open.michigan

Author(s): Paul Conway, 2008-2011.

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Creative Commons Attribution - Non-Commercial - Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about **how to cite** these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Jse +	Share	+ Adapt
{ Co	ntent the	e copyright holder, author, or law permits you to use, share and adapt. }
0	D-GOV	Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)
0	O-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
0	O-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
(cc) Z	ERO	Creative Commons – Zero Waiver
(cc) B	Υ	Creative Commons – Attribution License
(O) I	m SA	Creative Commons – Attribution Share Alike License
(C) I	W NC	Creative Commons – Attribution Noncommercial License
(C) II	WNC-SA	Creative Commons – Attribution Noncommercial Share Alike License
0	NU-FDL	GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

SI 675 Digitization for Preservation

Week 4 - Color in Scanning and Scanner Benchmarking

Today's Outline

Encoding

- Performance measurement
 - Spatial Frequency Response
 - Tone and color response
 - Noise and artifacts

"Original-referred images maintain a defined relationship between the original and digital version; the digital version carries forward certain pre-identified essential characteristics of the original version." (p. 9)

Puglia/Rhodes, Digitization for Preservation (2007)

Image

Science Associates

What is an Image... and how is it characterized

A two dimensional spatial structure of varying light levels and colors.

It is characterized by measuring physically realizable light intensities over a two dimensional space. These variations can occur over short distances, like edges, (high frequencies) or larger distances or areas, like sky or facial features (low frequencies).

Science Associates

What is a Digital Imaging System?

A collection of optical, software, or electronic functions that convert, encode, or otherwise act upon images or their optical or digital derivatives.

The performance of a digital capture system is influenced by all of the above in addition to operator training and environment.

Rendering Intents Revisited

PD-GOV

- When "... digital image is a 'replacement' of the original..." (p. 28)
 - Decisions made about color space before images are digitized.Adjustments made during scanning.
 - "... not be the goal to reproduce the physical properties of the original, but to reproduce its appearance under certain viewing conditions."

- Scanned image matches original (viewing calibration)
- □ Adjust for errors in the source
- Original appearance rendered (reverse aging)
- "Original scene" (remove effects of intermediate)

SI 675 Digitization for Preservation Winter 2011

• Frey & Chapman, Developing Specifications, 2000.

Master Files: Raw or Cooked

- "One of the basic things to understand is that a great deal of image quality can be lost by processing the images at the moment they are captured."
 - Frey & Reilly (1999): First, a so-called **archive** file containing more than eight bits per channel should be stored. It should not be treated for any specific output.
 - Frey & Chapman (2000): save unrendered image space to contain a colorimetric estimate of the original. (p. 168)
 - Susstrunk (2002): capture and encode into a sensor or source space, which is device and image specific. (p. 2)
 - Susstrunk (2002): transform from raw sensor data (device dependent) to original-referred color encoding; then image dependent processing to output-referred color encoding to output device coordinates. (p. 389)
 - Puglia/Rhodes (2007): Original-referred is not raw (sensor)

Definitions and Terms

- Original vs. scene: scanner/camera OR artifact/nature
- Color encoding: relationship of the real and its representation
- Color model: abstract mathematical model of color representation (e.g. RGB, CMYK)
- Gamut: subset of colors that can be accurately represented in a given circumstance (e.g. color space or output device).
- Color spaces: color model + gamut
- Absolute color space: colors are unabiguous; interpretation is colorimetrically defined without reference to external factors.
- ICC color profile: color attributes of a particular device or viewing requirement; map between color space and profile connection space (CIELAB or CIEXYZ)

Digital Cameras do not Reproduce Colors, They Encode them.

(ite) Investo

They describe (encode) object color characteristics.

Reproduction requires *interpreting* (decoding) the pixel values to display the color image.

• Susstrunk, Color Encodings (2002).

Color Encoding Flowchart

Figure 1: Color image workflow from capture to display.

PO-INEL

Image Science

Associates

Raw Files, Be Careful What You Ask For

Sensor Encoding

"When a high quality master file is desired, storing 'raw image' data encoded in sensor space is most appropriate. Any further processing can degrade the image, as algorithms are based on today's know-how and might be improved in the future." (p. 390)

• Susstrunk, Color Encodings (2002).

Input- and Output-Referred Encoding

Input-Referred Encoding (master)

- Scene versus Original
 - Photo YCC (Kodak Photo CD)
 - RIMM RGB
 - ICC PCS
- Output-Referred Encoding (derivative)
 - Transformed from source or input
 - sRGB (screen and color printing)
 - E-sRGB (rendering for unknown output)
 - ROMM RGB (extended bit depth)
 - Adobe RGB (graphic arts and printing)

• Susstrunk, Color Encodings (2002).

Attributes of color encodings

	Input-referred encoding	Output-referred encoding
Image representation	Colorimetric estimate of a scene/original	Colorimetric estimate of a reproduction
Color gamut	Large enough to encompass most scene/original colors	Large enough to encompass most output devices
Perceptual uniformity (transfer function)	Data is optionally encoded using a transfer function for approximate perceptual aniformity (invertability desired)	Data is optionally encoded using a gamma-type power function to approximate perceptual uniformity on the output device (invertability desired)
Dynamic range	Must handle a scene luminance ratio of at least 10'000:1, or the luminance ratio of the original.	Must handle an image luminance ratio of at least 1000-1
White point	Should accommodate floating white paints or chromatic adaptation to a fixed white point	Fixed white point determined by reproduction viewing conditions (D50, D65)
Viewing conditions (linkage to color appearance)	Luminance level, viewing staround, adapted white point, and viewing flare, as typical of outdoor environments for scene-referred encodings, typical of original viewing conditions for original encoding.	Lummance level, viewing surround, adapted white point, and viewing flare, as typical of indoor environments
Quantization Encoding	Quantization errors not visible on smooth, noiseless ramps Extended bit-depths encoding desired (10, 12, 16-bit per channel)	Quantization errors not visible on smooth, noiseless ramps, 8, 10, 12 or 16-bit encoding (8-bit for applications)
Compressibility	Not very important	Importance dependent on the imaging application (easy conversion to YCC color encoding)
Usual color encodings	CIEXYZ, CIELAB, CIELUV, RIMM RGB. Photo YCC	e-sRGB, sRGB, ROMM RGB, Adobe RGB 98. YCbCr. Photo YCC (legacy: Apple RGB)
O FAIR USE	Master files for high-end applications (replacement of the original)	Master files (for print reproduction) e-sRGB, ROMM RGB, Adobe RGB 98, Photo YCC Master files (for screen viewing) sRGB_YCbCr Derivatives for print reproduction or screen viewing

Color Gamut Comparison

Range of Chromaticities

Typical CRT Gamut

Color Space Comparison

Color Space Comparison

Adobe RGB Color Space

0.9 520 0.9 0.8 \$20 5408.0 0.7 0.7 560 560 0.6 0.6 500 500 0.5 0.5 y Y 0.4 0.4 600 ● D50 ● D65 0.3 0.3 0.2 0.2 0,1 480 0.1 0.0-6 0,2 0.0 0,1 0.3 0.40.0 0.3 0.4 0.5 0.6 0.7 0.0 0.3 0.2 0.8 x PO-SELF PO-SELF

ROMM (ProPhoto) RGB

0.5

0.6

0,7

0.8

A number of these categories have ISO standards that define the metrology practice. Though intended for digital imaging devices their basis was derived from decades of analog (e.g., film) imaging experience.

Primary Imaging Performance Functions

Signal – Any response that provides valued information

- Large area response to light

OECF -Opto-Electronic Conversion Function

- Spatial proximity behavior

Spatial Frequency Response – SFR (or MTF)

Noise – Any response that detracts from a desired signal

- Light intensity distortions Total noise
- Geometric/Spatial distortions

Imaging Performance Framework

http://www.digitizationguidelines.gov/stillimages/documents/imaging.html

Foundation				Si	ign	al					-Noise o					N	loise						
Primary Functions	OECF (Opto-Electronic Conversion Function)		nic	(SFR (Spatial Frequency Response)			Signal-to Rati	Ligh (1	nt In Volse	tens N Powe	ity D PS er Spe	istortio ctrum)	n	Ge	eomet	nic D	istort	tion				
								T				Tot	al N	oise		a	mma Inica				Ð		
			NII.									1.0	Temporal	mporal Fixed pattern	and the		Tel of	(200					
Derivative Metrics	Speed / Sensitivity	Tone, Exposure	White Balance/ Neutra	Color Encoding Erro	Sampling Rate	Resolution	Sharpening	Acutance	Flare	Depth of Focus	Depth of Focus Dynamic Range	Dynamic Range	Random (molecte)	Banding/Streaking (summers)	Defects (morent)	Non-uniformity (seemastc)	Color Uniformity (adversaries)	Color SPR Uniformity (animume)	Regional Amiadis (server	Color Nisregistration (www	Aliasing (seemosts)	Spatial SFR Uniformity (new	Pincushion/Barrel (ceanin

* While imaging noise is generally considered to be of a random or stochastic granular nature (<u>e.g.</u>, photographic film grain), it can actually take many forms. We have chosen to categorize it in both by its deterministic and stochastic behaviors.

Measurement Requirements

Measurements usually require some level of accuracy and precision.

- Accuracy: average error from an aim
- Precision: variability about the average reading

Factors that influence measurements

- Location on platen
- Image processing
- spatial sampling
- image noise
- environment
- operator skill

Performance is more about consistency (precision) than accuracy. In imaging, accuracy is often not absolute but rather a preference.

Spatial Resolution

Spatial Frequency Response (SFR) ISO 16067-1, 16067-2, 12233, 15529

SIGNAL

Any response that provides valued information

1	SFR	- Spatial Frequency Re	esponse - (ISO 12233, IS	0 16067-1, ISO 16	067-2, ISO 155	524)					
Finary	MTF – Modulation Transfer Function definitions : 1) A descriptor of an imaging system's ability to maintain the relative contrast of input stimuli of a given spatial frequency. 2) A spatial frequency descriptor of an imaging system's ability to maintain the relative contrast of features within a given spatial proximity.										
11.1	Sampling Rate	Resolution	Sharpening	Acutance	Flare	Depth of Focus					
Derivative Netrics	Definition : The reciprocal of the center-to-center distance between closest adjacent pixels. The number of samples per unit distance	Definition : An imaging system's ability to resolve finely spaced detail. The level of spatial detail that can resolved in an image	Definition :Amplification of the SFR by means of image processing to achieve sharper appearing images	Definition : An objective SFR based metric that is used as a correlate to perceived image sharpness.	Definition: a skirty or wide spreading of light.	Definition: The distance along the optical axis that remains within acceptable focus.					
Related descriptive term	 Megapixels Dots per inch (dpi) Pojels per inch (ppi) Sampling frequency 	- Durried - Soft - Sharp - Bry/Out of Yocus - Spherical aberration - Spatial dotail	 Overskarpening (holomy, garish edges) Snap Edgy, Sharp, Crisp Edge enhancement Urching missiong 	- Sharp	 Low contrast Hozy Ghosting Veiling flare Glare Totegrating cavity effect (3CE) 	Depth of held Orcle of confusion Focus tolerance Ilyperfocal distance					

(ne) hereiste

What is Spatial Resolution

....and what are all those related terms ?

• The ability of an imaging component or system to distinguish finely spaced detail. Specifically, the ability to maintain the relative contrast of finely spaced detail.

• Highest frequency (smallest distance) at which light and dark parts of image are reliably distinguishable. Sometimes called limiting resolution

Related Metrics

- Number of pixels
- Sampling frequency dpi, ppi
- *Limiting Resolution, Resolving Power
- *Spatial Frequency Response SFR
- *Modulation Transfer Function MTF

*Related Standards – ISO 16067-1, 16067-2, 12233, & 15529 all employ these metrics SI 675 Digitization for Preservation Winter 2011

Science Associates

- Two ways to look at image details
 - Space: size of the smallest important (signal) feature (mm)
 - Frequency: How many small important features/area will my image store (number/mm, cycles/mm, dots/inch, pixels/inch)
- Small size implies high frequency
- Why use **space** vs. **frequency** descriptions?
 - Compatible with engineering descriptions of information, bandwidth
 - Simplifies some forms of system analysis
 - Compatible with several visual image quality descriptions

feed monate

Spatial Resolution

- Two factors in a digital imaging system dictate the level of spatial resolution or detail that can ultimately be captured.
 - **Quantity**; sampling frequency (i.e. samples per mm, inch)
 - Sets a capability limit that can be achieved
 - **Quality**; effective optical quality
 - Defines the level of optical "blur" that the imaging optics, environmental factors, hardware, and image processing impose on the captured image.
- These are necessary but insufficient components, by themselves, for capturing spatial detail. Simply improving one to reconcile deficiencies in the other will not enhance real resolution performance.

27

- Limiting Resolution -

....so how does one measure it?

Traditional method using bar targets and visual evaluation

PROS

- * Simple to measure
- * Easily understood
- * Suitable for binary scanners
- * Relies on human readable subjective evaluation
- * Results are target contrast dependent
- * Provides little diagnostic or image quality insight
- * Purely an ON/OFF (threshold) criterion

Image Science Associates (et) [[[]]]

Image

Science Associates

Associates

(c) BY-NC

Sampling rate (DPI) is not Resolution

real data example : results are not simulated

Resolution limit = whenever all five lines are undetectable

Though the sampling rate is increased to 600 dpi the true resolution for this scame is fonly 300 dpion

2011

Image

Science Associates

Spatial Frequency Response* (SFR)

the better alternative

Instead of using a subjective YES/NO criterion along the vertical axis, an objective contrast (i.e. modulation) transfer ratio is adopted. The SFR it is an indicator of modulation(i.e. contrast) loss as a function of spatial frequency.

* Also referred to as the Modulation Transfer Function (MTF)

Limiting resolution fails to predict quality&

Image Science Associates

Image Science Associates

Anatomy of the SFR - regions of behavior -

ISA Image Science

Associates

Sharpness vs. Resolution

Frequency, cy/pixel

Associates

How is the SFR Measured ?

...all you need is an image of a **GOOD** slanted edge.

Image

Science Associates

Flatbed scanner using a linear array Horizontal (fast) and Vertical (slow) scan directions

- SFR in Review -

What is it?

• descriptive plot that measures the extent to which image detail contrast (*modulation*) is maintained by an imaging component or system.

What is a spread function?

• image resulting from a point, or very narrow line exposure.

What it is not?

- same as 'resolution'
- sampling frequency or number of pixels
- complete descriptor of image quality (noise, color, ...)

What good is it?

It provides a way to analyze the influence of imaging components on the retention and reproduction of low, medium, and high spatial frequencies (flare, sharpening, limiting resolution)

Which digital imaging standards address it ?

- ISO 16067-1: Resolution for digital print scanners
- ▶ ISO I6067-2: Resolution for digital film scanners
- ▶ ISO 12233 : Resolution for digital still cameras
- ▶ ISO I5529 : MTF for sampled imaging systems

Opto Electronic Conversion Function (OECF) ISO 14545

aka Tone Transfer Curve or Tone Reproduction Curve (TRC)

SIGNAL

Any response that provides valued information

Rrimery Functions	OECF – Opto-Electronic Conversion Function (ISO 14545) TTF – Tone Transfer Function TRC – Tone Reproduction Curve definition : Average large area digital response of an electronic imaging device to light stimuli								
Derivative	Sensitivity (ISO 12232) definition: The reciprocal of the amount of light necessary to achieve a desired output response.	Tone and Exposure definition : characteristic behavior of large area digital output response (count value) to spectrally neutral input stimuli (gray patch)	White Balance/Neutrality definition : equivalence of large area color channel output responses to a range of spectrally neutral input stimuli	Color Encoding Error ISO 22028-1 definition: The difference between selected physically measured input colors and their intended rendering from a given color space.					
Related descriptive term	 Responsivity Speed Exposure Index (EI) 	 Too dark/light Under/over exposed No shadow/highlight detail Clipping Contrast Exposure Accuracy Gamma 	- Color cast Gray balance	 Over/under saturated colors Color balance is wrong Memory colors are not correct Color Accuracy Color Saturation 					

Science Associates

Optical properties of objects

How is the OECF created ?

(3) Table of reflectance – average count value data pairs for each color channel

	average count value						
neutral optical reflectance	red	green	blue				
0.010	8	8	7				
0.013	13	13	14				
0.016	18	17	18				
0.020	24	25	25				
0.025	31	32	30				
0.033	38	40	39				
0.042	45	46	45				
0.051	52	51	51				
0.065	60	62	61				
0.083	69	70	69				
0.107	81	82	81				
0.132	92	93	92				
0.166	105	105	104				
0.209	119	120	120				
0.263	135	132	132				
0.339	153	155	154				
0.437	172	173	172				
0.550	194	193	193				
0.708	219	220	220				
0.912	247	250	249				

* Most grayscale targets come with documentation on reflectances/densities of each patch. Over time, these may fade or change though. A densitometer can be used to verify any change.

40

Image Science Associates

(e) Inne

Image Science Associates

Reflectance

Density

Using Density is more revealing since the data values tend to be more evenly distributed

Associates

Standards, Guidelines, Exposure

- efficiently assigning density to count values -

If most measured data values are **above** a selected OECF aim curve, **over-exposure** is indicated, conversely if most measured data values are **below** a selected OECF aim curve, **under-exposure** is indicated

White Balance / Neutrality

-Keep all of the Neutrals neutral -

•OECFs can be measured for each color channel using a target's neutral gray patches.
•85% of good color imaging performance is keeping the Red, Green, and Blue

OECFs the same... Really!

This is a good example of a well white balanced capture Note that all color channel OECFs lie on top of each other

IS A

Image Science Associates

Associates

Image Science

White Balance / Neutrality

-Keep all of the Neutrals neutral -

This is an example where the white balance performance is poor. Note how the blue channel OECF departs from the red and green OECF

Question of Balance: Keep the Neutrals Neutral

Image Science Associates

all of

Question of Balance: Keep ^ the Neutrals Neutral

SI 675 Digitization for Preservation Winter 2011

Image Science

Associates

A few words on

IS_A Image Science Associates

(de) 1 32420

- erroneously called color accuracy -

- Digital cameras/ scanners do not reproduce colors; they encode them.
- Color accuracy implies that two physically realizable colors are at hand to compare.
- Assumptions on how RGB code values will ultimately be interpreted (i.e. rendered or decoded) as physically reproduced color are often very wrong.
- Delta E (i.e. color error) measures for digital capture devices are suitable for performance consistency monitoring but not as absolute measures of color accuracy

Example $\triangle \mathbf{E}$ Analysis for Adobe RGB encoding

Image

Science Associates

Science

(e) Inone

- There is no single best or standardized OECF. Most are based on policy maker or user preferences for the "look" of the image with respect to a particular use case.
- Generally, any gamma setting between 1.5 2.5 is fine for capturing all significant image information for common reflection media densities.
- The important practice is to document what the OECF is for ease of future image reproduction and rendering.
- 85% of good color management relies on keeping the neutrals neutral. Do not assume that individual color channel OECFs for a gray scale target will be identical. By documenting the OECF though, any mismatch can usually be corrected. (called "corrective action")
- Leave sufficient CV "buffer" in the OECF for future tone and spatial image manipulations. Dmax ≈15 count value (CV), Dmin ≈ 240 CV
- An alternative to documenting the OECF is to include an image of a grayscale target in each digital image file and maintain it as part of the image file. Be sure the optical densities of each patch are somehow indicated.

Noise

Random and otherwise

NOISE

Any response that detracts from a desired signal

Primary Function	definition:	- im energy value relative to t	he input object.				
Primary Functions	Definition : A spatial	Noise Power S Tota frequency desco of an imaging co	Spectrum (NPS) / Noise riptor of the source omponent or syster	Chromatic Noise Definition : The Inter-color channel radiometric deviations relative to an identified aim			
	Temporal Noise		Fixed Pattern	Noise	Color Uniformity	Color SFR uniformity	
Derivative Methics	Random (stochestic) Definition : The root mean square deviation (std. deviation) of both temporal and fixed pattern noise for a single color channel	Banding/ Streaking (deterministic) Definition : One dimensional patterns	Defects (atochastic) Definition : point or clusters of defective or poorly corrected pixels	Light Falloff .(deterministic) Definition: A deviation in the effective illumination over a capture device's field of view; usually with lower illumination near the field's outer extent.	(deterministic) Definition : A difference in light failoff between color channels	(deterministic) Definition: The differential spread of light between color channels.	
Related descriptive btrm	- Lemporal noise - Grain - Shot noise - Read noise - White noise	- stripes - Banding - Streaking	- Hot, Cord, or Dead Fixels - Wounded Pixels - Binkers	- vignetting - Relative likimination	- Ranbows	- Colored odges - Color Blaed - Fringing	

Image Science

Associates (e) Inne

Scanner Noise Characterization

Winter 2011

52

Image Science

Associates

Scanner Noise Characterization

density	red	green	blue		
2.00	2.00	1.95	2.1		
1.89	2.11	1.88	2.22		
1.80	1.95	1.57	2.4		
1.70	1.8	1.65	1.99		
1.60	1.79	1.45	1.9		
1.48	1.82	1.4	1.88		
1.38	1.45	1.37	1.56		
1.29	1.5	1.15	1.77		
1.19	1.49	1.04	1.46		
1.08	1.34	1.23	1.3		
0.97	1.23	1.12	1.51		
0.88	1.39	1	1.2		
0.78	1.1	0.99	1.25		
0.68	1.2	1.04	1.16		
0.58	1	1.15	1.1		
0.47	0.88	0.94	1.29		
0.36	0.95	0.93	1.04		
0.26	0.92	0.77	0.9		
0.15	0.87	0.76	1.09		
0.04	0.9	0.65	0.97		

Two Forms of Random Noise

Image Science Associates

Fine-grain noise -> high frequency fluctuations

Course-grain noise -> low frequency fluctuations

Both of these images have the same amount of total noise

Image Science

Associates

One-dimensional random noise

- banding and streaking -

- Often found on devices using linear arrays
- Contrast and equalize enhancements are useful in detecting such noise behaviors

- Odd imaging behaviors that seem to defy objective measurement...for the time being.
 - De-texturing
 - Checkerboarding
 - Localized geometric distortions
 - Sensor defects
 - Color aliasing
- Many are technology specific. Just knowing what type of scanner technology was used allows one to prepare for certain artifacts

NOISE Any response that detracts from a desired signal

Buis	- Geometric/Spatial Distortion - definition: The deviation of any imaged point from its intended or aim spatial position relative to the input object.								
Enginee									
Derivative	Field height diagram Ideterministic) Definition : A change in magnification of an imaged object as a function of field position.	Regional (deterministic) Definition :A locally varying deviation in intended spatial position of an imaged object	Color Misregistration (deterministic) Definition : color-to-color spatial dislocation of otherwise spatially coincident color features of an Imaged object.	Aliasing (deterministic) Definition : A sampling effect that leads to spatial frequencies being falsely interpreted as other spatial frequencies	Spatial SFR uniformity (luminance) (deterministic) Definition: A difference in luminance SFR as a function of optical field position				
Related descriptive term	- Pincushion - Barrel - TV distorsion - Field Curvature - Skiw - Keystening	- sVobble - Sitter	 Colored edges Chromatic aberration Lateral chromatic error(LCE) 	- Jaggies - Moiré - Pixilization - Potential for aliasing	 Blurred or soft look near corners of image Spherical Aberration Coma 				

Image Science

Associates

Visual Inspection for Artifacts

Color Misregistration

Associates

Visual assessments of spatial artifacts is quite reliable

Example: Visual inspection needed for adaptive processing artifacts

Visual Inspection for Artifacts

Visual assessments of spatial artifacts is quite reliable

Image Science Associates

Associates

Visual Inspection for Artifacts

Visual assessments of spatial artifacts is quite

Consider Intra-image and Inter-image Variation

Image Science Associates

W.D.Wright, Photometry and the Eye, Hatton Press, 1949

Image

Science Associates

Intra-image: Across field

Device-level target

Variation in

- OECF
 optical falloff
- Effective resolution
- Color misregistration

OECF Spatial frequency response

References

- Frey and Reilly. [1999] Digital Imaging for Photographic Collections: Foundations for Technical Standards. RIT, Image Permanence Institute.
- Frey/Chapman. [2000] "Developing Specifications for Archival Digital Images." IS&T 2001 PICS Conference Proceedings.
- Puglia/Rhodes. [2007] "Digitization for Preservation Reformatting of Photographs (DRAFT)."
- Süsstrunk. [2002] "Color Encodings for Image Databases," Proc. IS&T/SPIE's Electronic Imaging: Internet Imaging, Vol. 4672, pp. 179-185.
- Süsstrunk. [2007] "Image Formation, Colorimetry, Color Spaces, Color Encodings and Color Image Encodings, Color Management," in *Focal Encyclopedia of Photography: 4th Edition*, Elsevier (Focal Press).
- Süsstrunk. [2002] "Managing Colour in Digital Libraries," in *Colour Engineering: Achieving Device Independent Colour*, John Wiley & Sons, Ltd.

Thank you!

Paul Conway

Associate Professor School of Information University of Michigan www.si.umich.edu