Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Advanced Emergency Trauma Course

Trauma Considerations in Special Populations

Presenter: Rockefeller Oteng, MD

Ghana Emergency Medicine Collaborative
Patrick Carter, MD • Daniel Wachter, MD • Rockefeller Oteng, MD • Carl Seger, MD
Lecture Objectives

- To discuss trauma management and concerns as it relates to the gravid woman
- Trauma as it relates to children
- Special consideration based on altered physiology
- Special considerations based on population specific injury patterns
Pregnancy

Epidemiology:

- Trauma complicates 6% to 10% of all US pregnancies.
- It is the leading cause non obstetric maternal death.
- According to a study published by Gazamarian et al, there is a prevalence of 0.9% to 20% when it comes to violence in pregnancy.
- There is an increasing trend with each trimester.
- 8% of violence occurs in first trimester, 40% in second trimester and 52% in the third trimester.
Pregnancy

Trauma, relatively minor or major, is associated with increased risk of:
- Preterm Labor
- Placental abruption
- Fetal-Maternal Hemorrhage
- Pregnancy loss

The majority of the times when gravid women seek care, it is the result of:
- Motor vehicle collision (MVC)
- Assaults and falls
- There are several normal anatomic and physiologic changes in pregnancy that need to be considered in the trauma patient
Pregnancy Physiology

CARDIOVASCULAR

- Plasma (blood) volume increases by 45% starting @ 6-8wks
- Stroke Volume can decrease to 30% of normal in supine position
- Chest compliance significantly decreased due to compression of the diaphragm
Cardiovascular

- Normal changes in pregnancy can appear very similar to shock
- In the first trimester blood pressure declines and then levels off in the second trimester
- During pregnancy, the amount of blood pumped by the heart (cardiac output) increases by 30 to 50%
Gastroenterology

- Delayed gastric emptying making them more likely to vomit
- Enlarged Uterine size reduces risk of GI injuries after lower abdominal trauma
- Dilated pelvic Vasculature increases risk of retroperitoneal hemorrhage
- Respiratory Alkalosis and compensatory metabolic acidosis.
Pregnancy

“Supine Hypotensive Syndrome”

- After about week 20 of gestation the uterus rises to the level of the inferior vena cava.
- The weight of the uterus, infant, placenta, and amniotic fluids compress the inferior vena cava.
- Reducing return of blood to the heart and cardiac output.
Supine Hypotensive Syndrome

- Along with the reduced blood pressure there will be other signs of shock:
 - Such as cool, moist and clammy skin
 - Increased heart rate (early sign), bradycardia (very late sign)
 - Dizziness, nausea, syncope or near syncope, pedal edema
 - Decreased femoral pulse, and signs of fetal distress
Supine Hypotensive Syndrome

Should you see a patient that presents this way you have options:

• You can use towels or sheet to lift the pelvis
• You can manually shift the uterus to the patients left.
• You can also tilt the woman onto her left side by roughly 30 degrees
Pulmonary

- The pregnant woman has a significantly reduced oxygen reserve
- This effect is mainly from compression of the diaphragm by the growing uterus
- There is also some narrowing of the airway due to swelling of tissues.
Complications

- Preterm Labor, Preterm delivery, Uterine rupture
- Feto-maternal hemorrhage and placental abruption.
- Abruption risks related to gestational age and severity and type of injury.
Complications

- Abruption
 - Incidence ranges from .4% to 1.3%.
- Ultrasound has high positive predictive value high but low sensitivity
- Over 50% of fetal losses from abruption are due to minor maternal trauma
- Use clinical suspicion and observation rules.
What about the Fetus?

- Continuous FHT’s if fetus >24wks
- Urgent C-Section if >24wks gestation and imminent maternal death
- C-section in patient where CPR has not been effective after 5mins or Non Reassuring Fetal Heart tones with stable mother.
- Laboratory Evaluation
- Rho D for all unsensitized women
Pregnancy Take Home Points

- Proper evaluation and treatment of the trauma patient, who is gravid, requires a multidisciplinary team approach.
- Mother’s welfare is PARAMOUNT
- The need for diagnostic imaging outweighs radiation risk to fetus, due to low risk.
- Time is life: No fetus with absent tones survived emergency delivery while 75% with FHT’s and age >26wks survived.
 - Independent of maternal distress or injury score.
Children

- Most pediatric trauma occurs as a result of blunt trauma
- Penetrating injury accounting for 10-20% of all pediatric trauma admissions in the states
- Trauma remains the leading cause of death for children aged 1-17 years.
- Developmental milestones correlate with mechanisms of childhood injuries.
Children

- Head injuries are the most severe and cause the most deaths.
- Head injuries also account for most disability in children
- Just as in adults there is a way to standardized way to assess for evidence of neurological deficits
Children

- **Glasgow Coma Scale (GCS)**
 - Universal tool for the rapid assessment of the consciousness level of injured children.

- A modified verbal and motor version has been developed to aid in the evaluation of consciousness level in infants and young children.

- The GCS score and its modified version (with scores of 3-15) are based on children's best response in 3 areas:
 - (1) motor activity
 - (2) verbal response
 - (3) eye opening.

- Traumatic brain injury in children is classified as:
 - Mild (GCS 13-15)
 - Moderate (GCS 9-12)
 - Severe (GCS 3-8).
Children

- Before going further we should again make the point that there is a systematic approach to each and every patient
- AIRWAY
- BREATHING
- CIRCULATION
- DISABILITY
- EXPOSURE
Broselow® Pediatric Emergency Tape

- Is a laminated folding piece of paper intended to quickly provide pediatric medication and resuscitation information

http://www.cupola.be/catalog/images/MBU003.jpg
Broselow® Pediatric Emergency Tape

- The tape folds out to a length of 146.5 cm.
- Divided into different colored regions, which correspond to a patient's height.
- Each weight lists the appropriate concentration and dosage for emergency medications.
Broselow® Pediatric Emergency Tape

- Provides dosages of emergency resuscitation medications:
 - E.g. atropine, epinephrine, midazolam

- Provides appropriate sizes for airway tools
 - E.g. Non-rebreather masks, Endotracheal tubes

- Place at patients side and based on the height at the feet
Anatomical Considerations

- The pediatric body size allows for a greater distribution of traumatic injuries
 - Thus, multiple traumatic injuries are common
- They also have greater relative body surface area
 - Greater potential for heat loss
- They have less abdominal musculature and fatty tissue
 - Less protection of the liver, spleen, pancreas and kidneys
Anatomic Considerations

- The head to body ratio is greater making it a tipping point
- The cranial bones are thinner
 - Giving the brain less protection
- Their small size also makes them more susceptible to injury
 - Small stature makes collisions more dangerous
 - Point of impact is a major concern
Relative Head to Body Size

- Based on body surface estimations in burn victims
- Younger children have a larger head compared to body ratio than adults

Ghana Emergency Medicine Collaborative
Advanced Emergency Trauma Course

http://commons.wikimedia.org/wiki/File:Caricature_of_Leonardo_Ferreira_Fontenelle.svg
Anatomic Considerations

- Anatomical differences in children make them more vulnerable to major abdominal injuries with very minor forces.
- In children, the abdomen begins at the level of the nipple.
- Their small, pliable rib cages and undeveloped abdominal muscles provide little protection of major organs.
Physiologic Considerations

- Studies have shown that compared with adults, injured children have higher metabolic demands.
- Again recall the increased loss of body heat, so try to keep them warm.
- Hypotension and hypoxia should be aggressively avoided and are known to produce secondary injury.
Physiologic Considerations

- Initiation of good nutritional support within hours of definitive stabilization is vital
- Attempt to meet the needs of increased metabolism and oxygen consumption during your pediatric trauma resuscitation
Children

- Airway control is the first priority.
- Unlike in adults, the cause of childhood cardiac arrest is primarily an initial respiratory arrest.
- A child's airway is anatomically different from an adult's.
- Children have shorter neck, smaller and anterior larynx, floppy epiglottis, short trachea, and large tongue.
Children

- As they cannot always communicate distress, look for secondary markers
 - Tachycardia is usually the earliest measurable response to hypovolemia.
 - Others include:
 - Mental status change
 - Respiratory compromise
 - Absence of peripheral pulses
 - Delayed capillary refill
 - Skin pallor, and hypothermia should be addressed
Pediatric Normal Vital Signs

<table>
<thead>
<tr>
<th></th>
<th>Pulse (beats/min)</th>
<th>Systolic blood pressure (mm Hg)</th>
<th>Respiration (breaths/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>95-145</td>
<td>60-90</td>
<td>30-60</td>
</tr>
<tr>
<td>Infant</td>
<td>125-170</td>
<td>75-100</td>
<td>30-60</td>
</tr>
<tr>
<td>Toddler</td>
<td>100-160</td>
<td>80-110</td>
<td>24-40</td>
</tr>
<tr>
<td>Preschool</td>
<td>70-110</td>
<td>80-110</td>
<td>22-34</td>
</tr>
<tr>
<td>School age</td>
<td>70-110</td>
<td>85-120</td>
<td>18-30</td>
</tr>
<tr>
<td>Adolescent</td>
<td>55-100</td>
<td>95-120</td>
<td>12-16</td>
</tr>
</tbody>
</table>
Children

- Once airway and breathing have been stabilized
- Make vascular access the next priority
- Initial fluid resuscitation should consist of warm isotonic crystalloid solution at a bolus of 20 mL/kg
Children

- Definitive treatment can be accomplished safely once hypoxia, tachycardia, hypotension, and hypothermia have been managed.

- Then proceed to the secondary survey
 - Which involves a more detailed systemic evaluation and initiation of diagnostic studies.
References

