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Physics 140 – Fall 2007 
lecture #15 : 25 Oct 

•   exam #2 is next Thursday, 1 November, 6:00-7:30pm 
•   covers Chapters 6-8
•   practice exam on CTools site -> Exams & Grading

bring two 3x5 notecards, calculator, #2 pencils

•   review next Monday evening,  29 October, 8:00-9:30pm

Ch 9 topics:
•   rotational kinematics
•   rotational kinetic energy 
•   moment of inertia 



Center of Mass of an extended, non-uniform object
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An object with surface mass density σ(r), 
shown here in 2D, has a total mass given 
by the integral  

Its center of mass is defined by integrals of 
the mass-weighted positions: 



To describe rotational motion, we begin with the 
angular position θ (in radians) measured relative to 
an (arbitrary) reference angle. 

Rotational kinematics
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A change in angular position, Δθ, during a 
time interval Δt implies a non-zero 
average angular velocity

ωavg = Δθ / Δt  

A change in angular velocity, Δω, defines 
an average angular acceleration

αavg = Δω / Δt

The limit Δt -> 0 defines instantaneous 
measures for these

              ω = dθ / dt  
              α = dω / dt 

The snapshots of the ball are 
shown at fixed time intervals.  
Note how the angular 
displacement between images 
grows in time, implying an 
angular acceleration α>0.

Rotational kinematics
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atan

The magnitudes of translational 
quantities - displacement, velocity and 
tangential acceleration ( l, v, atan ) - 
are equal to the angular equivalent 
measures ( θ, ω, α ) multiplied by the 
distance r from the rotation axis.

At fixed r, the   
components of:   

displacement
tangential velocity

tangential accel. atan

Relations to translational kinematics

 v atan

 v
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The kinematic equations developed in Chapter 2 for 
translational motion also apply to rotational motion.  (see 
Table 9.1 in Y&F)

Kinematic equations for rotation



Two ladybugs rest without slipping on 
a rotating platter that is increasing its 
angular velocity.  Ladybug A is closer 
to the rotation axis than bug B.  �

Which statement correctly describes 
the relationship between the bugs’ 
angular accelerations (α) and 
centripetal accelerations (arad)? 

1)   αA>αB and arad,A>arad,B 
2)   αA<αB and arad,A<arad,B

3)   αA=αB and arad,A<arad,B

4)   αA=αB and arad,A=arad,B

5)   αA=αB and arad,A>arad,B



Negotiating circular motion at tangential 
speed vt around a circular arc of radius r still 
requires a radial component of acceleration

     arad =  vt
2 / r =  ω2 r 

directed towards the center of the circle.  
This component changes the direction of the 
velocity, keeping it tangent to the circle. 

The tangential component of acceleration    

          atan =  α r 

changes the speed,                   .
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A set of masses mi uniformly rotating with angular velocity ω 
about some fixed axis A possesses a kinetic energy defined by 

where ri is the distance from the ith mass to the rotation axis.

For such a set of mass, or for a continuous body, we define the 
moment of inertia I about the specified axis A as 

Then the rotational kinetic energy can be written as 
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Rotational kinetic energy and moment of inertia



A given object has only one mass m, but many moments of inertia I,  
depending on the location and orientation of the rotation axis.

Note: this 
graphic 
assumes an 
object of 
unit mass 
(M=1).  

Refer to 
Table 9.2 in 
YF for a 
similar list. 

Source: Undetermined 



solid sphere 
         A 

solid sphere 
         C 

hollow sphere 
          B 

The three spheres above have the same mass M and the same 
radius R.  Sphere B is hollow, A and C are solid.  Sphere C 
rotates about an axis adjacent to its edge while spheres A and B 
rotate about their centers.  All rotate at the same angular 
velocity.   Rank the spheres according to their rotational kinetic 
energy, largest to smallest.  

  1.  A, B, C 
  2.  B, A, C 
  3.  A, C, B 
  4.  C, B, A 

Source: Undetermined 


