Privacy, Confidentiality, and Security: Basic Concepts

WILLIAM HERSH, MD
OREGON HEALTH & SCIENCE UNIVERSITY

Privacy, confidentiality, and security

- Definitions
- Concerns
 - Privacy
 - Security
- Tools for protecting health information
- Approaches to protecting health information
Definitions

- Privacy – right to keep things to yourself
- Confidentiality – right to keep things about you from being disclosed to others
- Security – protection of your personal information
- Individually Identifiable Health Information (IIHI) – any data that can be correlated with an individual
- Personal health information – IIHI as defined by HIPAA Privacy Rule
- Consent – (in context of privacy) written or verbal permission to allow use of your IIHI

Concerns about privacy

- Personal privacy vs. common good
- Continued disclosures
- Concerns of public
- De-identified data
Personal privacy vs. the common good

• There is a spectrum of views
 ○ One end holds that while personal privacy is important, there are some instances when the common good of society outweighs it, such as in biosurveillance (Gostin, 2002; Hodge, 1999)
 ○ The other end holds that personal privacy trumps all other concerns (Privacy Rights Clearinghouse, 2009; see also Deborah Peel, MD and www.patientprivacyrights.org)
 ▪ Concerns expressed in ACLU video (ACLU, 2004)
 ○ More balanced views? – CHCF, 2008; ACP, 2009
• Where do your views fit?

There continue to be patient information disclosures

• Google can pick up not only patient data, but also access points to databases, which may not be well protected (Chin, 2003)
• Portland, OR – Thieves broke into a car with back-up disks and tapes containing records of 365,000 patients (Rojas-Burke, 2006)
• Several episodes from VA, e.g., laptop with data of >1 million veterans, recovered without apparent access (Lee, 2006)
• HITECH now requires notification of breaches of over 500 individuals under HIPAA
 ○ http://www.hhs.gov/ocr/privacy/hipaa/administrative/breachnotificationrule/postedbreaches.html
Healthcare organizations are not well-prepared for security

- Deloitte, 2009
 - Data leakage is a primary threat
 - Identity and access management is a top priority
 - Trend towards outsourcing raises many third-party security concerns
 - Role of Chief Information Security Officer (CISO) has taken on greater significance
 - As security environment becomes more complex and regulation continues to grow, security budgets not keeping pace
- HIMSS, 2009
 - Healthcare organizations not keeping pace with security threats and readiness for them

Technology can worsen the problem

- USB (“thumb”) drives run programs when plugged into USB port; can be modified to extract data from computer (Wright, 2007)
- Personal health records based on Microsoft Access can easily have encryption compromised (Wright, 2007)
- 10% of hard drives sold by a second-hand retailer in Canada had remnants of personal health information (El Emam, 2007)
What is the role of governments?

- **United States: HIPAA (Leyva, 2010)**
 - Privacy Rule defines policies, including “treatment, payment, and operations” (TPO)
 - Security Rule specifies required protections
 - Stringent rules allow data processing only with consent or highly specific circumstances (legal obligation, public necessity)

Related issues for medical privacy

- **Who “owns” medical information?**
 - Easier to answer with paper systems, but growing view is the patients own it, which has economic implications (Hall, 2009; Rodwin, 2009)
- **“Compelled” disclosures (Rothstein, 2006)**
 - We are often compelled to disclose information for non-clinical care reasons
- **The ultimate “personal identifier” may be one’s genome (McGuire, 2006)**
 - Even “de-identified” data may compromise privacy (Malin, 2005)
 - Genome of family members can identify siblings (Cassa, 2008)
 - Data from genome-wide association studies can reveal individual level information (Lumley, 2010)
So maybe “de-identified” data is more secure? Not necessarily

- Sweeney, 1997; Sweeney, 2002
 - 87% of US population uniquely identified by five-digit zip code, gender, and date of birth
 - Identified William Weld, governor of Massachusetts, in health insurance database for state employees by purchasing voter registration for Cambridge, MA for $20 and linking zip code, gender, and date of birth to “de-identified” medical database

- Genomic data can aid re-identification in clinical research studies (Malin, 2005; Lumley, 2010)
- Social security numbers can be predicted from public data (Acquisti, 2009)

How Governor Weld was de-identified

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Visit date</th>
<th>Diagnosis</th>
<th>Procedure</th>
<th>Medication</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zip</td>
<td>Date of birth</td>
<td>Name</td>
<td>Address</td>
<td>Date registered</td>
<td>Party affiliation</td>
</tr>
</tbody>
</table>
Concerns about security

- Many points of leakage
- A problem for paper too
- Consequences of poor security
- Medical identity theft

Flow of information in healthcare – many points to “leak”

- Direct patient care
 - Provider
 - Clinic
 - Hospital
- Support activity
 - Payers
 - Quality reviews
 - Administration
- “Social” uses
 - Insurance eligibility
 - Public health
 - Medical research
- Commercial uses
 - Marketing
 - Managed care
 - Drug usage

(Rindfleisch, 1997)
Security for paper records is a significant problem as well

- Difficult to audit trail of paper chart
- Fax machines are easily accessible
- Records frequently copied for many reasons
 - New providers, insurance purposes
- Records abstracted for variety of purposes
 - Research
 - Quality assurance
 - Insurance fraud → Health Information Bureau (Rothfeder, 1992)

Potential consequences of poor security

- Rindfleish, 1997
 - Patients avoid healthcare
 - Patients lie
 - Providers avoid entering sensitive data
 - Providers devise work-arounds
- CHCF, 2005
 - 13% of consumers admit to engaging in “privacy-protective” behaviors that might put health at risk, such as
 - Asking doctor to lie about diagnosis
 - Paying for a test because they did not want to submit a claim
 - Avoid seeing their regular doctor
Tools for protecting health information

- IOM report: *For the Record* (1997)
- Report commissioned by NLM; informed HIPAA legislation
- Looked at current practices at six institutions
- Recommended immediate and future best practices
- Some content dated, but framework not

Threats to security

- Insider
 - Accidental disclosure
 - Curiosity
 - Subornation
- Secondary use settings
- Outside institution
 - A lot of press, few examples
Technologies to secure information

- Deterrents
 - Alerts
 - Audit trails
- System management precautions
 - Software management
 - Analysis of vulnerability
- Obstacles
 - Authentication
 - Authorization
 - Integrity management
 - Digital signatures
 - Encryption
 - Firewalls
 - Rights management

Encryption

- Necessary but not sufficient to ensure security
- Should, however, be used for all communications over public networks, e.g., the Internet
- Information is scrambled and unscrambled using a key
- Types: symmetric vs. asymmetric
 - Asymmetric, aka public key encryption, can be used for digital certificates, electronic signatures, etc.
NRC report best practices

- Organizational
 - Confidentiality and security policies and committees
 - Education and training programs
 - Sanctions
 - Patient access to audit trails

- Technical
 - Authentication of users
 - Audit trails
 - Physical security and disaster recovery
 - Protection of remote access points and external communications
 - Software discipline
 - Ongoing system vulnerability assessment

Authentication and passwords

- Authentication is process of gaining access to secure computer
- Usual approach is passwords (“what you know”), but secure systems may add physical entities (“what you have”), e.g.,
 - Biometric devices – physical characteristic, e.g., thumbprint
 - Physical devices – smart card or some other physical “key”
- Ideal password is one you can remember but no one else can guess
- Typical Internet user interacts with many sites for which he/she must use password
 - Many clamor for “single sign-on,” especially in healthcare, where users authenticate just once (Pabrai, 2008)
Health information security is probably a trade-off

No security - Web pages

↑

Total security - CIA, NSA

Where is the happy medium for healthcare?

Other issues about privacy and confidentiality to ponder...

- Who owns health information?
- How is informed consent implemented?
- When does public good exceed personal privacy?
 - e.g., public health, research, law enforcement
- What conflicts are there with business interests?
- How do we let individuals “opt out” of health information systems?
 - What are the costs? When do we override?
The work is provided under the terms of this Creative Commons Public License ("CCPL" or "license"). The work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license or copyright law is prohibited.