Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
- Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
- Creative Commons – Zero Waiver
- Creative Commons – Attribution License
- Creative Commons – Attribution Share Alike License
- Creative Commons – Attribution Noncommercial License
- Creative Commons – Attribution Noncommercial Share Alike License
- GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

 Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

 To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Breast Lab
Stephen Ramsburgh, M.D.,
Gerald Abrams, M.D.

Winter 2009
Breast Anatomy
Breast Lobule

Source Undetermined
Breast Lobule

A terminal duct (arrow) leads into the lobule (terminal duct/lobular unit).
Breast Lobule

Lobule composed of multiple ductules. Each ductule consists of luminal epithelial cells surrounded by myoepithelial cells with clear cytoplasm.
Benign Breast Lesions

- Fibrocytic Changes
- Gynecomastia
- Fibroadenoma
- Intraductal Papilloma
Fibrocystic Changes

- Affect 30% to 35% of women between ages of 20 and 40 years
- Usually multifocal and bilateral
- Most common complaint is premenstrual swelling and tenderness, the duration of which lasts longer and longer as she passes through her 20’s and into her 40’s
- Symptoms gradually disappear after menopause
Fibrocystic Changes

Cystically dilated round to oval spaces lined by slightly attenuated epithelial and myoepithelial cells. Stroma between cystic spaces usually sclerotic.
Gynecomastia

Most common abnormality of male breast

Associated conditions: hyperthyroidism, cirrhosis, chronic renal failure, and chronic pulmonary disease

Drugs: anabolic steroids, digitalis, cimetidine, spironolactone, marihuana, and tricyclic antidepressants

Tumors: carcinoma of lung and testicular germ cell tumors
Gynecomastia

Characterized by an increased number of budding ducts, some proliferation of ductal epithelium, periductal edema, and a cellular fibroblastic stroma that is accompanied by adipose tissue.
Fibroadenoma

Most common breast neoplasm in adolescents and young adult women
Presents as a solitary, painless, well-circumscribed, mobile mass
25% are multiple
Not associated with an increased risk for the development of carcinoma
Fibroadenoma

A biphasic tumor consisting of a proliferation of epithelial (ductal) and mesenchymal (stromal) elements. Ducts lined by luminal epithelial layer and outer myoepithelial layer. Stroma consists of fibroblasts and collagen; myxoid mucinous change may be present.
Intraductal Papilloma

Usually solitary and arise from a major, central, subareolar duct
May or may not be palpable
90% produce a serous or serosanguinous nipple discharge
Associated with a slight increased risk for the development of invasive carcinoma
Intraductal Papilloma

A papillary lesion distends a single duct. The arborescent nature of the proliferation and its point of attachment or origin from the duct wall are apparent.

G.D. Abrams, University of Michigan Medical School
Intraductal Papilloma

Epithelial fronds supported by a fibrovascular stroma within a dilated or cystic duct. Epithelial cells line the luminal surface of the papillae and a myoepithelial cell layer is always present.
Malignant Breast Lesions

Intraductal Carcinoma (DCIS)

Invasive Ductal Carcinoma
Intraductal Carcinoma (DCIS)

Represents 30% of all mammographically detected malignancies

In theory no potential for metastases, but positive lymph nodes found in 1 to 2%

A true anatomic precursor for invasive carcinoma; two lines of evidence:

1. Invasive carcinoma develops at the site of biopsy in 25% to 50% of patients with DCIS treated with biopsy alone

2. When DCIS recurs after conservative surgery, invasive carcinoma is present in 50%
Intraductal Carcinoma (DCIS)

Usually a nonpalpable incidental mammographic finding; but may present as a palpable mass, nipple discharge, or Paget’s disease.

Lesions with comedonecrosis may appear on mammogram as irregularly shaped microcalcifications.

Multicentric (> 1 quadrant) in ~30%.

Invasive carcinoma will develop in the contralateral breast in 3% to 5%.
Ductal Carcinoma In-situ
Mammogram
Intraductal Carcinoma (DCIS)

A proliferation of epithelial cells with morphologic features of malignancy that are confined to the ductal system and do not demonstrate stromal invasion. Myoepithelial cell layer may be present.
Invasive Ductal Carcinoma

50% to 75% of all invasive carcinomas of the female breast
Most present with palpable mass or mammographic abnormality
Occasionally a patient will present with nipple retraction or discharge, skin edema ("peau d’orange"), fixation to the chest wall, or Paget’s disease
Invasive Ductal Carcinoma
Mammogram
Invasive Ductal Carcinoma

Irregular or rounded solid aggregates of cells admixed with single cells and cords that usually appear as poorly formed tubules and have glandular lumens. Tubules and aggregates lack a basal lamina and surrounding myoepithelial cells.
Radial Scar

- Mimics invasive carcinoma on mammogram and on physical exam (especially if large enough to be palpable)
- Multicentric in 65%
- Bilateral in 45%
- A frequent finding in women with FCC (45%)
- Some risk for the subsequent development of invasive carcinoma
Radial Scar

- A fibroelastotic core with radiating bands of fibrous connective tissue that contain round, gland-like structures and ducts with hyperplastic epithelium and a surrounding myoepithelial layer.
Phyllodes Tumor
(Cystosarcoma Phyllodes)

- < 0.5% of all breast tumors
- Most patients present with a large mass; some will give a history of having a small hard mass for many years that suddenly enlarges
- Occasional lesions are quite massive and stretch the skin, displace the nipple, and distend overlying superficial veins
Phyllodes Tumor

• Low-grade Intermediate-grade High-grade

• Grading based on five criteria: stromal cellularity, stromal atypia, microscopic appearance of tumor margin (infiltrating, effacing, or bulging), number of mitoses per 10 hpfs, and macroscopic size of the tumor

• High-grade tumors may have stroma similar to that of other types of soft tissue sarcomas (e.g., fibrosarcoma, rhabdomyosarcoma, liposarcoma, chondrosarcoma, osteosarcoma, etc.)
Phyllodes Tumor
Low-grade

- Leaf-like processes protrude into cystic slit-like spaces. Epithelial cells (luminal and myoepithelial) line ducts and cover leaf-like processes. Stroma tends to be cellular and consists of spindle-shaped cells (fibroblasts and myofibroblasts).
Phyllodes Tumor
High-grade

Source Undetermined (Both Images)
Paget’s Disease

- Early nipple involvement characterized by erythema and puritis
- With progression, nipple develops a moist, scaling, eczematoid change that eventually ulcerates
- 95% have an underlying in-situ or invasive carcinoma
Paget’s Disease

- Large, round to oval cells with abundant, pale eosinophilic or amphophilic cytoplasm with prominent round nuclei and distinct nucleoli are scattered singly or in clusters in the surface epithelium of the nipple. **An underlying carcinoma present in 95%.**
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 4: Source Undetermined
Slide 5: Source Undetermined
Slide 6: Source Undetermined
Slide 7: Source Undetermined
Slide 10: Source Undetermined
Slide 11: Source Undetermined
Slide 12: G.D. Abrams, University of Michigan Medical School
Slide 13: G.D. Abrams, University of Michigan Medical School
Slide 14: G.D. Abrams, University of Michigan Medical School
Slide 15: G.D. Abrams, University of Michigan Medical School
Slide 16: G.D. Abrams, University of Michigan Medical School
Slide 17: G.D. Abrams, University of Michigan Medical School
Slide 18: G.D. Abrams, University of Michigan Medical School
Slide 19: G.D. Abrams, University of Michigan Medical School
Slide 20: Source Undetermined
Slide 21: Source Undetermined (Both Images)
Slide 22: Roonb (flickr) [CC:BY 2.0](http://www.flickr.com/photos/roonb/2095645343/sizes/o/)
Slide 24: Source Undetermined
Slide 25: Source Undetermined
Slide 26: G.D. Abrams, University of Michigan Medical School
Slide 27: G.D. Abrams, University of Michigan Medical School
Slide 28: G.D. Abrams, University of Michigan Medical School
Slide 29: G.D. Abrams, University of Michigan Medical School
Slide 31: Source Undetermined
Slide 32: G.D. Abrams, University of Michigan Medical School
Slide 33: G.D. Abrams, University of Michigan Medical School
Slide 34: G.D. Abrams, University of Michigan Medical School
Slide 35: G.D. Abrams, University of Michigan Medical School
Slide 39: Source Undetermined
Slide 40: G.D. Abrams, University of Michigan Medical School
Slide 41: G.D. Abrams, University of Michigan Medical School
Slide 42: G.D. Abrams, University of Michigan Medical School
Slide 43: G.D. Abrams, University of Michigan Medical School
Slide 44: G.D. Abrams, University of Michigan Medical School
Slide 46: Source Undetermined (Both Images)
Slide 47: Source Undetermined
Slide 48: G.D. Abrams, University of Michigan Medical School