Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Patients and Populations
Medical Decision-Making: Uncertainty

Rajesh S. Mangrulkar, M.D.
University of Michigan
Department of Internal Medicine
Division of General Medicine
UMMS policy requires that faculty members disclose to students and trainees their industry relationships in order to promote an ethical & transparent culture in research, clinical care, and teaching.

• I have no outside relationships with industry.
• Currently, I do not serve as the PI on any industry supported research projects.
Patients and Populations

Patient view
- Disease manifestations
- Inadequate healthcare access
- Focus on treatment

Population view
- Disease burden
- Persistent health disparities
- Focus on complex care management, disease prevention

Uncertainty
Pierre Louis (1787-1872)
Inventor of the “numeric method” and the “method of observation”
Bloodletting: standard of care for hot, moist diseases
Louis’ Study of Bloodletting

<table>
<thead>
<tr>
<th>Day of 1st bleeding</th>
<th>Duration of illness</th>
<th>Number of bleedings</th>
<th>Averages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 3</td>
<td>7 3</td>
<td>19 3</td>
<td>3 2</td>
</tr>
<tr>
<td>12 2</td>
<td>10 2</td>
<td>12 2</td>
<td>3 2</td>
</tr>
<tr>
<td>14 2</td>
<td>12 3</td>
<td>20 2</td>
<td>2 2</td>
</tr>
<tr>
<td>16 3</td>
<td>12 2</td>
<td>20 2</td>
<td>4 2</td>
</tr>
<tr>
<td>17 4</td>
<td>21 2</td>
<td>13 2</td>
<td>3 2</td>
</tr>
<tr>
<td>20 2</td>
<td>13 2</td>
<td>12 4</td>
<td>3 2</td>
</tr>
<tr>
<td>22 4</td>
<td>23 2</td>
<td>17 2</td>
<td>5 2</td>
</tr>
<tr>
<td>23 4</td>
<td>25 3</td>
<td>19 2</td>
<td>2 2</td>
</tr>
<tr>
<td>24 2</td>
<td>16 2</td>
<td>20 3</td>
<td>13 2</td>
</tr>
<tr>
<td>25 3</td>
<td>12 4</td>
<td>30 2</td>
<td>1 2</td>
</tr>
<tr>
<td>40 2</td>
<td>17 2</td>
<td>23 8</td>
<td>2 2</td>
</tr>
<tr>
<td>12 4</td>
<td>24 2</td>
<td>21 8</td>
<td>2 2</td>
</tr>
<tr>
<td>12 2</td>
<td>20 8</td>
<td>23 2</td>
<td>2 2</td>
</tr>
<tr>
<td>22 2</td>
<td>17 2</td>
<td>21 2</td>
<td>2 2</td>
</tr>
<tr>
<td>24 2</td>
<td>19 2</td>
<td>23 2</td>
<td>2 2</td>
</tr>
<tr>
<td>10 2</td>
<td>24 2</td>
<td>17 2</td>
<td>2 2</td>
</tr>
<tr>
<td>21 3</td>
<td>23 2</td>
<td>24 2</td>
<td>2 2</td>
</tr>
<tr>
<td>23 2</td>
<td>17 2</td>
<td>21 2</td>
<td>2 2</td>
</tr>
<tr>
<td>24 2</td>
<td>19 2</td>
<td>23 2</td>
<td>2 2</td>
</tr>
<tr>
<td>24 2</td>
<td>17 2</td>
<td>21 2</td>
<td>2 2</td>
</tr>
<tr>
<td>23 2</td>
<td>19 2</td>
<td>23 2</td>
<td>2 2</td>
</tr>
</tbody>
</table>
Pierre Louis (1787-1872)

Inventor of the “numeric method” and the “method of observation”

Discovered in 1828 that patients who were bled early did worse than those who weren’t:

• Died at a higher rate
• Those that survived, recovered earlier
The CAST Study

• Class I Antiarrhythmics: standard of care for asymptomatic ventricular arrhythmias in the 1980’s in the U.S.

• Cardiac Arrhythmia Suppression Trial: discovered in 1989 that patients who were treated did worse than those who weren’t.
HERS and Women’s Health

• Standard of care prior to 2000
 – Promotion of hormone replacement therapy for post-menopausal women

• HERS study, Women’s Health Initiative (2001, 2002)
 – Use of estrogen replacement therapy led to higher rates of cardiovascular complications, early in treatment.
Course Objectives

• To understand, appreciate and begin to develop tools that handle the uncertain world within which medical facts, attitudes and decisions reside.

• To understand that skills development in this domain require nurturing and continuous application over time (usually a lifetime).

• To ask questions.
Housekeeping: Grading

• Stated in the syllabus
• Assignments (35%)
• Attendance (15%) – Despite
• Final Exam (50%)
Housekeeping: Recommended Textbook

- Compiled from JAMA series
- Created and compiled by leaders in clinical epidemiology, biostatistics, medical decision-making and medical education
- An excellent reference tool for clinical practice
- Will be referred to during all 4 years of medical school

Online: www.lib.umich.edu
Search: JAMA Evidence under “Databases”
Thread 1: Information Retrieval
Mini Lec – Fri 8/9
Self-assessment quiz
Opt* Computer Session 1 (F 8/9)
Session 2 (M 8/26)
Optional Computer Sessions #1 and #2
Friday August 9 and Monday August 26

• Session #1 – 8/9
 – Available by signup (outside lecture hall)
 – Content - Introduction to Information Resource environment (E-Books, E-Journals), Basic MEDLINE searching

• Session #2 – 8/26
 – Available by signup later
 – Content – Information resources needed for Social and Behavioral Issues in Medicine Course

• Online demo modules available

• 2 Assignments – deadline Wednesday, August 21
 – Assignment #1
 – Self Assessment Quiz
Thread 1: Information Retrieval
Mini Lec – Fri 8/9
Self-assessment quiz
Opt* Computer Session 1 (F 8/9)
Session 2 (M 8/26)

Thread 2: Clin Epi, Biostats, Public Health
Lecs (M 8/12, T 8/13, W 8/14)
SG 1 (Th 8/15)

Thread 3: Diagnostic Reasoning
Lecs (F 8/9 and M 8/19)
SG 2 (T 8/20) and SG 3 (W 8/28)
Learning Objectives for Today

• By the end of this lecture, you will…
 – summarize how new medical knowledge is created and applied
 – describe how common diagnostic testing can lead to uncertainty in diagnostic reasoning
 – summarize how uncertainty in diagnostic reasoning interacts with trust of the practitioner.
An Analogy to provide relevance
The Odyssey: A Tale

- The case: A 1998 Honda Odyssey with 68,000 miles, no significant past maintenance history, presents with a buzzer problem.
- Description of the problem: When driving, even when all doors and the trunk are closed, the door ajar buzzer (but not light) sometimes comes on. Only turning off the automatic sliding side door control will turn off the buzzer.
The Odyssey: Mechanic Intake

• He asks you about other things you may have noticed about the car.

• Other symptoms:
 – Trunk latch sometimes stuck in the past, not now (active recall on the latch)
 – Automatic side door control replaced as per recall 2 years ago.
The Odyssey: First steps

• What is the mechanic thinking?
 – He generates a *differential diagnosis*
 – Series of possibilities with associated probabilities
The Odyssey: First Steps

• What does the mechanic tell you?
 – The most likely problem is the trunk latch. It is under recall anyways, so let’s fix it.

• What does he do?
 – He replaces the trunk latch. He drives your car, and notices no triggering of the buzzer.

• What are the potential problems with his reasoning?
The Odyssey: First Steps

• Diagnostic reasoning defects
 – failure to entertain all possibilities, tendency to do what’s convenient
 – failure to elicit and pay careful attention to description of symptoms
 – failure to perform specific diagnostic tests
 – failure to inform customer

availability, problem representation, anchoring, description detail, order effects*

The Odyssey: What happens next

• One hour after driving the minivan, the inappropriate buzzer returns.

• Place yourself in my position:
 – What do I do next?
 – Do I return to the mechanic?

I turn around and go back…
• 20 year-old woman presents for genetic testing
• Mother had breast and ovarian cancer, likely has the BRCA gene (autosomal dominant)
• With this assumption, the patient’s likelihood of having the gene is...
Diagnostic Reasoning: Probabilistic Reasoning

Probability: The likelihood of the occurrence of an event.

- \(P(X) = \) the probability of event \(X \)

- \(P(\text{BRCA}) = \) the probability that a patient carries the BRCA gene
Prior Probabilities

- Based on many factors:
 - Clinician experience
 - Patient demographics
 - Characteristics of the patient presentations (history and physical exam)
 - Previous testing
 - Genetic knowledge (in this case)

- \(P(BRCA) = \)
THE STORY CONTINUES...

MATH AHEAD
The Tale Continues...FFwd

- At age 75 she has not been diagnosed with breast or ovarian cancer.
- For next lecture (Friday) think about:
 - Is her probability of having the BRCA gene different at age 75 than it was at age 20?
 - If yes, is it higher or lower?

...to be continued...
Additional Source Information
for more information see: http://open.umich.edu/wiki/AttributionPolicy

Slide 8: Maurin, Wellcome images, http://images.wellcome.ac.uk/, CC:BY:NC http://creativecommons.org/licenses/by-nc/2.0/
Slide 11: Maurin, Wellcome images, http://images.wellcome.ac.uk/, CC:BY:NC http://creativecommons.org/licenses/by-nc/2.0/
Slide 24: 50 Prime, flickr, http://www.flickr.com/photos/pernett/1544045987/, CC:BY http://creativecommons.org/licenses/by/2.0/deed.en