient is an important measure of the relationship between two 
random variables. Once calculated, it describes the validity of a linear fit. For two 
random variables, X and Y, the correlation coefficient, ρxy, is calculated as follows:  

 

That is, the covariance of the two variables divided by the product of their standard 
deviations. Covariance serves to measure how much the two random variables vary 
together. This will be a positive number if both variables consistently lie above the 
expected value and will be negative if one tends to lie above the anticipated value and the 
other tends to lie below. For a further description of covariance, as well as how to 
calculate this value, see Covariance on Wikipedia.  

The correlation coefficient will take on values from 1 to -1. Values of 1 and -1 indicate 
perfect increasing and decreasing linear fits, respectively. As the population correlation 
coefficient approaches zero from either side, the strength of the linear fit diminishes. 
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Approximate ranges representing the relative strength of the correlation are shown below. 
See the Correlation article on wikipedia for more detailed information about the 
correlation theory establishing these ranges. The ranges also apply for negative values 
between 0 and -1.  

 

Correlation  

Small: 0.10 to 0.29  

Medium: 0.30 to 0.49  

Large: 0.50 to 1.00  

13.2.2 Sample Correlation Coefficient 

A modified form of the expression for the correlation coefficient describes the linearity of 
a data sample. For n measurements of variables X and Y, the sample correlation 
coefficient is calculated as follows:  

 

where and are the sample averages, and sx and sy are the samples’ standard 
deviations. This correlation coefficient will still take on values from 1 to -1, 
corresponding to the strength of linearity in the same way as the population correlation 
coefficient. This expression is often the more useful for process controls applications; an 
engineer can measure two variables, calculate their means and standard deviations, and 
ultimately determine the validity of a linear relationship between the two. This method is 
extremely useful when applied to a sample of experimental data that can be modeled by a 
normal distribution function. It is simpler and easier to use compared to the population 
correlation coefficient because it uses only well defined statistical inputs, mean and 
standard deviation, rather than the complex covariance function.  

13.2.3 Correlation Coefficient Assumptions: Linearity, Normal Distribution 

The correlation coefficient indicates the strength of a linear relationship between two 
variables with random distribution; this value alone may not be sufficient to evaluate a 
system where these assumptions are not valid.  

The image below shows scatterplots of Anscombe's quartet, a set of four different pairs of 
variables created by Francis Anscombe. The four y variables have the same mean (7.5), 
standard deviation (4.12), correlation coefficient (0.81) and regression line (y = 3 + 0.5x).  
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[Image from http://en.wikipedia.org/wiki/Correlation Correlation]  

However, as can be seen on the plots, the distribution of the variables is very different.  

The scatterplot of y1 (top left) seems to exhibit random distribution. It corresponds to 
what one would expect when considering two variables linearly correlated and following 
normal distribution.  

The scatterplot of y2 (top right) does not exhibit random distribution; a plot of its 
residuals would not show random distribution. However, an obvious non-linear 
relationship between the two variables can be observed.  

The scatterplot of y3 (bottom left) seems to exhibit a near perfect linear relationship with 
the exception of one outlier. This outlier exerts enough influence to lower the correlation 
coefficient from 1 to 0.81. A Q test should be performed to determine if a data point 
should be retained or rejected.  

The scatterplot of y4 (bottom right) shows another example when one outlier is enough to 
produce a high correlation coefficient, even though the relationship between the two 
variables is not linear.  

These examples indicate that the correlation coefficient alone should not be used to 
indicate the validity of a linear fit.  
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13.2.4 Engineering Applications 

Measuring the correlation of system variables is important when selecting manipulated 
and measured control pairs. Say, for instance, that an engineer takes several 
measurements of the temperature and pressure within a reactor and notes that the data 
pairs have a correlation coefficient of approximately one. The engineer now understands 
that by applying a control system to maintain the temperature, he will also be controlling 
the reactor pressure by way of the linear relationship between the two variables.  

Here we begin to see the role correlations play in defining MIMO versus SISO systems. 
Generally, engineers seek control systems with independent pairs of manipulated (u) and 
measured variables (x). If two inputs strongly influence a single output as measured by 
the correlation value, then the system will be difficult to decouple into a SISO controller. 
Correlation values closer to 0 for all but one manipulated variable means the system will 
be easier to decouple because here a single system input controls a single system output 
and there is limited effect on other process variables.  

13.2.5 Correlation in Mathematica 

Correlation coefficients can be quickly calculated with the aid of Mathematica. To 
illustrate by example, suppose that an engineer measures a series of temperatures inside a 
bacterial chemostat and the corresponding protein concentration in the product. She 
measures temperatures of 298, 309, 320, 333, and 345 K corresponding to protein 
concentrations of 0.4, 0.6, 0.7, 0.85, and 0.9 weight percent protein (these values are for 
illustrative purposes and do not reflect the performance of an actual chemostat). The 
engineer enters these measurements into Mathematica as a pair of vectors as follows:  

 

where T is a vector containing the temperature measurements and C is a vector 
containing the concentration measurements. To determine the correlation coefficient, 
simply use the syntax below.  

 

In this case, the correlation coefficient of nearly 1 indicates a strong degree of linearity 
between the chemostat temperature and the protein concentration, informing the engineer 
that she can essentially control this concentration through temperature control. The 
sample correlation function in Mathematica uses an approximate solution with the mean 
and standard deviation of the data set, but the value is very close to the true correlation 
function value. This can be seen in the figure below as the dashed line represents the 
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sample correlation function, which deviates slightly from the true correlation function. As 
the sample becomes larger (i.e. higher n) the approximation gets closer to the true value. 
This represents a limitation of the sample correlation function and demonstrates how 
Mathematica can be used to determine multiple correlations between sets of data.  

 

13.3 Mutual Information 

Mutual information (also referred to as transinformation) is a quantitative measurement 
of how much one random variable (Y) tells us about another random variable (X). In this 
case, information is thought of as a reduction in the uncertainty of a variable. Thus, the 
more mutual information between X and Y, the less uncertainty there is in X knowing Y 
or Y knowing X. For our purposes, within any given process, several parameters must be 
selected in order to properly run the process. The relationship between variables is 
integral to correctly determine working values for the system. For example, adjusting the 
temperature in a reactor often causes the pressure to change as well. Mutual information 
is most commonly measured in logarithms of base 2 (bits) but is also found in base e 
(nats) and base 10 (bans).  

13.3.1 Explanation of Mutual Information 

The mathematical representation for mutual information of the random variables A and B 
are as follows:  

 

where,  

• p(a,b) = joint probability distribution function of A and B.  

• p(a) = marginal probability distribution function of A.  

• p(b) = marginal probability distribution function of B.  
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For a review and discussion of probability distribution functions, please refer to 
Probability Distribution (Wikipedia).  

 

When referring to continuous situations, a double integral replaces the double summation 
utilized above.  

 

where,  

• p(a,b) = joint probability density function of A and B.  

• p(a) = marginal probability density function of A.  

• p(b) = marginal probability density function of B.  

For a review and discussion of probability density functions, please refer to Probability 
Density Function (Wikipedia).  

 
By performing the functions above, one measures the distance between the joint 
distribution/density functions of A and B. Since mutual information is always measuring 
a distance, the value obtained from this calculation will always be nonnegative and 
symmetric. Therefore,  

 

 

 

In both cases, the information shared between both A and B is being measured. If A and 
B are independent of each other, then the difference between the two would be zero. In 
terms of chemical engineering processes, two independent variables would share no 
mutual information which means that one variable provides no information about the 
other variable. If A and B were identical, then all the information derived from obtaining 
variable A would supply the knowledge needed to get variable B.  

By knowing the mutual information between two variables A and B, modeling of a 
multivariable system can be accomplished. If two or more variables provide the same 
information or have similar effects on one outcome, then this can be taken into 
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consideration while constructing a model. For example, if the level of a tank was 
observed to be too high, pressure and temperature could be plausible variables. If 
manipulating both of these variables causes a change in the fluid level in the tank, then 
there exists some mutual information between the pressure and temperature. It would 
then be important to establish the relationship between temperature and pressure to 
appropriately control the level of fluid in the tank.  

13.3.2 Visual Representation of Mutual Information 

 
Figure 1. This figure demonstrates how y provides information for x. The blue is 

p(x) and the red is p(x|y) for a specific y. 

A. y shares mutual information with x such that given a y1 the values of x are now 
narrowed down to the five values.  

B. y shares mutual information with x but it shares less information than A and therefore 
is not as helpful as A, as it does not eliminate as many potential x values.  

C. y does not share any mutual information. Given the y3 value, no x values are 
eliminated as potential values. Since y3 does not provide any information there is no 
information between the two variables.  

D. y shares mutual information with x. Because of the bimodal distribution, one more 
piece of information is required to describe which distribution lies within. Therefore, D 
gives as much information as part B. B gives 11 potential values while D gives 10 
potential values. However, one additional bit of information is required to describe which 
of the two curves the x values lie on, thus there are 11 needed inputs.  
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13.3.3 Relating Mutual Information to Other Quantities/Concepts 

Mutual information can be related to other concepts to gain a comprehensive 
understanding of the information obtained from any given parameter. Mutual information 
discussions are most commonly coupled with a discussion on Shannon entropy (See 
Shannon Entropy for more information on entropy).  

Relative Entropy 

In terms of probability theory, the relative entropy of a system measures the distance 
between two distinct probability functions. In chemical engineering applications, mutual 
information can be used to determine the entropy inherent in a system. Mutual 
information in this aspect can now be defined simply as:  

 

where,  

• H(A) = marginal entropy of A.  

• H(B) = marginal entropy of B.  

• H(A | B) = conditional entropy of A.  

• H(B | A) = conditional entropy of B.  

• H(A,B) = joint entropy of A and B.  

As described above, the marginal entropy still represents the uncertainty around a given 
variable A and B. Conditional entropy describes the uncertainty in the specified variable 
that remains after the other variable is known. In terms of mutual information, the 
conditional entropies of A and B tell us that a certain number of bits needs to be 
transferred from A in order to determine B and vice versa. Once again, these bits of 
information are determined by the logarithmic base chosen for analysis. One can 
determine the uncertainty in several different process parameters with respect to any 
other process variable.  

Mutual Information and Boolean Models 

Recall that via BooleanModels, a complex series of sensors and valves can be modeled 
into a simple control system. A Boolean variable, however, will never return a value 
because it can only return True or False. This knowledge can be combined to determine a 
relationship between two different variables (from Boolean model) and then their 
dependency can be quantified (mutual information). Utilizing the same logic that goes 
into constructing truth tables, data can be input into tables to determine the mutual 
information value.  
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13.4 Correlation Example 

Suppose an engineer wants to test the applicability of the ideal gas law to a closed tank 
containing a fixed amount of his company’s gaseous product. Given that the vessel is of 
constant volume, and given that no change in moles will occur in this fixed system, one 
would hypothesize that the ideal gas law would predict a linear relationship between the 
temperature and pressure within the tank.  

 

The engineer makes the following measurements and notes his findings in Excel.  
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Before proceeding with his analysis, the engineer decides to calculate the correlation 
coefficient for these values in Mathematica.  

 

Noting the correlation coefficient’s approximate value of 1, the engineer proceeds by 
creating a linear fit of the data in Excel.  

 

Indeed, the data are nearly linear.  

 

13.5 Summary 

If an engineer were trying to determine if two random variables are linearly related, 
calculating correlation coefficients would be the first step to determine this. If the mean 
and standard deviation for both variables are known values (i.e. calculated from 
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thousands of measurements), then the population correlation coefficient should be used. 
To determine the correlation coefficient for a smaller set of data, the sample correlation 
coefficient equations should be used. If the two variables were shown to have a high 
degree of correlation, the next step would be to plot the data and graphically check the 
linear relationship of this data. A high correlation coefficient does not necessarily mean 
the two variables are linearly related as shown by Anscombe’s quartet, so this graphical 
check is necessary.  

Mutual information helps reduce the range of the probability density function (reduction 
in the uncertainty) for a random variable X if the variable Y is known. The value of 
I(X;Y) is relative, and the larger its value, the more information that is known of X. It is 
generally beneficial to try to maximize the value of I(X;Y), thus minimizing uncertainty. 
The concept of mutual information is quite complex and is the basis of information 
theory.  

13.6 Sage's Corner 

The bigger your shoe size...  

http://video.google.com/googleplayer.swf?docId=6786850156215418037 
http://video.google.com/googleplayer.swf?docId=-1774639730424023225 
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14.1 Introduction 

Gaussian distributions are powerful tools for data analysis of randomly generated 
samples. Gaussian distributions are typically associated with a “Bell curve”, a graphical 
representation of a probability density function that is characterized by a peak at the data 
mean and a width determined by the standard deviation of the data set. The distribution of 
the curve around the mean is symmetric, with certain percentages of the data falling 
within one standard deviation of the mean. The probability that a data point exists within 
a certain range of values is equal to the area under the probability density curve between 
those two values. The total area under the curve is equal to one because all data points 
can be found to exists somewhere in that data set. For more detailed information on 
Gaussian distributions, consult the wiki article: Continuous Distributions.  

The random number sampler is a powerful tool and is very useful in process modeling. 
One example of a use for a random number samplers is to generate weather data from a 
model to simulate changing climate throughout the year, in order to properly maintain the 
temperature of a storage vessel. Another way it can be used is to create a control chart to 
monitor how well a process is controlled over time based on some information about 
normal system operation. The goal of random number generation is to be able to use large 
amounts of data based on limited experimentation to test a control scheme.  

The objective of this article is to explain how random sampling to form a Gaussian data 
set is useful in process control. First is discussion of how to use a Gaussian distribution to 
analyze probability and compare the statistical similarities/differences between different 
data sets. Then is an explanation of how to use the Central Limit Theorem and show how 
to create a Gaussian distribution from non-Gaussian data using average values. Last are 
examples of how to use this theory in process controls, including how to generate and use 
control charts.  
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14.2 Random Number Sampler 

The purpose of the random number sampler is to take randomly generated points and turn 
them into a Gaussian distribution (i.e. a PDF). It is important to use points distributed 
throughout the range of 0 to 1. This task is accomplished by assuming a random number 
(R) is equal to the ‘y’ value of the cumulative distribution function (CDF). The CDF is 
the cumulative area under the curve of the probability density function (PDF). By taking 
an integral from −∞ to x in the PDF, this ‘y’ value of the CDF can be found. Since the 
value of R is already known, we can find the x values of the CDF and thus, the PDF. 
With the x values of the PDF known, we can find P(x) and construct the Gaussian 
distribution. The relationship between R and x is shown below:  

 

 
The process of choosing a random number and implementing it into the PDF can be done 
using Mathematica. Excel is not recommended because it cannot compute the Erf() of a 
negative number, so we cannot use it for data points below the mean in a CDF.  

 
The first step for random sampling a stationary Gaussian process is to input the mean (µ) 
and the standard deviation (σ) into the equation below. Then, you can determine the 
random points either with Random[ ] function in Mathematica or via user input to 
develop a list of random numbers between 0 and 1. Using a random number input as R, 
Mathematica can be used to determine the corresponding data point x using the syntax 
below:  

 

Solve[R == (1/2)*(Erf[(x- µ)/( σ*Sqrt[2])]+1), x]  
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The syntax can be repeated to determine as many random numbers and their 
corresponding x values as is necessary for your problem. A CDF plot can be created by 
plotting all of the random R values versus their corresponding x values.  

We will demonstrate how the procedure works in the following example. First, we chose 
10 random numbers and found corresponding x values, given in Table 1 with µ = 10 and 
σ = 5. See Figure 1 for the plot of the CDF.  

 

Table 1: CDF Random Numbers and Corresponding x Values  
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Figure 1: Continuous Distribution Function  

 
In order to develop the PDF you would input the mean and standard deviation into the 
following PDF equation, and find P(x) for each value of x.  

 

 

 
The syntax used in Mathematica is:  

 

Solve[P(x) == (1/Sqrt[2*Pi*σ^2])*e^(-(x-µ)^2/(2*σ^2)), P(x)]  

 
The syntax outputs values for P(x) which are then plotted against the x values calculated 
from the CDF. The following table shows the random numbers generated in 
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Mathematica, the corresponding x values, and the P(x) values for the PDF. The plot of 
the PDF is also shown below.  

 

Table 2: For Each R, x Values and Corresponding P(x) Values  
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Figure 2: Probability Density Function  

 
As you can see the plot is in fact Gaussian. The distribution will become more Gaussian 
as more random numbers are used. The take home message from the random number 
generator is that a data set with numbers ranging between 0 and 1, obtained through 
random number generation, can be converted into a Gaussian distribution.  

14.3 Probability Primers 

One major advantage of the random number sampler is the ability to generate different 
data sets without having to actually gather data. These data sets can be used to help you 
better understand the workings of many of the different statistical comparisons. For 
instance, if the sample size increases, does that lead to more or less significance in the 
difference of two means? Most of these analysis tools are the topics of other wikis, so we 
will revisit a few only briefly with the intent on asking more in-depth questions in 
example 1.  

 

14.3.1 Probability 

Recall that the area under any Gaussian function is related to the probability. Suppose we 
use our sampler to generate a random set of 100 data points with a mean of 10 and a 
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standard deviation of 5. The probability of creating an additional data point between ‘a’ 
and ‘b’ is the integral of the Gaussian distribution function from ‘a’ to ‘b’ as follows:  

 

 

 
Further information on probabilities can be found in this wiki article: Continuous 
Distributions  

 

14.3.2 Error in the Mean 

Assume we have the same data set as described above. Let’s say we wish to add a new 
data point and compute the probability that the new mean of the data set lies between ‘c’ 
and ‘d.’ This calculation is very similar to that described above with one difference. The 
standard deviation, which describes the variance in individual data points, is replaced 
with the standard error in the mean, which describes the variance in the mean as data 
sample size changes. The standard error in the mean is calculated as follows:  

 

 

 
Once this value is obtained, we can solve for the probability as follows:  

 

 

 
Further information on standard error can be found in this wiki article: Comparison of 
Two Means  
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14.3.3 Comparison of Two Data Sets 

Now suppose we have two distinct data sets with different means and standard deviations 
and we wish to determine if one data set is statistically different from the second. To do 
this, we will compute a p-value. The p-value is computed as follows:  

 

 

 
Further information on p-values and mean comparisons can be found in these wiki 
articles: Comparison of Two Means and P-Values  

14.4 Central Limit Theorem 

Recall that one property of the random number sampler was that as the set of randomly 
generated numbers increased, errors became more random and the distribution became 
more Gaussian. The central limit theorem states that the sampling of a given distribution 
mean will approach a normal or Gaussian distribution as the sample size increases. This 
theorem is proven by the following example illustrated in the “Statistics for 
Experimenters: An Introduction to Design, Data Analysis, and Model Building.”  

 

14.4.1 Rolling of Dice 

The probability that a certain face will land upright when rolling a six-sided die is the 
same for each face. This is shown below in Figure 3 (a). The mean value of a roll can be 
calculated to be 3.5 by summing up the value of each face and dividing by 6. As the 
sample size is increased, this mean value will be shown to have the highest density of 
occurance. When the sample size is increased to two dice you can notice in Figure 3 (b) 
that the density distribution of the average score begins to take the shape of a curve. The 
density distribution of the average score for sample size increases to three, five, and ten 
dice are shown in Figure 3 (c, d, and e respectively). For each increase it can be noted 
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that the density of the extreme values decreases and the overall density distribution 
appears more like a Gaussian distribution, as predicted by the central limit theorem.  

 

 

Figure 3: Distribution from Increasing Sample Size (Box, "Statistics for Experimenters")  
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14.4.2 Random Number Generation 

The above dice example is analogous to random number generation. Consider a set of 
random numbers between 0 and 10. If these numbers were truly chosen randomly, then 
you would expect an even distribution of numbers between 0 and 10. The average of 
these numbers would be about 5, with a large standard deviation. However, let’s suppose 
your data set now consists of an average of two random numbers. In this case, the data 
will be less evenly distributed, as averaging tends to lessen the contribution of terms 
further away from 5. The shape of the distribution will begin to appear Gaussian.  

 
As you increase the number of random numbers averaged together (‘n’) to create each 
data point, the distribution becomes more Gaussian in nature. Please refer to figure 4. 
When n=1 (one random number is used to compute each data point), the density 
distribution is relatively even. As ‘n’ increases, the curves become more Gaussian in 
nature until we have a very smooth Gaussian distribution when n=100 (100 random 
numbers were averaged to obtain one data point).  

 

 

Figure 4: Distribution of data points generated by averaging random numbers  
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14.5 Example 1 

In a healthy adult female, studies have shown that the mean fraction of deoxygenated 
blood leaving the lungs is 0.05 with a standard deviation 0.01. To obtain this data, 100 
healthy females had been sampled using our random number sampler.  

 
a) Assuming this distribution is Gaussian, 95% of all healthy females will have 
deoxygenated blood fractions in what range (assume this range is centered over the mean 
of the data)?  

b) What is the expected error in the mean to a 95% level of confidence?  

c) A second study has been conducted on pregnant adult females. It was found that the 
mean fraction of deoxygenated blood leaving the lungs was 0.06 with a standard 
deviation of 0.02. Is the deoxygenated blood concentration in this population of women 
statistically different?  

d) Now assume that only 10 adult females had been sampled instead of 100. Analyze how 
the answer to part (c) may change.  

 

14.5.1 Solution: 

a) To solve this problem, recall the equation of a Gaussian distribution. Substitute in the 
value of the mean (0.05) and standard deviation (0.01). Next, recall that the area under 
the curve corresponds to probability, so we can set integrate this function to determine 
the range at which the probability equals 0.95. The bounds on this integral are 0.05 + k 
and 0.05 – k, since we are assuming this data range is centered about the mean. This 
integral can be solved in integral form or in error function form, depending on the 
commands you choose to use in inputing the function into a computer algebra system 
solver. Maple, Excel, and Mathematics can be used to solve the expression simply by 
enetring the last line of math text shown in the solution below.  
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Therefore, 95% of healthy adult females have deoxygenated blood levels between 0.03 
and 0.07.  
 
b) This problem is solved much in the same way we solved part (a). However, in this case 
we are looking for the 95% confidence interval of the mean, and not the entire 
population. Therefore, the standard deviation must be converted to the standard error in 
the mean. Then, all the above calculations are repeated.  
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Therefore, the 95% confidence interval of the mean is 0.05 ± 0.002.  

 
 
c) In order to compare the statistical significance of two different data sets, the concept of 
p-values must be used. Since we are interested comparing the means of these two data 
sets, standard deviation will be replaced by standard error in the mean. To find the 
probability (or p-value) that pregnancy results in higher levels of deoxygenated blood, we 
need to calculate the area under the Gaussian curve for healthy females that is 0.06 or 
more. Remember, we are evaluating the Gaussian function describing healthy females, so 
standard deviation data for the pregnant females is not needed.  
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The p-value is equal to zero. By convention, p-values less than 0.05 are considered to be 
statistically significant. Therefore, we conclude that pregnancy statistically affects the 
level of deoxygenated blood in an adult women’s body.  

 
 
 
d) The size of the sample only has an affect on the standard error in the mean. To solve 
this problem, recalculate the standard error and repeat the calculations above.  
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In this case, the p-value is still less than 0.05, so we still arrive at the same conclusion. 
We also conclude that as sample size decreases, differences in sample means become less 
significant because the p-value has slightly increased.  

14.6 Example 2: Comparison of Two Data Sets 

This example is intended to demonstrate how increased sample size affects the 
comparison of two data sets.  

 
Using a random number generator, four data sets (A,B,C,D) were generated. Each data 
set contains 100 total data points. For data sets A and B, two random numbers were 
averaged to attain each data point, while in C and D, five random numbers were averaged 
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for each point. This difference resulted in smaller standard deviations for data sets C and 
D. A summary of the four data sets created is shown in the following chart. M is the 
number of random samples averaged to obtain each data point. N is the total number of 
data points. The mean and standard deviation for each of the data sets is also given.  

 

 

 
a)Compare the means of data sets A and B by calculating the p-value  
b)Compare the means of data sets C and D by calculating the p-value  
c)Compare the p-values obtained for parts a) and b) above. Explain why the values make 
sense. 
d)What general effect does increasing sample size have on the comparison of two data 
sets?  

14.6.1 Solution: 

a) The p-value comparing data sets A and B is computed as follows:  
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From this p-value, we can see that it is very unlikely that these two data sets are 
statistically the same. There is only a 1.5% chance of randomly getting a data set with a 
mean as high as 5.5! It is far more likely that these two data sets are actually statistically 
different.  

b) The p-value comparing data sets C and D is computed as follows:  
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From this p-value, we can see that these two data sets are statistically different. There is 
an almost 0 percent chance of randomly getting a data set with a mean as high as 5.5!  

c) Comparing the two p-values, we can see that the value for b) is smaller than a), 
indicating that we are more confident about a statistical difference between sets C and D 
than between A and B. Going back to the description of the problem, we can find a 
reason for this result. Because of the larger sampling of random numbers in data sets C 
and D (five numbers averaged for each data point, compared to just two), these data sets 
have smaller standard deviations. These smaller standard deviations mean that we have a 
higher level of confidence that the sample mean is the true mean. Because each data set is 
more likely to show the true mean, there is also an increased likelihood that one data set 
is statistically different from the other.  
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d) In a Gaussian distribution, as sample size increases, standard error decreases. This 
indicates that the sample mean is closer to the true mean, and two data sets are more 
likely to be statistically different from each other than if there are smaller sample sizes 
and higher standard deviations in the data sets.  

14.7 Example 3 

14.7.1 Control Charts 

This section will provide a brief overview on control charts in order to complete example 
3, in which our random number sampler is applied to a control chart situation. For a more 
detailed explanation on control charts, and the methodology behind them, please see this 
wiki page: Control Charts  

 

Background 

Controls charts are tools used to determine whether a particular part of a process is 
predictable or not. A process is predictable when it is in a state of statistical control and 
unpredictable when it is not in a state of statistical control. A state of statistical control 
simply means that we can accurately predict what the output of a process will be in the 
future based on past measurements; it does not mean that the product is on target or 
within any limits of consumer acceptability. The random number sampler is a useful tool 
that can be used to analyze control charts. As previously discussed, a data set is more 
Gaussian in nature as the amount of data points is increased. Therefore, one will expect 
that a large set of data generated with our random number sampler will always be in 
statistical control, but smaller sets may contain an element of unpredictability.  

 
To create a control chart, we begin by looking at historical data measurements on the 
measurement (variable) of importance, e.g. acetic acid concentration. Once a reasonable 
amount of data has been gathered, it is used to calculate appropriate limits for the 
variable. If the historical data and future measurements fall within the range of the limits, 
it is safe to predict that future measurements will also continue to be within the range of 
the limits. Conversely, if the historical data does not fall within the range of the limits, it 
can be safely predicted that future measurements will not fall within the range of the 
limits.  

Constructing Control Charts 

The best way to illustrate how to create a control chart is to go through an example. This 
is done below. The initial assumption in developing a control chart is that the process is 
stable over period of time where a set of measurements can be made on a particular 
variable of the process. In the example below, this variable is acetic acid concentration.  
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Example  

 
Chemical engineers often combine acetic anhydride and water to produce acetic acid in a 
moderately exothermic reaction. The reaction in this particular process is supposed to 
produce a product stream of acetic acid at 5.5 wt%. The composition of the product 
stream is measured four times every hour for ten hours. Each hour’s measurements are 
viewed as a subgroup of data. Table 1 shows the data obtained from the 40 
measurements. Table 1 also listed the average concentration and the range of 
concentrations for each subgroup of measurements.  

 

Table 3. Sample Data - Acetic Acid Concentration  

 

 
To create a control chart for this process, we must first compute the average 
concentration for each subset. Additionally, we must determine the range of data for each 
subset. These steps have already been completed and their values are listed in Table 3 in 
the last two columns on the right. Next the grand average concentration and average 
range should be computed by averaging the average concentrations of each subset and by 
taking the average of each subset's ranges. For the data in table 3, the grand average 
concentration is 5.51 wt% and the average range is 0.74 wt%. At this point, we are ready 
to determine our upper and lower control limits for our acetic acid concentration. To 
determine these limits we will need to use a table of constants that have been 
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mathematically derived for Gaussian distributions. These numbers can then be inserted 
into equations that find the upper and lower average control limits (UCLx and LCLx) and 
the upper and lower range control limits (UCLR andLCLR). The following equations 
provide the control limits for the average concentrations and for their ranges.  

 

 

 

Table 5. Constants for Average and Range Charts Based on the Average Range  
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For this example, our subgroup size, n, is 4, A2 is 0.729, D3 is 0 and D4 is 2.282. When 
plugged into the above equations, they yield control limits of:  

 

 

 
Graphically the control chart is represented by creating a plot of the average 
concentration values versus their subgroup number and creating a plot of each range 
value versus the subgroup number. Horizontal lines should be included on these plots 
which indicate the control limits. Control charts for this example are plotted in figures 3 
and 4.  
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Figure 6. Control Chart for Average Acetic Acid Concentration  
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Figure 7. Control Chart for Ranges of Acetic Acid Concentration  

Interpreting Control Charts 

If any of the following rules hold true for the centering control chart, the process is not in 
statistical control.  

1. One or more points fall outside the control limits.  

2. Seven or more consecutive points fall on the same side of the centerline.  

3. Ten of 11 consecutive points fall on the same side of the centerline.  

4. Three or more consecutive points fall on the same side of the centerline and all are 
located closer to the control limit than the centerline.  

 
Observe that in both the control chart for the average concentrations, the historical data 
never exceeds or goes below the control limits. Also, none of the other rules above hold 
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true for this chart. This suggests that the process is stable; however, to confirm this 
thought, future observations must be made. If the average acetic acid concentration and 
its range continues to stay within the control limits, the process is said to be stable.  

 
In the event that the historical data did not stay within the control limits, the plots could 
have looked like figures 5 & 6.  

 

Figure 8. Control Chart for Average Acetic Acid Concentration (Unstable)  
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Figure 9. Control Chart for Ranges of Acetic Acid Concentration (Unstable)  

 
Observe that in each of these control charts, the historical data does not stay within the 
control limits for the process. Based on this observation, it can be predicted that future 
data will also not stay within the control limits for the process and the process is not 
stable. In conclusion, control charts allow you to use samples of data to determine the 
control limits for a process and evaluate if the process is stable or not.  

14.7.2 Random Sampling Problem 

In an industrial bioengineering process, it is desired to obtain a 75% proline to 25% 
hydroxyproline ratio in a specialized enzyme. The relative compositions can be analyzed 
using a fluorescent dye, where a fluorescence of 10 corresponds to the correct ratio of 
these two amino acids. To monitor the stability of this process, five reading are taken 
every 30 minutes for the duration of the 10 hour production process. The results were 
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obtained using our random number sampler with a specified mean (10) and standard 
deviation (in this case 1.6). The results are in the table below  

 

 

 
a) Calculate the average and range for each data subgroup.  

b) Create an average and range chart for the entire time of production.  

c) Is this process in control?  

14.7.3 Answer: 

a) The average and range can be calculated using the =AVERAGE() and =MAX()-MIN() 
functions of Microsoft excel.  
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b) The grand average is 10.2 and the average range is 3.8. Using Table 2, A2 = 0.577, D3 
= 0, and D4 = 2.114. Therefore:  

 

 

 
The charts are as follows:  
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c) The first rule is not violated as none of the points fall outside the upper and lower 
control limits. Seven or more points do not fall on one side of the centerline (the 
maximum was six), so rule two is not violated. Rule three was not violated, as 10 of 11 
points did not fall on the same side of the centerline (in ouir case, eight was the mx). 
Finally, rule four was not violated as none of the points were closer to the control limits 
then the centerline. Therefore, this process is under statistic control since none of the 
rules were violated.  
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14.8 Multiple Choice Question 1 

Our random number sampler was designed based on which key principle:  

a) Data points obtained by taking the average of several random numbers are more likely 
to fit a Gaussian distribution.  

b) The area under a Gaussian distribution is always between zero and one and equal to 
the 'y' value of the CDF.  

c) The distribution of data points in a Gaussian distribution is caused by random 
uncertainties.  

d) A process under Gaussian statistical control will not have a data sample exceed the 
upper or lower control limit  

 
Answer: A  

14.9 Multiple Choice Question 2 

Which of the following would decrease the p-value if comparing two different data sets:  

a) Smaller sample size  

b) Smaller count of averaged random numbers  

c) Smaller standard deviation  

d) Smaller difference in mean values  

 
Answer: C  

 

14.10 Sage's Corner 
http://www.youtube.com/v/jVqZGoRVwLI 

Rollin' the Dice slides without narration  
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1.1 Introduction 

The Taguchi method involves reducing the variation in a process through robust design 
of experiments. The overall objective of the method is to produce high quality product at 
low cost to the manufacturer. The Taguchi method was developed by Dr. Genichi 
Taguchi of Japan who maintained that variation. Taguchi developed a method for 
designing experiments to investigate how different parameters affect the mean and 
variance of a process performance characteristic that defines how well the process is 
functioning. The experimental design proposed by Taguchi involves using orthogonal 
arrays to organize the parameters affecting the process and the levels at which they 
should be varies. Instead of having to test all possible combinations like the factorial 
design, the Taguchi method tests pairs of combinations. This allows for the collection of 
the necessary data to determine which factors most affect product quality with a 
minimum amount of experimentation, thus saving time and resources. The Taguchi 
method is best used when there is an intermediate number of variables (3 to 50), few 
interactions between variables, and when only a few variables contribute significantly.  

The Taguchi arrays can be derived or looked up. Small arrays can be drawn out 
manually; large arrays can be derived from deterministic algorithms. Generally, arrays 
can be found online. The arrays are selected by the number of parameters (variables) and 
the number of levels (states). This is further explained later in this article. Analysis of 
variance on the collected data from the Taguchi design of experiments can be used to 
select new parameter values to optimize the performance characteristic. The data from 
the arrays can be analyzed by plotting the data and performing a visual analysis, 
ANOVA, bin yield and Fisher's exact test, or Chi-squared test to test significance.  

In this article, the specific steps involved in the application of the Taguchi method will be 
described and examples of using the Taguchi method to design experiments will be 
given.  
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1.2 Summary of Taguchi Method 

1.2.1 Philosophy of the Taguchi Method 

1. Quality should be designed into a product, not inspected into it. Quality is designed 
into a process through system design, parameter design, and tolerance design. Parameter 
design, which will be the focus of this article, is performed by determining what process 
parameters most affect the product and then designing them to give a specified target 
quality of product. Quality "inspected into" a product means that the product is produced 
at random quality levels and those too far from the mean are simply thrown out.  

2. Quality is best achieved by minimizing the deviation from a target. The product 
should be designed so that it is immune to uncontrollable environmental factors. In 
other words, the signal (product quality) to noise (uncontrollable factors) ratio should be 
high.  

3. The cost of quality should be measured as a function of deviation from the 
standard and the losses should be measured system wide. This is the concept of the 
loss function, or the overall loss incurred upon the customer and society from a product 
of poor quality. Because the producer is also a member of society and because customer 
dissatisfaction will discourage future patronage, this cost to customer and society will 
come back to the producer.  

1.2.2 Taguchi Method Design of Experiments 

The general steps involved in the Taguchi Method are as follows:  

1. Define the process objective, or more specifically, a target value for a performance 
measure of the process. This may be a flow rate, temperature, etc. The target of a process 
may also be a minimum or maximum; for example, the goal may be to maximize the 
output flow rate. The deviation in the performance characteristic from the target value is 
used to define the loss function for the process.  

2. Determine the design parameters affecting the process. Parameters are variables within 
the process that affect the performance measure such as temperatures, pressures, etc. that 
can be easily controlled. The number of levels that the parameters should be varied at 
must be specified. For example, a temperature might be varied to a low and high value of 
40 C and 80 C. Increasing the number of levels to vary a parameter at increases the 
number of experiments to be conducted.  

3. Create orthogonal arrays for the parameter design indicating the number of and 
conditions for each experiment. The selection of orthogonal arrays is based on the 
number of parameters and the levels of variation for each parameter, and will be 
expounded below.  
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4. Conduct the experiments indicated in the completed array to collect data on the effect 
on the performance measure.  

5. Complete data analysis to determine the effect of the different parameters on the 
performance measure.  

 
See below for a pictorial depiction of these and additional possible steps, depending on 
the complexity of the analysis.  

 

A detailed description of the execution of these steps will be discussed next.  
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1.3 Taguchi Loss Function 

The goal of the Taguchi method is to reduce costs to the manufacturer and to society 
from variability in manufacturing processes. Taguchi defines the difference between the 
target value of the performance characteristic of a process, τ, and the measured value, y, 
as a loss function as shown below.  

 

The constant, kc, in the loss function can be determined by considering the specification 
limits or the acceptable interval, delta.  

 

The difficulty in determining kc is that τ and C are sometimes difficult to define.  

 
If the goal is for the performance characteristic value to be minimized, the loss function is 
defined as follows:  

 

If the goal is for the performance characteristic value to maximized, the loss function is 
defined as follows:  

 

The loss functions described here are the loss to a customer from one product. By 
computing these loss functions, the overall loss to society can also be calculated.  

1.4 Determining Parameter Design Orthogonal Array 

The effect of many different parameters on the performance characteristic in a condensed 
set of experiments can be examined by using the orthogonal array experimental design 
proposed by Taguchi. Once the parameters affecting a process that can be controlled have 
been determined, the levels at which these parameters should be varied must be 
determined. Determining what levels of a variable to test requires an in-depth 
understanding of the process, including the minimum, maximum, and current value of the 
parameter. If the difference between the minimum and maximum value of a parameter is 
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large, the values being tested can be further apart or more values can be tested. If the 
range of a parameter is small, then less values can be tested or the values tested can be 
closer together. For example, if the temperature of a reactor jacket can be varied between 
20 and 80 degrees C and it is known that the current operating jacket temperature is 50 
degrees C, three levels might be chosen at 20, 50, and 80 degrees C. Also, the cost of 
conducting experiments must be considered when determining the number of levels of a 
parameter to include in the experimental design. In the previous example of jacket 
temperature, it would be cost prohibitive to do 60 levels at 1 degree intervals. Typically, 
the number of levels for all parameters in the experimental design is chosen to be the 
same to aid in the selection of the proper orthogonal array.  

Knowing the number of parameters and the number of levels, the proper orthogonal array 
can be selected. Using the array selector table shown below, the name of the appropriate 
array can be found by looking at the column and row corresponding to the number of 
parameters and number of levels. Once the name has been determined (the subscript 
represents the number of experiments that must be completed), the predefined array can 
be looked up. Links are provided to many of the predefined arrays given in the array 
selector table. These arrays were created using an algorithm Taguchi developed, and 
allows for each variable and setting to be tested equally. For example, if we have three 
parameters (voltage, temperature, pressure) and two levels (high, low), it can be seen the 
proper array is L4. Clicking on the link L4 to view the L4 array, it can be seen four 
different experiments are given in the array. The levels designated as 1, 2, 3 etc. should 
be replaced in the array with the actual level values to be varied and P1, P2, P3 should be 
replaced with the actual parameters (i.e. voltage, temperature, etc.)  

 
Array Selector  

 

 
Links to Orthogonal Arrays  

The following links are connected to images of the orthogonal array named in the link 
title:  

L4 Array  

L8 Array  

L9 Array  

L12 Array  
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L16 Array  

L'16 Array  

L18 Array  

L25 Array  

L27 Array  

L32 Array  

L'32 Array  

L36 Array  

L50 Array  

 

1.4.1 Important Notes Regarding Selection + Use of Orthogonal Arrays 

Note 1  

The array selector assumes that each parameter has the same number of levels. 
Sometimes this is not the case. Generally, the highest value will be taken or the 
difference will be split.  

The following examples offer insight on choosing and properly using an orthogonal 
array. Examples 1 and 2 focus on array choice, while Example 3 will demonstrate how to 
use an orthogonal array in one of these situations.  

Example 1:  

   # parameter: A, B, C, D = 4    # levels:    3, 3, 3, 2 = 
~3    array: L9  

 
Example 2:  

   # parameter: A, B, C, D, E, F = 6    # levels:    4, 5, 
3, 2, 2, 2 = ~3    array: modified L16  

 
Example 3:  
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A reactor's behavior is dependent upon impeller model, mixer speed, the control 
algorithm employed, and the cooling water valve type. The possible values for each are 
as follows:  

 
Impeller model: A, B, or C  

Mixer speed: 300, 350, or 400 RPM  

Control algorithm: PID, PI, or P  

Valve type: butterfly or globe  

 
There are 4 parameters, and each one has 3 levels with the exception of valve type. The 
highest number of levels is 3, so we will use a value of 3 when choosing our orthogonal 
array.  

Using the array selector above, we find that the appropriate orthogonal array is L9:  

 

 
When we replace P1, P2, P3, and P4 with our parameters and begin filling in the 
parameter values, we find that the L9 array includes 3 levels for valve type, while our 
system only has 2. The appropriate strategy is to fill in the entries for P4=3 with 1 or 2 in 
a random, balanced way. For example:  
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Here, the third value was chosen twice as butterfly and once as global.  

 
Note 2  

If the array selected based on the number of parameters and levels includes more 
parameters than are used in the experimental design, ignore the additional parameter 
columns. For example, if a process has 8 parameters with 2 levels each, the L12 array 
should be selected according to the array selector. As can be seen below, the L12 Array 
has columns for 11 parameters (P1-P11). The right 3 columns should be ignored.  

 



 686 

1.5 Analyzing Experimental Data 

Once the experimental design has been determined and the trials have been carried out, 
the measured performance characteristic from each trial can be used to analyze the 
relative effect of the different parameters. To demonstrate the data analysis procedure, the 
following L9 array will be used, but the principles can be transferred to any type of array.  

In this array, it can be seen that any number of repeated observations (trials) may be used. 
Ti,j represents the different trials with i = experiment number and j = trial number. It 
should be noted that the Taguchi method allows for the use of a noise matrix including 
external factors affecting the process outcome rather than repeated trials, but this is 
outside of the scope of this article.  

 

 
To determine the effect each variable has on the output, the signal-to-noise ratio, or the 
SN number, needs to be calculated for each experiment conducted. The calculation of the 
SN for the first experiment in the array above is shown below for the case of a specific 
target value of the performance characteristic. In the equations below, yi is the mean 
value and si is the variance. yi is the value of the performance characteristic for a given 
experiment.  
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For the case of minimizing the performance characteristic, the following definition of the 
SN ratio should be calculated:  

 

For the case of maximizing the performance characteristic, the following definition of the 
SN ratio should be calculated:  

 

After calculating the SN ratio for each experiment, the average SN value is calculated for 
each factor and level. This is done as shown below for Parameter 3 (P3) in the array:  
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Once these SN ratio values are calculated for each factor and level, they are tabulated as 
shown below and the range R (R = high SN - low SN)of the SN for each parameter is 
calculated and entered into the table. The larger the R value for a parameter, the larger the 
effect the variable has on the process. This is because the same change in signal causes a 
larger effect on the output variable being measured.  

 

 
Please refer to the Worked Out Example for a numeric example of how the data analysis 
procedure described here is applied.  

1.6 Advantages and Disadvantages 

An advantage of the Taguchi method is that it emphasizes a mean performance 
characteristic value close to the target value rather than a value within certain 
specification limits, thus improving the product quality. Additionally, Taguchi's method 
for experimental design is straightforward and easy to apply to many engineering 
situations, making it a powerful yet simple tool. It can be used to quickly narrow down 
the scope of a research project or to identify problems in a manufacturing process from 
data already in existence. Also, the Taguchi method allows for the analysis of many 
different parameters without a prohibitively high amount of experimentation. For 
example, a process with 8 variables, each with 3 states, would require 6561 (38) 
experiments to test all variables. However using Taguchi's orthogonal arrays, only 18 
experiments are necessary, or less than .3% of the original number of experiments. In this 
way, it allows for the identification of key parameters that have the most effect on the 
performance characteristic value so that further experimentation on these parameters can 
be performed and the parameters that have little effect can be ignored.  
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The main disadvantage of the Taguchi method is that the results obtained are only 
relative and do not exactly indicate what parameter has the highest effect on the 
performance characteristic value. Also, since orthogonal arrays do not test all variable 
combinations, this method should not be used with all relationships between all variables 
are needed. The Taguchi method has been criticized in the literature for difficulty in 
accounting for interactions between parameters. Another limitation is that the Taguchi 
methods are offline, and therefore inappropriate for a dynamically changing process such 
as a simulation study. Furthermore, since Taguchi methods deal with designing quality in 
rather than correcting for poor quality, they are applied most effectively at early stages of 
process development. After design variables are specified, use of experimental design 
may be less cost effective.  

1.7 Other Methods of Experimental Design 

Two other methods for determining experimental design are factorial design and random 
design. For scenarios with a small number of parameters and levels (1-3) and where each 
variable contributes significantly, factorial design can work well to determine the specific 
interactions between variables. However, factorial design gets increasingly complex with 
an increase in the number of variables. For large systems with many variables (50+) 
where there are few interactions between variables, random design can be used. Random 
design assigns each variable a state based on a uniform sample (ex: 3 states = 0.33 
probability) for the selected number of experiments. When used properly (in a large 
system), random design usually produces an experimental design that is desired. 
However, random design works poorly for systems with a small number of variables.  

To obtain a even better understanding of these three different methods, it's good to get a 
visual of these three methods. It will illustrate the degree of efficiency for each 
experimental design depending on the number of variables and the number of states for 
each variable. The following will have the three experimental designs for the same 
scenario.  

Scenario. You have a CSTR that has four(4) variables and each variable has three or two 
states. You are to design an experiment to systematically test the effect of each of the 
variables in the current CSTR.  
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Experimental Design #1: Factorial Design By looking at the # variables and # states, 
there should be a total of 54 experiments because 
(3impellers)(3speeds)(3controllers)(2valves)=54. Here's a list of these 54 experiments:  

 

Experimental Design #2: Taguchi Method Since you know the # of states and 
variables, you can refer to the table above in this wiki and obtain the correct Taguchi 
array. It turns out to be a L9 array.  

 

With the actual variables and states, the L9 array should look like the following:  
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Experimental Design #3: Random Design  

Since we do not know the number of signal recoveries we want and we don't know the 
probabilities of each state to happen, it will be difficult to construct a random design 
table. It will mostly be used for extreme large experiments. Refer to the link below to 
help you obtain a better grasp on the random design concept.  

http://groups.csail.mit.edu/drl/journal_club/papers/CS2-Candes-Romberg-05.pdf  

1.8 Worked out Example 

NOTE: The data for the following example is not real, and details pertaining to 
microprocessor fabrication may not be completely accurate.  

A microprocessor company is having difficulty with its current yields. Silicon processors 
are made on a large die, cut into pieces, and each one is tested to match specifications. 
The company has requested that you run experiments to increase processor yield. The 
factors that affect processor yields are temperature, pressure, doping amount, and 
deposition rate.  

a) Question: Determine the Taguchi experimental design orthogonal array. The operating 
conditions for each parameter and level are listed below:  

• A: Temperature  
o A1 = 100ºC  
o A2 = 150ºC (current)  
o A3 = 200ºC 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• B: Pressure  
o B1 = 2 psi  
o B2 = 5 psi (current)  
o B3 = 8 psi  

 

• C: Doping Amount  
o C1 = 4%  
o C2 = 6% (current)  
o C3 = 8%  

 

• D: Deposition Rate  
o D1 = 0.1 mg/s  
o D2 = 0.2 mg/s (current)  
o D3 = 0.3 mg/s  

 
a) Solution: The L9 orthogonal array should be used. The filled in orthogonal array 
should look like this:  

 

 
This setup allows the testing of all four variables without having to run 81 [=34=(3 
Temperatures)(3 Pressures)(3 Doping Amounts)(3 Deposition rates)] separate trials.  

 
b) Question: Conducting three trials for each experiment, the data below was collected. 
Compute the SN ratio for each experiment for the target value case, create a response 
chart, and determine the parameters that have the highest and lowest effect on the 
processor yield.  
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b) Solution: Shown below is the calculation and tabulation of the SN ratio.  
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Shown below is the response table. This table was created by calculating an average SN 
value for each factor. A sample calculation is shown for Factor B (pressure):  

 

 

 

 

 

 

 

 
The effect of this factor is then calculated by determining the range:  



  695 

 

 

 

 

 
It can be seen that deposition rate has the largest effect on the processor yield and that 
temperature has the smallest effect on the processor yield.  

1.9 Extreme Example: Sesame Seed Suffering 

Problem: You have just produced one thousand 55 gallon drums of sesame oil for sale to 
your distributors. However, just before you are to ship oil, one of your employees 
remembers that one of the oil barrels was temporarily used to store insecticide and is 
almost surely contaminated. Unfortunately, all of the barrels look the same.  

One barrel of sesame oil sells for $1000, while each assay for insecticide in food oil costs 
$1200 and takes 3 days. Tests for insectide are extremely expensive. What do you do?  

Solution: Extreme multiplexing. This is similar to using a Taguchi method but optimized 
for very sparse systems and specific cases. For example, instead of 1000 barrels, let us 
consider 8 barrels for now, one of which is contaminated. We could test each one, but 
that would be highly expensive. Another solution is to mix samples from each barrel and 
test the mixtures.  

Mix barrels 1,2,3,4 ---> Sample A  

Mix barrels 1,2,5,6 ---> Sample B  

Mix barrels 1,3,5,7 ---> Sample C  

We claim that from testing only these three mixtures, we can determine which of the 8 
barrels was contaminated. Let us consider some possible results of these tests. We will 
use the following label scheme: +/-,+/-,+/- in order of A, B, C. Thus, +,-,+ indicates A 
and C showed contamination but not B.  

Possible Result 1: -,-,- The only barrel not mixed in was #8, so it is contaminated.  
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Possible Result 2: +,-,- Barrel #4 appears in A, but not in B and C. Since only A returned 
positive, barrel #4 was contaiminated.  

Possible Result 3: -,+,- Barrel #6 appears in B, but not in A and C. Since only B returned 
positive, barrel #6 was contaminated.  

We can see that we have 23 = 8 possible results, each of which corresponds to a particular 
barrel being contaminated. We leave the rest of the cases for the reader to figure out.  

Solution with 1,000 barrels: Mix samples from each barrel and test mixtures. Each 
mixture will consist of samples from a unique combination of 500 barrels. Experiments 
required = log2(1000)=~10.  

Solution with 1,000,000 barrels: Experiments required = log2(1000000)=~20.  

Thus, by using extreme multiplexing, we can greatly reduce the # of experiments needed, 
since the # of experiments scales with log2(# of barrels) instead of # of barrels.  

1.10 Multiple Choice Questions 

1.10.1 Question 1 

You are producing decaffeinated coffee using supercritical carbon dioxide as a solvent. 
To optimize the effectiveness of caffeine removal, you would like to test 2 different 
possible pressures of CO2, 3 possible temperatures, 3 ratios of CO2 to coffee beans, 3 
residence times of supercritical CO2 with beans, and 2 different procedures for 
preroasting the beans prior to caffeine extraction. What is the most appropriate method to 
design your optimization experiments?  

A. Factorial design  

B. Taguchi methods  

C. Random design  

D. None of the above. Coffee should never be decaffeinated  

 
Solution: To perform a full factorial experiment, you’d need to account for: (2 
pressures)(3 temperatures)(3 ratios)(3 times)(2 roasts) = 108 experiments! Thus, factorial 
design is not a practical choice: a good rule of thumb is 1-3 variables with few states for a 
manageable factorial analysis. However, selecting 3 for the number of levels and 
consulting the array selector, we see that an L18 array will suffice for a Taguchi analysis. 
18 is a much more feasible number of experiments than 108. Finally, random design is 
only practical when >50 variables are involved and few will have significant impact on 
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the system, which is not the case here. Thus, although the author is of the opinion that 
choice ‘D’ has significant merit, the correct answer is ‘B’.  

 

1.10.2 Question 2 

Which of the following is inconsistent with the Taguchi philosophy of quality control?  

A. Variation is the opposite of quality  

B. Interactions between parameters affecting product quality are unimportant and should 
never be considered  

C. Customer dissatisfaction is the most important measure for process variation, and 
should be minimized  

D. A high signal to noise ratio (SN) should be present in a process to make it robust 
against uncontrollable factors that would cause variation  

 
Solution: Choice ‘A’ is another way of expressing point 3 of the Taguchi philosophy 
above. Similarly, choice ‘C’ is another way of expressing the cost function, and choice 
‘D’ is consistent with philosophy 2. Although it is true that the Taguchi methods do not 
account well for interactions between variables, choice ‘B’ is incorrect for two reasons. 
1) Pair-wise interactions between variables are accounted for in Taguchi orthogonal 
arrays. 2) Negligibility of interactions between parameters is not so much a central tenet 
of Taguchi philosophy as a necessary simplifying assumption. An analog is decoupling of 
MIMO systems. Since applying this assumption yields good results, it is consistent with 
Taguchi thinking to say that makes it valid.  

1.11 Sage's Corner 

Raising Tamagatchi using the Taguchi Method  

http://video.google.com/googleplayer.swf?docId=5615355814531160984 
 

Applying the Taguchi Method to a Heat Treatment Process for Steel  
http://video.google.com/googleplayer.swf?docId=-5748124283961697916 
 
 
Powerpoint Slides with No Narration 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2.1 Introduction 

Factorial design is an important method to determine the effects of multiple variables on 
a response. Traditionally, experiments are designed to determine the effect of ONE 
variable upon ONE response. R.A. Fisher showed that there are advantages by combining 
the study of multiple variables in the same factorial experiment. Factorial design can 
reduce the number of experiments one has to perform by studying multiple factors 
simultaneously. Additionally, it can be used to find both main effects (from each 
independent factor) and interaction effects (when both factors must be used to explain the 
outcome). However, factorial design can only give relative values, and to achieve actual 
numerical values the math becomes difficult, as regressions (which require minimizing a 
sum of values) need to be performed. Regardless, factorial design is a useful method to 
design experiments in both laboratory and industrial settings.  

Factorial design tests all possible conditions. Because factorial design can lead to a large 
number of trials, which can become expensive and time-consuming, factorial design is 
best used for a small number of variables with few states (1 to 3). Factorial design works 
well when interactions between variables are strong and important and where every 
variable contributes significantly.  

2.2 What is Factorial Design? 

2.2.1 Factorial Design Example 

The easiest way to understand how factorial design works is to read an example. Suppose 
that you, a scientist working for the FDA, would like to study and measure the 
probability of patients suffering from seizures after taking a new pharmaceutical drug 
called CureAll. CureAll is a novel drug on the market and can cure nearly any ailment of 
the body. You along with your co-workers at the FDA have decided to test two dosage 
levels: 5 mg and 10 mg. You are also interested in determining whether the drug side-
effects differ between younger adults (age 20) and older adults (age 40). Based on the 
given information, you see that there are two factors: dosage and age. Factors are the 
main categories to explore when determining the cause of seizures in patients. Under 
each of these factors, there are different levels: 5 and 10 mg for the dosage; 20 and 40 
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years for age. A level is basically one of the subdivisions that make up a factor. From this 
information, we can see that we have a 2 x 2 factorial design, which means that we will 
have 2 * 2 = 4 groups. A group is set of conditions that will make up that particular 
experiment.  

2.2.2 Null Outcome 

A null outcome situation is when the outcome of your experiment is the same regardless 
of how the levels within your experiment were combined. From the example above, a 
null outcome would exist if you received the same percentage of seizures occurring in 
patients with varying dose and age. The graphs below illustrate no change in the 
percentage of seizures for all factors, so you can conclude that the chance of suffering 
from a seizure is not affected by the dosage of the drug or the age of the patient.  
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2.2.3 Main Effects 

A main effects situation is when there exists a consistent trend among the different levels 
of a factor. From the example above, suppose you find that as dosage increases, the 
percentage of people who suffer from seizures increases as well. You also notice that age 
does not play a role; both 20 and 40 year olds suffer the same percentage of seizures for a 
given amount of CureAll. From this information, you can conclude that the chance of a 
patient suffering a seizure is minimized at lower dosages of the drug (5 mg). The second 
graph illustrates that with increased drug dosage there is an increased percentage of 
seizures, while the first graph illustrates that with increased age there is no change in the 
percentage of seizures. Both of these graphs only contain one main effect, since only dose 
has an effect the percentage of seizures. Whereas, graphs three and four have two main 
effects, since dose and age both have an effect on the percentage of seizures.  
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2.2.4 Interaction Effects 

The interaction effects situation is the last outcome that can be detected using factorial 
design. From the example above, suppose you find that 20 year olds will suffer from 
seizures 10% of the time when given a 5 mg CureAll pill, while 20 year olds will suffer 
25% of the time when given a 10 mg CureAll pill. When 40 year olds, however, are given 
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a 5 mg pill or a 10 mg pill, 15% suffer from seizures at both of these dosages. This 
correlation can be seen in the graphs below. There is an increasing chance of suffering 
from a seizure at higher doses for 20 year olds, but no difference in suffering from 
seizures for 40 year olds. Thus, there must be an interaction effect between the dosage of 
CureAll, and the age of the patient taking the drug. When you have an interaction effect it 
is impossible to describe your results accurately without mentioning both factors. You 
can always spot an interaction in the graphs because when there are lines that are not 
parallel an interaction is present. If you observe the main effect graphs above, you will 
notice that all of the lines within a graph are parallel. In contrast, for interaction effect 
graphs, you will see that the lines are not parallel.  
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2.3 Mathematical Analysis Approach 

In the previous section, we looked at a qualitative approach to determining the effects of 
different factors using factorial design. Now we are going to shift gears and look at 
factorial design in a quantitative approach in order to determine how much influence the 
factors in an experiment have on the outcome.  

2.3.1 How to Deal with a 2n Factorial Design 

Suppose you have two variables A and B and each have two levels a1, a2 and b1, b2. You 
would measure combination effects of A and B (a1b1, a1b2, a2b1, a2b2). Since we have two 
factors, each of which has two levels, we say that we have a 2 x 2 or a 22 factorial design. 
Typically, when performing factorial design, there will be two levels, and n different 
factors. Thus, the general form of factorial design is 2n.  

In order to find the main effect of A, we use the following equation:  

A = (a2b1 - a1b1) + (a2b2 - a1b2)  

Similarly, the main effect of B is given by:  

B = (b2a1 - b1a1) + (b2a2 - b1a2)  

By the traditional experimentation, each experiment would have to be isolated separately 
to fully find the effect on B. This would have resulted in 8 different experiments being 
performed. Note that only four experiments were required in factorial designs to solve for 
the eight values in A and B. This shows how factorial design is a timesaver.  

By taking the coefficients in A and B, the table below was created.  

 

AB is found by multiplying the coefficients of axbx to get the new coefficient effect.  

The additional complication is the fact that more than one trial/replication is required for 
accuracy, so this requires adding up each sub-effect (e.g adding up the three trials of 
a1b1). By adding up the coefficient effects with the sub-effects (multiply coefficient with 
sub-effect), a total factorial effect can be found. This value will determine if the factor 
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has a significant effect on the outcome. For larger numbers, the factor can be considered 
extremely important and for smaller numbers, the factor can be considered less important. 
The sign of the number also has a direct correlation to the effect being positive or 
negative.  

To get a mean factorial effect, the totals needs to be divided by 2 times the number of 
replicates, where a replicate is a repeated experiment.  

mean factorial effect = total factorial effect / 2r  

By adding a third variable (C), the process of obtaining the coefficients becomes 
significantly complicated. The main factorial effect for A:  

A = (a2b1c1 - a1b1c1) + (a2b2c1 - a1b2c1) + (a2b1c2 - a1b1c2) + (a2b2c2 - a1b2c2)  

 
The table of coefficients is listed below  

 

It is clear that in order to find the total factorial effects, you would have to find the main 
effects of the variable and then the coefficients. Yates Algorithm can be used to simplify 
the process.  

2.3.2 Yates Algorithm 

Frank Yates created an algorithm to easily find the total factorial effects in a 2n factorial 
that is easily programmable in Excel. While this algorithm is fairly straightforward, it is 
also quite tedious and is limited to 2n factorial designs. Thus, modern technology has 
allowed for this analysis to be done using statistical software programs through 
regression.  

Steps:  
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1. In the first column, list all the individual experimental combinations 

According to the yates order, such as follows for a 23 factorial design  

- - -  

+ - -  

- + -  

+ + -  

- - +  

+ - +  

- + +  

+ + +  

 

2. In the second column, list all the totals for each combination 
3. The 1st four entries in the third column (Stage 1) are obtained by adding 

pairs together from the "totals list" (previous column). The next four 
numbers are obtained by subtracting the top number from the bottom 
number of each pair. 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4. The fourth column (Stage 2) is obtained in the same fashion, but this time 
adding and subtracting pairs from Stage 1. 

 

5. The fifth column (Stage 3) is obtained in the same fashion, but this time 
adding and subtracting pairs from Stage 2. 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6. Continue with Stages until reaching n, or the number of factors. This final 
column is the Effect Total. A positive value means a positive correlation, and 
a negative values means a negative correlation. These values are all relative, 
however, so there is no way to compare different effect totals from different 
experiments. 

 
Ignoring the first row, look in the last stage and find the variable that has the largest 
relative number, then that row indicates the MAIN TOTAL EFFECT. The Main Total 
Effect can be related to input variables by moving along the row and looking at the first 
column. If the row in the first column is a2b1c1 then the main total effect is A. The row for 
a1b2c1 would be for B. The row for a2b1c2 would be for AC.  

This main total effect value for each variable or variable combination will be some value 
that signifies the relationship between the output and the variable. For instance, if your 
value is positive, then there is a positive relationship between the variable and the output 
(i.e. as you increase the variable, the output increases as well). A negative value would 
signify a negative relationship. Notice, however, that the values are all relative to one 
another. So while the largest main total effect value in one set of experiments may have a 
value of 128, another experiment may have its largest main total effect value be 43. There 
is no way to determine if a value of 128 in one experiment has more control over its 
output than a value of 43 does, but for the purposes of comparing variables within an 
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experiment, the main total effect does allow you to see the relative control the variables 
have on the output.  

2.3.3 Factorial Design Example Revisited 

Recall the example given in the previous section What is Factorial Design? In the 
example, there were two factors and two levels, which gave a 22 factorial design. The 
Yates Algorithm can be used in order to quantitatively determine which factor affects the 
percentage of seizures the most. For the use of the Yates algorithm, we will call age 
factor A with a1 = 20 years, and a2 = 40 years. Likewise, we will call dosage factor B, 
with b1 = 5 mg, and b2 = 10 mg. The data for the three outcomes is taken from the figures 
given in the example, assuming that the data given resulted from multiple trials.  

Null Outcome  

The following Yates algorithm table using the data for the null outcome was constructed. 
As seen in the table, the values of the main total factorial effect are 0 for A, B, and AB. 
This proves that neither dosage or age have any effect on percentage of seizures.  

 

Main Effect  

The following Yates algorithm table using the data from the first two graphs of the main 
effects section was constructed. Besides the first row in the table, the row with the largest 
main total factorial effect is the B row, while the main total effect for A is 0. This means 
that dosage (factor B) affects the percentage of seizures, while age (factor A) has no 
effect, which is also what was seen graphically.  
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The following Yates algorithm table using the data from second two graphs of the main 
effects section was constructed. Besides the first row in the table, the main total effect 
value was 10 for factor A and 20 for factor B. This means that both age and dosage affect 
percentage seizures. However, since the value for B is larger, dosage has a larger effect 
on percentage of seizures than age. This is what was seen graphically, since the graph 
with dosage on the horizontal axis has a slope with larger magnitude than the graph with 
age on the horizontal axis.  

 

Interaction Effect  

The following Yates algorithm table was constructed using the data from the interaction 
effects section. Since the main total factorial effect for AB is non-zero, there are 
interaction effects. This means that it is impossible to correlate the results with either one 
factor or another; both factors must be taken into account.  

 

2.4 Chemical Engineering Applications 

It should be quite clear that factorial design can be easily integrated into a chemical 
engineering application. Many chemical engineers face problems at their jobs when 
dealing with how to determine the effects of various factors on their outputs. For 
example, suppose that you have a reactor and want to study the effect of temperature, 
concentration and pressure on multiple outputs. In order to minimize the number of 
experiments that you would have to perform, you can utilize factorial design. This will 
allow you to determine the effects of temperature and pressure while saving money on 
performing unnecessary experiments.  

A 2007 study on converting wheat straw to fuel utilized factorial design to study the 
effect of four factors on the composition and susceptibility to enzyme hydrolysis of the 
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final product. (Perez, et.al.). The table below shows the full factorial design for the study. 
The four factors that were studied all had only two levels and dealt with pretreatment 
parameters. They were: Water temperature, residence time, solid fraction and 
overpressure in the reactor. It is not necessary to understand what each of these are to 
understand the experimental design. As seen in the table below, there were sixteen trials, 
or 2^4 experiments.  

 

Source: Perez, et. al.  

2.5 Minitab DOE Example 

Minitab 15 Statistical Software is a powerful statistics program capable of performing 
regressions, ANOVA, control charts, DOE, and much more. Minitab is especially useful 
for creating and analyzing the results for DOE studies. It is possible to create factorial, 
response surface, mixture, and taguchi method DOEs in Minitab. The general method for 
creating factorial DOEs is discussed below.  
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2.5.1 Creating Factorial DOE 

Minitab provides a simple and user-friendly method to design a table of experiments. 
Additionally, analysis of multiple responses (results obtained from experimentation) to 
determine which parameters significantly affect the responses is easy to do with Minitab. 
Minitab 15 Statistical Software can be used via Virtual CAEN Labs by going to Start>All 
Programs>Math and Numerical Methods>Minitab Solutions>Minitab 15 Statistical 
Software.  

The first step is creating the DOE by specifying the number of levels (typically 2) and 
number of responses. To do this, go to Stat>DOE>Factorial>Create Factorial Design as 
shown in the image below.  

 

The next image is the "Create Factorial Design" options menu.  
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For a 2 level design, click the "2-level factorial (default generators)" radio button. Then 
specify the number of factors between 2 and 15. Other designs such as Plackett-Burman 
or a General full factorial design can be chosen. For information about these designs, 
please refer to the "Help" menu.  

After the number of factors is chosen, click on the "Designs..." option to see the 
following menu.  

 

In this menu, a 1/2 fraction or full factorial design can be chosen. Although the full 
factorial provides better resolution and is a more complete analysis, the 1/2 fraction 
requires half the number of runs as the full factorial design. In lack of time or to get a 
general idea of the relationships, the 1/2 fraction design is a good choice. Additionally, 
the number of center points per block, number of replicates for corner points, and number 
of blocks can be chosen in this menu. Consult the "Help" menu for details about these 
options. Click "Ok" once the type of design has been chosen.  

Once the design has been chosen, the "Factors...", "Options..." and "Results..." buttons 
become active in the "Create Factorial Designs" option menu. Click on "Factors..." button 
to see the following menu.  



 714 

 

The above image is for a 4 factor design. Factors A - D can be renamed to represent the 
actual factors of the system. The factors can be numeric or text. Additionally, a low and 
high value are initially listed as -1 and 1, where -1 is the low and 1 is the high value. The 
low and high levels for each factor can be changed to their actual values in this menu. 
Click "OK" once this is completed.  

The necessary steps for creating the DOE are complete, but other options for "Results..." 
and "Options..." can be specified. The menus for "Results..." and "Options..." are shown 
below.  
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In the main "Create Factorial Design" menu, click "OK" once all specifications are 
complete. The following table is obtained for a 2-level, 4 factor, full factorial design. 
None of the levels were specified as they appear as -1 and 1 for low and high levels, 
respectively.  
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The above table contains all the conditions required for a full factorial DOE. Minitab 
displays the standard order and randomized run order in columns C1 and C2, 
respectively. Columns A-D are the factors. The first run (as specified by the random run 
order) should be performed at the low levels of A and C and the high levels of B and D. 
A total of 16 runs are required to complete the DOE.  

2.5.2 Modifying DOE Table 

Once a table of trials for the DOE has been created, additional modifications can be made 
as needed. Some typical modifications include modifying the name of each factors, 
specifying the high and low level of each factor, and adding replicates to the design. To 
being modifications of a current design, go to Stat>DOE>Modify Design... as seen in the 
figure below.  
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The following menu is displayed for modifying the design.  

 

In the "Modify Design" menu, users can modify factors, replicate design, randomize 
design, renumber design, fold design, and add axial points. Additionally, any changes 
made can be put into a new worksheet. To change the factors, click the "Modify factors" 
radio button and then "Specify" to see the following options menu.  
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The default factors are named "A", "B", "C", and "D" and have respective high and low 
levels of 1 and -1. The name of the factors can be changed by simply clicking in the box 
and typing a new name. Additionally, the low and high levels for each factor can be 
modified in this menu. Since the high and low levels for each factor may not be known 
when the design is first created, it is convenient to be able to define them later. Click 
"OK" after modifications are complete.  

Another typical modification is adding replicates to a design. Replicates are repeats of 
each trial that help determine the reproducibility of the design, thus increasing the 
number of trials and accuracy of the DOE. To add replicates, click the "Replicate design" 
radio button in the "Modify Design" menu. The following menu will be displayed.  

 

The only option in this menu is the number of replicates to add. The number ranges 
between 1 and 10. To have a total of 3 trials of each, the user should add 2 replicates in 
this menu. If 4 replicates are added, there will be a total of 5 trials of each. Typically, if 
the same experimentation will occur for 3 lab periods, 2 replicates will be added.  

Additional modifications to the design include randomizing and renumbering the design. 
These are very straightforward modifications which affect the ordering of the trials. For 
information about the "Fold design" and "Add axial points", consult the "Help" menu.  
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2.5.3 Analyzing DOE Results 

After the complete DOE study has been performed, Minitab can be used to analyze the 
effect of experimental results (referred to as responses) on the factors specified in the 
design. The first step in analyzing the results is entering the responses into the DOE table. 
This is done much like adding data into an Excel data sheet. In the columns to the right of 
the last factor, enter each response as seen in the figure below.  

 

The above figure contains three response columns. The names of each response can be 
changed by clicking on the column name and entering the desired name. In the figure, the 
area selected in black is where the responses will be inputted. For instance, if the purity, 
yield, and residual amount of catalyst was measured in the DOE study, the values of 
these for each trial would be entered in the columns.  

Once the responses are entered, statistical analysis on the data can be performed. Go to 
Stat>DOE>Factorial>Analyze Factorial Design... as seen in the following image.  

 

The menu that appears for analyzing factorial design is shown below.  
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In the "Analyze Factorial Design" menu, the responses are shown on the left of the 
screen. The first step is to choose the responses to be analyzed. All of the responses can 
be chosen at once or individually. To choose them, click (or click and drag to select 
many) and then click "Select" to add them into the "Responses:" section as seen below.  
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The next step is selecting which terms will be analyzed for the responses. To do this, 
click on "Terms..." and the following menu will appear.  

 

The types of interactions between factors are chosen in this menu. For a first order model 
which excludes all factor-to-factor interactions, "1" should be chosen from the drop-down 
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menu for "Include terms in the model up through order:". To include higher order terms 
and account for factor interactions, choose 2, 3, or 4 from the drop-down menu. Unless 
significant factor-to-factor interactions are expected, it is recommended to use a first 
order model which is a linear approximation.  

Once the terms have been chosen, the next step is determining which graphs should be 
created. The types of graphs can be selected by clicking on "Graphs..." in the main 
"Analyze Factorial Design" menu.  

 

In the Graphs menu shown above, the three effects plots for "Normal", "Half Normal", 
and "Pareto" were selected. These plots are different ways to present the statistical results 
of the analysis. Examples of these plots can be found in the Minitab Example for 
Centrifugal Contactor Analysis. The alpha value, which determines the limit of statistical 
significance, can be chosen in this menu also. Typically, the alpha value is 0.05. The last 
type of plots that can be chosen is residual plots. A common one to select is "Residuals 
versus fits" which shows how the variance between the predicted values from the model 
and the actual values.  

The final option that must be specified is results. Click "Results..." from the "Analyze 
Factorial Design" menu to see the following screen.  
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In this menu, select all of the "Available Terms" and click the ">>" button to move them 
to the "Selected Terms". This will ensure that all the terms will be included in the 
analysis. Another feature that can be selected from this menu is to display the 
"Coefficients and ANOVA table" for the DOE study.  

Other options can be selected from the "Analyze Factorial Design" menu such as 
"Covariates...", "Prediction...", "Storage...", and "Weights...". Consult the "Help" menu 
for descriptions of the other options. Once all desired changes have been made, click 
"OK" to perform the analysis. All of the plots will pop-up on the screen and a text file of 
the results will be generated in the session file.  

2.5.4 Minitab Example for Centrifugal Contactor Analysis 

Centrifugal Contactors, also known as Podbielniak (POD) centrifugal contactors, are used 
to purify a contaminated stream by counter-current, liquid-liquid extraction. Two 
immiscible fluids with different specific gravities are contacted counter-currently and the 
solute from the dirty stream is extracted by the clean stream. A common use for PODs 
methanol removal from biodiesel by contacting the stream with water. The amount of 
methanol remaining in the biodiesel (wt% MeOH) after the purification and the number 
of theoretical stages (No. Theor. Stages) obtained depend on the operating conditions of 
the POD. The four main operating parameters of the POD are rotational speed (RPM), 
ratio of biodiesel to water (Ratio), total flow rate of biodiesel and water (Flow Rate), and 
pressure (Pressure). A DOE study has been performed to determine the effect of the four 
operating conditions on the responses of wt% MeOH in biodiesel and number of 
theoretical stages achieved. (NOTE: The actual data for this example was made-up)  
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A 4-factor, 2-level DOE study was created using Minitab. Because experiments from the 
POD are time consuming, a half fraction design of 8 trial was used. The figure below 
contains the table of trials for the DOE.  

 

After all the trials were performed, the wt% methanol remaining in the biodiesel and 
number of theoretical stages achieved were calculated. The figure below contains the 
DOE table of trials including the two responses.  

 

Analysis was performed on the DOE study to determine the effects of each factor on the 
responses. Only first order terms were included in the analysis to create a linear model. 
Pareto charts for both wt% MeOH in biodiesel and number of theoretical stages are 
shown below.  
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The Pareto charts show which factors have statistically significant effects on the 
responses. As seen in the above plots, RPM has significant effects for both responses and 
pressure has a statistically significant effect on wt% methanol in biodiesel. Neither flow 
rate or ratio have statistically significant effects on either response. The Pareto charts are 
bar charts which allow users to easily see which factors have significant effects.  
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Half Normal Plots for wt% methanol in biodiesel and number of theoretical stages are 
shown below.  

 

 

Like Pareto plots, Half Normal plots show which factors have significant effects on the 
responses. The factors that have significant effects are shown in red and the ones without 
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significant effects are shown in black. The further a factor is from the blue line, the more 
significant effect it has on the corresponding response. For wt% methanol in biodiesel, 
RPM is further from the blue line than pressure, which indicates that RPM has a more 
significant effect on wt% methanol in biodiesel than pressure does.  

The final plot created is the Normal Effect Plot. The Normal Plot is similar to the Half 
Normal plot in design. However, the Normal Plot displays whether the effect of the factor 
is positive or negative on the response. The Normal Plots for the responses are shown 
below.  
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As seen above, RPM is shown with a positive effect for number of theoretical stages, but 
a negative effect for wt% methanol in biodiesel. A positive effect means that as RPM 
increases, the number of theoretical stages increases. Whereas a negative effect indicates 
that as RPM increases, the wt% methanol in biodiesel decreases. Fortunately for 
operation with the POD, these are desired results. When choosing operating conditions 
for the POD, RPM should be maximized to minimize the residual methanol in biodiesel 
and maximize the number of theoretical stages achieved.  

In addition to the above effects plots, Minitab calculates the coefficients and constants for 
response equations. The response equations can be used as models for predicting 
responses at different operating conditions (factors). The coefficients and constants for 
wt% methanol in biodiesel and number of theoretical stages are shown below.  
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Since this is a first order, linear model, the coefficients can be combined with the 
operating parameters to determine equations. The equations from this model are shown 
below.  

 

These equations can be used as a predictive model to determine wt% methanol in 
biodiesel and number of theoretical stages achieved at different operating conditions 
without actually performing the experiments. However, the limits of the model should be 
tested before the model is used to predict responses at many different operating 
conditions.  

2.6 Worked out Example 1 

You have been employed by SuperGym, a local personal training gym, who want an 
engineer's perspective on how to offer the best plans to their clients. SuperGym currently 
catagorizes her clients into 4 body types to help plan for the best possible program.  

• Type 1 ‐ Very healthy  
• Type 2 ‐ Needs tone  
• Type 3 ‐ Needs strength  
• Type 4 ‐ Needs tone and strength  

In addition, SuperGym offers 4 different workout plans, A through D, none of which are 
directly catered to any of the different types. Create an experimental factorial design that 
could be used to test the effects of the different workout plans on the different types of 
people at the gym.  
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2.6.1 Solution to Example 1 

In order to solve this problem, we need to determine how many different experiments 
would need to be performed. In order to solve this, we can see that we have two different 
factors, body type and workout plan. For each factor, there exist four different levels. 
Thus, we have a 42 factorial design, which gives us 16 different experimental groups. 
Creating a table of all of the different groups, we arrive at the following factorial design:  

Solution  
A1  B1  C1  D1  
A2  B2  C2  D2  
A3  B3  C3  D3  
A4  B4  C4  D4  

Where A-D is the workout plan and 1-4 is the types  

2.7 Worked out Example 2 

Suppose that you are looking to study the effects of hours slept (A), hours spent with 
significant other (B), and hours spent studying (C) on a students exam scores. You are 
given the following table that relates the combination of these factors and the students 
scores over the course of a semester. Use the Yates method in order to determine the 
effect each variable on the students performance in the course.  

Given Information  
Trials  a1b1c1  a2b1c1  a1b2c1  a2b2c1  a1b1c2  a2b1c2  a1b2c2  a2b2c2  
1  17  24  19  21  22  28  25  24  
2  18.5  21  20  19  26  22  27  19  
3  16.5  22.5  22  25  24  26  21  20  

Total  52  67.5  61  65  72  76  73  63  

2.7.1 Solution to Example 2 

Using the approach introduced earlier in this article, we arrive at the following Yates 
solution.  

Solution  
   Stage   Main Total  

Combination  Total  1  2  3  Factorial Effect  
a1b1c1  52  119.5  245.5  529.9  Doesn't matter 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a2b1c1  67.5  126  284  13.5  A  
a1b2c1  61  148  19.5  5.5  B  
a2b2c1  65  136  6  25.5  AB  
a1b1c2  72  15.5  6.5  38.5  C  
a2b1c2  76  4  12  25.5  AC  
a1b2c2  73  4  11.5  18.5  BC  
a2b2c2  63  10  14  2.5  ABC  

 
From this table, we can see that there is positive correlation for factors A and C, meaning 
that more sleep and more studying leads to a better test grade in the class. Factor B, 
however, has a negative effect, which means that spending time with your significant 
other leads to a worse test score. The lesson here, therefore, is to spend more time 
sleeping and studying, and less time with your boyfriend or girlfriend.  

2.8 Worked out Example 3 

Your mom is growing a garden for the state fair and has done some experiments to find 
the ideal growing condition for her vegetables. She asks you for help interpreting the 
results and shows you the following data:  

 

Make plots to determine the main or interaction effects of each factor.  

 

2.8.1 Solution to Example 3 

Here is the plot you should have gotten for the given data.  



 732 

 

From this one can see that there is an interaction effect since the lines cross. One cannot 
discuss the results without speaking about both the type of fertilizer and the amount of 
water used. Using fertilizer A and 500 mL of water resulted in the largest plant, while 
fertilizer A and 350 mL gave the smallest plant. Fertilizer B and 350 mL gave the second 
largest plant, and fertilizer B and 500 mL gave the second smallest plant. There is clearly 
an interaction due to the amount of water used and the fertilizer present. Perhaps each 
fertilizer is most effective with a certain amount of water. In any case, your mom has to 
consider both the fertilizer type and amount of water provided to the plants when 
determining the proper growing conditions.  

2.9 Multiple Choice Question 1 

Which of the following is not an advantage of the use of factorial design over one factor 
design?  

A. More time efficient  

B. Provides how each factor effects the response  

C. Does not require explicit testing  

D. Does not require regression  

2.10 Multiple Choice Question 2 

In a 22 factorial design experiment, a total main effect value of -5 is obtained. This means 
that  
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A. there is a relative positive correlation between the two factors  

B. there is no correlation between the two factors  

C. there is a relative negative correlation between the two factors  

D. there is either a positive or negative relative correlation between the two factors  

2.11 Sage's Corner 

Factorial design, a method to prove OSU stupidity:  

http://video.google.com/googleplayer.swf?docId=5869605763016344026 
(we are currently working on fixing the 1 slide which is 
missing narration)  

A copy of the slides without narration can be found here:  

File:Yates proves OSU stupidity test.ppt  
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Section 3. Design of experiments via random design 

3.1 Introduction 

Random design is an approach to designing experiments. As the name implies, random 
experimental design involves randomly assigning experimental conditions. However, 
numbers should not be picked without any thought. This type of experimental design is 
surprisingly powerful and often results in a high probability to create a near optimal 
design.  

The simplified steps for random design include the following:  

1. Choose a number of experiments to run (NOTE: This may be tricky to pick a number 
because it is dependent upon the amount of signal recovery you want.)  

2. Assign to each variable a state based on a uniform sample. For instance, if there are 5 
states, each state has a probability of 20%.  

Random designs typically work well for large systems with many variables, 50 or more. 
There should be few interactions between variables and very few variables that contribute 
significantly. Random design does not work very well with relatively smaller systems. 
Generally speaking, Taguchi and random designs often perform better than factorial 
designs depending on size and assumptions. When choosing the design for an 
experiment, it is important to determine an efficient design that helps optimize the 
process and determines factors that influence variability.  

There is more than one type of random design, randomized block design and completely 
randomized design. Randomized block design involves blocking, which is arranging 
experimental units into groups so they have a common similarity. The blocking factor is 
usually not a primary source of variability. An example of a blocking factor may include 
eye color of a patient, so if this variability source is controlled, greater precision is 
achieved. Completely randomized design is where the groups are chosen at random.  

In various technological fields, it is important to design experiments where a limited 
number of experiments is required. Random design is practical for many design 
applications. Extensive mathematical theory has been used to explore random 
experimental design. Examples of random design include areas of data compression and 
medical imaging. The research conducted to support the practical application of random 
design can be found at <http://groups.csail.mit.edu/drl/journal_club/papers/CS2-Candes-
Romberg-05.pdf>.  

 
Other research has been conducted recently on random design, and more information can 
be found at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1614066  



  735 

More information on randomized block design can be found at: 
http://en.wikipedia.org/wiki/Randomized_block_design  

3.2 Completely Randomized Design (CRD) 

3.2.1 Description of Design 

Completely randomized design (CRD) is the simplest type of design to use. The most 
important requirement for use of this design is homogeneity of experimental units.  

3.2.2 Procedure for Randomization 

1) Assign treatments to experimental units completely at random.  

2) Verify that every experimental unit has the same probability of receiving any 
treatment.  

3) Perform randomization by using a random number table, computer, program, etc.  

3.2.3 Example of CRD 

If you have 4 treatments (I, II, III, IV) and 5 replicates, how many experimental units do 
you have?  

{I} {IV} {III} {II} {II} {III} {III} {II} {I} {III} {I} {IV} {III} {IV} {I} {IV} {II} {I} 
{II} {IV}  

=20 randomized experimental units  

3.3 Randomized Block Design (RBD) 

3.3.1 Description of Design 

Randomized block design (RBD) takes advantage of grouping similar experimental units 
into blocks or replicates. One requirement of RBd is that the blocks of experimental units 
be as uniform as possible. The reason for grouping experimental units is so that the 
observed differences between treatments will be largely due to “true” differences 
between treatments and not random occurrences or chance.  

3.3.2 Procedure for Randomization 

1) Randomize each replicate separately.  

2) Verify that each treatment has the same probability of being assigned to a given 
experimental unit within a replicate.  
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3) Have each treatment appear at least once per replicate.  

3.3.3 Advantages of RBD 

1) Generally more precise than the CRD.  

2) Some treatments may be replicated more times than others.  

3) Missing plots are easily estimated.  

4) Whole treatments or entire replicates may be deleted from the analysis.  

 


