Continuum Physics

Midterm Exam

Problem 1.

Let $a, b, c \in \mathbb{R}^3$ be three, linearly independent vectors. Let $A \in \mathbb{GL}(3)$ be the tensor given by $A = a \otimes (b \times c) + b \otimes (c \times a) + c \otimes (a \times b)$. Denote the scalar triple product of a, b, c by $V = a \cdot (b \times c)$. Finally, define the unit vectors

$$a^* = \frac{a}{|a|}, \quad b^* = \frac{b}{|b|}, c^* = \frac{c}{|c|}.$$
 (1)

It can be shown that

$$\boldsymbol{a}^* \cdot \boldsymbol{A} \boldsymbol{a}^* = V, \quad \boldsymbol{b}^* \cdot \boldsymbol{A} \boldsymbol{b}^* = V, \quad \boldsymbol{c}^* \cdot \boldsymbol{A} \boldsymbol{c}^* = V,$$
(2)

$$a^{*} \cdot Ab^{*} = b^{*} \cdot Aa^{*} = Va^{*} \cdot b^{*}, \quad b^{*} \cdot Ac^{*} = c^{*} \cdot Ab^{*} = Vb^{*} \cdot c^{*}, \quad c^{*} \cdot Aa^{*} = a^{*} \cdot Ac^{*} = Vc^{*} \cdot a^{*}(3)$$

Using these results show that $A = V\mathbf{1}$, where $\mathbf{1}$ is the usual second-order isotropic tensor. Note: There is a smarter way to do this than writing out vector/tensor components explicitly.

Problem 2.

Consider a body, which in the reference configuration, Ω_0 , is a sphere of radius R. Its deformation gradient is F.

- (a) If $F = \lambda \mathbf{1}$, where $\mathbf{1}$ is the usual second-order isotropic tensor, what is the shape of the body in its deformed configuration, Ω_t ?
- (b) If $\mathbf{F} = \lambda_1 \mathbf{e}_1 \otimes \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 \otimes \mathbf{e}_2 + \lambda_3 \mathbf{e}_3 \otimes \mathbf{e}_3$, where $\lambda_1 \neq \lambda_2 \neq \lambda_3$ are constants and $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a constant orthonormal basis, then what is the shape of the deformed configuration, Ω_t ? Provide an explicit parametrization for it.

Problem 3.

Let Ω be the current configuration of a body. The heat flux vector (heat crossing a unit area in the current configuration per unit time in the direction perpendicular to the area) is $\boldsymbol{q} \in \mathbb{R}^3$. The heat supply (heat supplied externally per unit current volume per unit time) is $r \in \mathbb{R}$, a scalar. The internal energy per unit mass is $e \in \mathbb{R}$ a scalar. The mass density is ρ . The heat entering Ω through its boundary, $\partial \Omega$ is $h = -\boldsymbol{q} \cdot \boldsymbol{n}$, where \boldsymbol{n} is the unit outward normal.

- (a) Derive the *local* balance of energy equation which corresponds to the following specialization of the First Law of Thermodynamics: "The rate of change of internal energy is equal to the net heat supplied to the body by external heating at every point, and through the boundary."
- (b) Consider Fig 1, where the current configuration Ω is shown as the union of two *open*, *disjoint* subsets, Ω_1 and Ω_2 . That is, $\overline{\Omega} = \overline{\Omega_1 \cup \Omega_2}$ and $\Omega_1 \cap \Omega_2 = \emptyset$. The interface between Ω_1 and Ω_2 is Γ , with unit normal \boldsymbol{m} pointing into Ω_2 as shown. So, the boundary of Ω_1 is $\Gamma_1 \cup \Gamma$ and the boundary of Ω_2 is $\Gamma_2 \cup \Gamma$.

Apply the local form of the balance of energy equation that you derived in Part (a) to each open subset, Ω_1 and Ω_2 . Then obtain the *integral* form of the balance of energy for this problem. Given that there is no heat loss across the interface, Γ , what can you say about the heat flux vector across Γ ?

Figure 1: The body in its current configuration is the union of subsets: $\overline{\Omega} = \overline{\Omega_1 \cup \Omega_2}$ and $\Omega_1 \cap \Omega_2 = \emptyset$.

Problem 4.

The Kirchhoff stress tensor is defined as $\tau = J\sigma$, where σ is the Cauchy stress and $J = \det F$ is the volume change ratio written in terms of the deformation gradient, F. The left Cauchy-Green tensor, b, satisfies $b = FF^{T}$.

(a) For an *isotropic, hyperelastic* solid with strain energy density ψ show that

$$\boldsymbol{\tau} = 2 \frac{\partial \psi}{\partial \boldsymbol{b}} \boldsymbol{b}.$$

(b) For an *isotropic, hyperelastic* solid with strain energy density ψ , how are the principal values of the Kirchhoff stress tensor related to ψ and the principal stretches, $\lambda_1, \lambda_2, \lambda_3$?