Author(s): August E. Evrard, PhD. 2010

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution-Non-commercial-Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.
Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)
Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
Creative Commons – Zero Waiver
Creative Commons – Attribution License
Creative Commons – Attribution Share Alike License
Creative Commons – Attribution Noncommercial License
Creative Commons – Attribution Noncommercial Share Alike License
GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Cyberscience: Computational Science and the Rise of the Fourth Paradigm

Honors 352, Class #0.0

August E. (Gus) Evrard, PhD

Fall 2010
What is Cyberscience?

Answer #1: A business intelligence (BI) company founded in 1977. (Top rank in google search for term `cyberscience`).
What is Cyberscience?

Answer #2: Something to which Penn State has dedicated a Research Institute.
What is Cyberscience?

from PSU Institute for CyberScience, Strategic Plan, FY2009-FY2013 (http://www.ics.psu.edu/about/ICSStratPlan.pdf)

“Cyberscience is a fast-growing mode of discovery which enhances traditional theory and experiment by providing a unique virtual laboratory to investigate complex problems that are otherwise impossible or impractical to address. Among such problems are: genomic/molecular basis of disease; the socio-economic impacts of a digital society; the origins of the universe; designing smart structures and nanoscale tailored materials; and developing systems for clean energy or real-time responses to threats. The intellectual strength of cyberscience is its universality as the emerging “science of discovery.” All research domains benefit from it, but none is solely defined by it.

The process of discovery through computing involves multiple interacting layers of specialization, methodology and infrastructure. At the highest level, scientists determine domain-specific problems and methodology (often derived from theory and experiment) – these are typically called applications. Next, the methods are represented computationally as an algorithm, which is an abstract yet well-defined entity that can be analyzed and optimized for scalability, accuracy, and quality of solution. Algorithms are implemented as software, which are finally executed on computing hardware (including processors and data storage), to complete a virtual experiment. A single investigator or a small group of two or three investigators can certainly engage in all facets of this process. However, discovery through computing at the frontiers of knowledge is best performed in a cyberscience ecosystem, where larger groups of scholars can work collaboratively across the four layers. More importantly, grand challenges of science and society demand compute- and data-intensive advances that cut across all four layers, representing major advances in multiple method and domain areas. This in turn demands that collaboration be built upon a sustainable and extensible cyberinfrastructure, which integrates the hardware, software, algorithm, and application layers.

Cyberscience is thus a grand multidisciplinary enterprise encompassing an eclectic array of methodological sciences (computing and information science, applied mathematics, statistics, operations research, etc.) and serving as the means for discovery in issue-driven research (energy, life, materials, social sciences, etc.)."
What is Cyberscience?

Answer #3: The website of a super-duper middle school teacher in Illinois.
What is Cyberscience?

Answer #4: A cool way to name an internet security training program.
What is Cyberscience?

Answer that matters: Cyberscience is for us to discover over the course of the term!
What will we do?

- **read**
 - diverse sources, focused by collection of essays, *Fourth Paradigm*
 - technical, social, historical perspectives

- **research**
 - investigate underlying technologies, scientific applications, and research support models of cyberscientists @UM and other institutions

- **experience**
 - get your hands dirty with a few lab exercises

- **synthesize**
 - via in-class discussion, group work, office hour visits, blog comments, etc.

- **report**
 - present group project proposals, updates and final findings in class

- **publish**
 - blog posts and comments, groups project reports
digital resources for this class

* **CTools site**: announcements, calendar, assignments, notes from class presentations, ...

 + linked from CTools are:

* **google site**: group project development (~wiki), potential public face of the course (open to umich.edu members of google apps for education suite)

* **blogger site**: for short writing assignments, synthesis, open to public?
First Exercise

Write short definitions of these two terms, bearing in mind the context of cyberscience.

enterprise

infrastructure
For Thursday

• do reading for week 1 (see syllabus)

• bring your laptop for a quick reading quiz

• *recruit a few more students for this class?*
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 3, Image 1 (left): United States Federal Government
Slide 3, Image 2 (right): electric8sheep, “Earth Simulator,” Flickr, http://www.flickr.com/photos/28285401@N05/431915484/, CC: BY 2.0, http://creativecommons.org/licenses/by/2.0/deed.en

Slide 4: Please see original image of Cyberscience website screenshot at www.cyberscience.com/about.html.
Slide 5: Please see original image of Penn State website screenshot at http://www.ics.psu.edu/about/index.html.
Slide 6: Please see original quote from PSU ICS website at http://www.ics.psu.edu/about/ICSStratPlan.pdf.
Slide 7: Please see original image of Tim McCollum’s website screenshot at http://www.ux1.eiu.edu/~cxtdm/macsci.html.
Slide 8: Please see original image of screenshot from Cyberscience Laboratory website at www.cybersciencelab.com.
Slide 14: A. E. Evrard, University of Michigan