Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- [PD-EXP] Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
- [PD-SELF] Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
- [ZERO] Creative Commons – Zero Waiver
- [BY] Creative Commons – Attribution License
- [BY-SA] Creative Commons – Attribution Share Alike License
- [BY-NC] Creative Commons – Attribution Noncommercial License
- [BY-NC-SA] Creative Commons – Attribution Noncommercial Share Alike License
- [GNU-FDL] GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- [PD-INEL] Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- [FAIR USE] Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Cyberscience: Computational Science and the Rise of the Fourth Paradigm

Honors 352, Class #0.5

August E. (Gus) Evrard, PhD

Fall 2010
today

* reading quiz

* lecture – infrastructure and cyberinfrastructure

* first blog posts – reactions

* group projects – timeline, aims, google site as collaboration space

* v0.2 syllabus next Monday
Please see original image and quote from New York Times article at
Infrastructure thus exhibits the following features, neatly summarized by Susan Leigh Star and Karen Ruhleder:

- **Embeddedness.** Infrastructure is sunk into, inside of, other structures, social arrangements, and technologies.
- **Transparency.** Infrastructure does not have to be reinvented each time or assembled for each task, but invisibly supports those tasks.
- **Reach or scope beyond a single event or a local practice.**
- **Learned as part of membership.** The taken-for-grantedness of artifacts and organizational arrangements is a sine qua non of membership in a community of practice. Strangers and outsiders encounter infrastructure as a target object to be learned about. New participants acquire a naturalized familiarity with its objects as they become members.
- **Links with conventions of practice.** Infrastructure both shapes and is shaped by the conventions of a community of practice.
- **Embodiment of standards.** Infrastructure takes on transparency by plugging into other infrastructures and tools in a standardized fashion.
- **Built on an installed base.** Infrastructure wrestles with the inertia of the installed base and inherits strengths and limitations from that base.
- **Becomes visible upon breakdown.** The normally invisible quality of working infrastructure becomes visible when it breaks; the server is down, the bridge washes out, there is a power blackout.
- **Is fixed in modular increments, not all at once or globally.** Because infrastructure is big, layered, and complex, and because it means different things locally, it is never changed from above. Changes require time, negotiation, and adjustment with other aspects of the systems involved.¹⁰

lifecycle:

- invention
- development and innovation
- technology transfer, growth and competition
- consolidation
- splintering or fragmentation
- decline

P. N. Edwards, *Vast Machine*, Ch. 1
found and what you think it means. Thus, if you want to create and maintain scientific knowledge, you are also going to need at least the following:

- enduring communities with shared standards, norms, and values
- enduring organizations and institutions, such as libraries, academic departments, national science foundations, and publishers
- mathematics
- specialized vocabularies
- conventions and laws regarding intellectual property
- theories, frameworks, and models
- physical facilities such as classrooms, laboratories, and offices
- “support” staff: computer operators, technicians, secretaries

P. N. Edwards, *Vast Machine*, Ch. 1
cyberinfrastructure vocabulary

* ontology
* taxonomy
* workflow
* scientific application
* virtual organization
...
ontology def’n: Tom Gruber (Stanford)

Ontologies as a specification mechanism
A body of formally represented knowledge is based on a conceptualization: the objects, concepts, and other entities that are assumed to exist in some area of interest and the relationships that hold among them (Genesereth & Nilsson, 1987). A conceptualization is an abstract, simplified view of the world that we wish to represent for some purpose. Every knowledge base, knowledge-based system, or knowledge-level agent is committed to some conceptualization, explicitly or implicitly.

An ontology is an explicit specification of a conceptualization.

From Wikipedia article on Ontology

Please see the rest of the original article on Ontology at http://www-ksl.stanford.edu/kst/what-is-an-ontology.html.
Ontology components

Main article: Ontology components

Contemporary ontologies share many structural similarities, regardless of the language in which they are expressed. As mentioned above, most ontologies describe individuals (instances), classes (concepts), attributes, and relations. In this section each of these components is discussed in turn.

Common components of ontologies include:

- Individuals: instances or objects (the basic or "ground level" objects)
- Classes: sets, collections, concepts, classes in programming, types of objects, or kinds of things.
- Attributes: aspects, properties, features, characteristics, or parameters that objects (and classes) can have
- Relations: ways in which classes and individuals can be related to one another
- Function terms: complex structures formed from certain relations that can be used in place of an individual term in a statement
- Restrictions: formally stated descriptions of what must be true in order for some assertion to be accepted as input
- Rules: statements in the form of an if-then (antecedent-consequent) sentence that describe the logical inferences that can be drawn from an assertion in a particular form
- Axioms: assertions (including rules) in a logical form that together comprise the overall theory that the ontology describes in its domain of application. This definition differs from that of "axioms" in generative grammar and formal logic. In those disciplines, axioms include only statements asserted as a priori knowledge. As used here, "axioms" also include the theory derived from axiomatic statements.
- Events: the changing of attributes or relations

Ontologies are commonly encoded using ontology languages.
The **FAO** geopolitical ontology is implemented in **OWL**. It consists of classes, properties, individuals and restrictions. Table 1 shows all classes, gives a brief description and lists some individuals that belong to each class. Note that the current version of the geopolitical ontology does not provide individuals of the class "disputed" territories. Table 2 and Table 3 illustrate datatype properties and object properties.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Individual</th>
</tr>
</thead>
<tbody>
<tr>
<td>territory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>area</td>
<td>Self-governing</td>
<td>Politically Independent territories</td>
</tr>
<tr>
<td></td>
<td>Non-self-governing</td>
<td>Territories dependent to self-governing</td>
</tr>
<tr>
<td></td>
<td>Disputed</td>
<td>Territories subject to disagreement and debate</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>Territories not belonging to self-governing, non-self-governing, and disputed</td>
</tr>
<tr>
<td>Group</td>
<td>Geographical region</td>
<td>Region divided by a demarcated area of the Earth</td>
</tr>
<tr>
<td></td>
<td>Economic region</td>
<td>Region divided by economic factors</td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td>International organizations</td>
</tr>
<tr>
<td>Special group</td>
<td></td>
<td>Group created for special needs</td>
</tr>
</tbody>
</table>

Table 1. Classes and instances in the geopolitical ontology.
example: geopolitical ontology in OWL

<table>
<thead>
<tr>
<th>Datatype property</th>
<th>Sub datatype properties</th>
<th>Subject classes to be applied (domain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has official name</td>
<td>Official English name and other 4 language names</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td>Has list name</td>
<td>List and table English name and other 4 language names</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td>Has short name</td>
<td>Short English name and other 4 language names</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td>Has code</td>
<td>UNDP code</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td></td>
<td>UN code</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td></td>
<td>ISO 3166-2 code</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td></td>
<td>ISO 3166-3 code</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td></td>
<td>AGROVOC code</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td></td>
<td>FAOSTAT code</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td></td>
<td>GAUL code</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td></td>
<td>FAOTERM code</td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td>Has coordinate</td>
<td>minimum latitude</td>
<td>Territory and following sub classes</td>
</tr>
<tr>
<td></td>
<td>Minimum longitude</td>
<td>Territory and following sub classes</td>
</tr>
<tr>
<td></td>
<td>Maximum latitude</td>
<td>Territory and following sub classes</td>
</tr>
<tr>
<td></td>
<td>Maximum longitude</td>
<td>Territory and following sub classes</td>
</tr>
<tr>
<td>Valid since</td>
<td></td>
<td>Area and following sub classes</td>
</tr>
<tr>
<td>Valid Until</td>
<td></td>
<td>Area and following sub classes</td>
</tr>
</tbody>
</table>

Table 2. Datatype properties in the geopolitical ontology.
About taxonomy

Taxonomy is the practice and science of classification according to natural relationships. In Drupal, this is one method administrators use to organize content in a web site. Taxonomy is created from 'Vocabularies' that contain related 'Terms'.

A "Taxonomy Vocabulary" classifying music by genre with terms and sub-terms.

Vocabulary = Music
term = classical
 sub-term = concertos
 sub-term = sonatas
 sub-term = symphonies

term = jazz
 sub-term = swing
 sub-term = fusion

term = rock
 sub-term = soft rock
 sub-term = hard rock

The Taxonomy module helps classify content on Drupal websites.
cyberinfrastructure elements

* hardware
 – processors/cores
 – memory/storage
 – ports/routers
 – power sources

* software
 – operating systems (OS)
 – languages: compiled, scripted, commercial, open source
 – database

* network
 – transfer protocols (http, ftp, tcp/ip, ...)
 – authentication/authorization
 – quality of service: bandwidth, error control, ...
goal: realize this graphic

- **Devices**
- **Fact Discovery**
- **Search**
- **Social Networks**
- **Etc...**

- **Amazon Cloud**
- **Google Cloud**
- **Microsoft Cloud**
- **Etc...**

Desktop/Cloud
- **Applications**
- **Services**
- **Tools**

Knowledge-Driven Research Infrastructure
- **Cross-domain fact correlation**
- **Inferencing**
- **Reasoning**
- **Etc...**

Knowledge representation

Knowledge bases
- Astronomy
- Bioinformatics
- Chemistry
- Computer Science
- Environmental Science
- Etc...

Descriptions of Algorithms and Computations
- Bio
- Graphs
- Mathematics
- Etc...
Slide 6: P. N. Edwards, Vast Machine, Ch. 1
Slide 7: P. N. Edwards, Vast Machine, Ch. 1
Slide 9 Quote (bottom, left): Please see the rest of the original article on Ontology at http://www-ksl.stanford.edu/kst/what-is-an-ontology.html.