Module: Public Health Disaster Planning for Districts

Organization: East Africa HEALTH Alliance, 2009-2012

Author(s): Dr. Roy William Mayega (Makerere University)

Resource Title: Drought and Water Scarcity

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

For more information about how to cite these materials visit http://open.umich.edu/privacy-and-terms-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Atribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**: Creative Commons – Attribution License
- **Creative Commons – Attribution License**: Creative Commons – Attribution Share Alike License
- **Creative Commons – Attribution Noncommercial License**: Creative Commons – Attribution Noncommercial Share Alike License
- **GNU – Free Documentation License**: GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Drought and Water Scarcity
Factors Contributing to Drought

• Global warming
 – By 2100 average global temperatures may rise by 1.0 – 3.5 degrees Celsius \(^1\)
 – Documented warming of the Atlantic and Caribbean oceans
 – Resultant increase of extremes in flood/drought cycle “100 year events”

\(^1\) Githeko, 2000
Factors Contributing to Drought

• Global warming
• El Nino Southern Oscillation
• Random meteorological variability
Factors Contributing to Drought

• El Nino Southern Oscillation (ENSO)
 – Strong relation between the ENSO cycle, sea-surface temperatures and populations affected by drought \(^1\)
\(^1\) Bouma 1997
Factors contributing to water shortages

• Increased water demand
• Drying up of surface water
• Reduced yield of wells and springs
• Water pollution
• Restricted of access to water sources
• Dysfunctional water distribution
• Poor water conservation
Consequences of Drought

- **DESERIFICATION**
- **FAMINE**
 - Most frequent cause in Africa is drought
 - However, a recent review of 46 famines in the 20th century found one common denominator as the lack of a stable democratic government.
- **POLITICAL DISRUPTION** - Somalia 1991-93
 - Drought worsens instability

Possible public health hazards

• Health Hazard
 – Insufficient safe water for consumption
 – Insufficient water for hygiene purposes

• Threat to agriculture and economy
 • Lack of water for animals and crops
 • Resultant decrease in public health funding resources for intervention
 • Power loss exacerbates problem

• Malnutrition due to lack of water
• Loss of electrical power from hydroelectric generation
Possible public health hazards

- Environmental Hazards
 - Wildfire
 - Desertification
 - Chemical exposures
 - Silo gasses
 - Improper water treatment
 - Polluted water
General aims for the public health in water emergencies

• To save life and preserve health by making at least minimum quantities of *reasonably safe* water available for household use, for institutions and community services
• To provide supplies, where possible, for livestock and irrigation purposes
• To restore or enhance existing sources, pumping and distribution systems, where possible
• To develop alternative arrangements where necessary
Water priorities for public health

• Protection of existing water sources from contamination
• Maintenance of existing water systems
• Conservation measures
 – Establishing storage tanks
 – Recycling waste water for sanitation and irrigation
 – Rationing
• Seek alternative sources
Choosing alternative water sources

- Rain and deep closed wells are usually safe
 - 1 mm rain on a 1 m² roof = 0.8 liter water
- Surface water and shallow or open wells are unlikely to be safe
Criteria for choosing between alternative sources of water

• Speed with which it can be made operational
• Potential yields
• Reliability of supply
• Water purity
• Simplicity of technology and ease of maintenance
• Costs
• Rights and welfare of affected population
Choosing alternative water sources

• Transportation
 – Truck water only as a strictly short-term, stop-gap emergency measure to ensure population survival
General principles for management of water emergencies

• Quantity is preferable to quality
• Involve the community
• Involve the national and local water authorities, equipment and infrastructure that are normally responsible
General principles for management of water emergencies

• Pay special attention to the needs of hospitals, health and feeding centers
Estimating water requirements

- **Individuals**
 - At least 15-30 liters per person per day
 - Absolute minimum for survival: 3-5 l/day
- **Health Centers**
 - 40-60 liters per patient per day
- **Feeding centers**
 - 20-30 liters per person per day

Needs increase with air temperature and exertion
General principles for management of water emergencies

• Minimize work invested in “interim” solutions
General principles for management of water emergencies

• Provide safe water as close as possible to homes
 — (not further away than polluted sources)
General principles for management of water emergencies

- Minimize risk of water contamination in:
 - Distribution points
 - Delivery
 - Households
General principles for management of water emergencies

• Provide safe storage at community and household levels
General principles for management of water emergencies

• Mobilize appropriate technical expertise:
 – Water engineers to exploit available resources
 – Sanitarians to test and organize water treatment
 – Hydrogeologists to assess ground water potential
 – Hydrologists to assess surface water potential
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

