
Loops and Iteration	

Chapter 5	

Python for Informatics: Exploring Information	

www.pythonlearn.com	

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles Severance

Repeated Steps	

Output:	

	

5	

4	

3	

2	

1	

Blastoff! 	

0	

Program:	

	

n = 5	

while n > 0 :	

 print n	

 n = n – 1	

print 'Blastoff!'	

print n	

n > 0 ?	

n = n -1	

Loops (repeated steps) have iteration variables that
change each time through a loop. Often these

iteration variables go through a sequence of numbers.	

No	

print 'Blastoff'	

Yes	

n = 5	

print n	

An Infinite Loop	

n = 5	

while n > 0 :	

 print 'Lather’	

 print 'Rinse'	

print 'Dry off!'	

n > 0 ?	

No	

print 'Dry off!'	

Yes	

n = 5	

print 'Lather'	

print 'Rinse'	

What is wrong with this loop?	

Another Loop	

n = 0	

while n > 0 :	

 print 'Lather’	

 print 'Rinse'	

print 'Dry off!'	

n > 0 ?	

No	

print 'Dry off!'	

Yes	

n = 0	

print 'Lather'	

print 'Rinse'	

What does this loop do?	

Breaking Out of a Loop	

•  The break statement ends the current loop and jumps to the

statement immediately following the loop	

•  It is like a loop test that can happen anywhere in the body of the loop	

while True:	

 line = raw_input('> ')	

 if line == 'done' :	

 break	

 print line	

print 'Done!'	

> hello there	

hello there	

> finished	

finished	

> done	

Done!	

Breaking Out of a Loop	

•  The break statement ends the current loop and jumps to the

statement immediately following the loop	

•  It is like a loop test that can happen anywhere in the body of the loop	

while True:	

 line = raw_input('> ')	

 if line == 'done' :	

 break	

 print line	

print 'Done!'	

> hello there	

hello there	

> finished	

Finished	

> done	

Done!	

True ?	

No	

print 'Done'	

Yes	

....	

...	

break	

while True:	

 line = raw_input('> ')	

 if line == 'done' : 	

 break	

 print line	

print 'Done!'	

http://en.wikipedia.org/wiki/Transporter_(Star_Trek)	

Finishing an Iteration with continue	

•  The continue statement ends the current iteration and jumps to the

top of the loop and starts the next iteration	

while True:	

 line = raw_input('> ')	

 if line[0] == '#' :	

 continue	

 if line == 'done' 	

: break	

 print line	

print 'Done!'	

> hello there	

hello there	

> # don't print this	

> print this!	

print this!	

> done	

Done!	

Finishing an Iteration with continue	

•  The continue statement ends the current iteration and jumps to the top

of the loop and starts the next iteration	

while True:	

 line = raw_input('> ')	

 if line[0] == '#' : 	

 continue	

 if line == 'done' :	

 break	

 print line	

print 'Done!'	

> hello there	

hello there	

> # don't print this	

> print this!	

print this!	

> done	

Done!	

True ?	

No	

print 'Done'	

Yes	

....	

...	

while True: 	

 line = raw_input('> ’)	

 if line[0] == '#' :	

 continue	

 if line == 'done' :	

 break	

 print line	

print 'Done!'	

....	

...	

continue	

Indefinite Loops	

•  While loops are called "indefinite loops" because they keep going until
a logical condition becomes False	

•  The loops we have seen so far are pretty easy to examine to see if
they will terminate or if they will be "infinite loops"	

•  Sometimes it is a little harder to be sure if a loop will terminate	

Definite Loops	

•  Quite often we have a list of items of the lines in a file - effectively a
finite set of things	

•  We can write a loop to run the loop once for each of the items in a
set using the Python for construct	

•  These loops are called "definite loops" because they execute an exact
number of times	

•  We say that "definite loops iterate through the members of a set"	

A Simple Definite Loop	

for i in [5, 4, 3, 2, 1] :	

 print i	

print 'Blastoff!'	

5	

4	

3	

2	

1	

Blastoff!	

A Definite Loop with Strings	

friends = ['Joseph', 'Glenn', 'Sally']	

for friend in friends : 	

 print 'Happy New Year:', friend	

print 'Done!'	

Happy New Year: Joseph���
Happy New Year: Glenn	

Happy New Year: Sally	

Done!	

A Simple Definite Loop	

for i in [5, 4, 3, 2, 1] :	

 print i	

print 'Blastoff!'	

5	

4	

3	

2	

1	

Blastoff!	

Done?	

Yes	

print 'Blast off!'	

print i	

No	

Move i ahead	

Definite loops (for loops) have explicit iteration
variables that change each time through a loop. These
iteration variables move through the sequence or set. 	

Looking at In...	

•  The iteration variable

�literates�z though the
sequence (ordered set)	

•  The block (body) of code is
executed once for each
value in the sequence	

•  The iteration variable
moves through all of the
values in the sequence	

for i in [5, 4, 3, 2, 1] :	

 print i	

Iteration variable	

Five-element sequence	

Done?	

Yes	

print i	

No	

Move i ahead	
 •  The iteration variable �literates�z
though the sequence (ordered set)	

•  The block (body) of code is
executed once for each value in
the sequence	

•  The iteration variable moves
through all of the values in the
sequence	
for i in [5, 4, 3, 2, 1] 	

: print i	

Done?	

Yes	

print i	

No	

Move i ahead	

print i	

i = 5	

print i	

i = 4	

print i	

i = 3	

print i	

i = 2	

print i	

i = 1	

for i in [5, 4, 3, 2, 1] :	

 print i	

Definite Loops	

•  Quite often we have a list of items of the lines in a file - effectively a
finite set of things	

•  We can write a loop to run the loop once for each of the items in a
set using the Python for construct	

•  These loops are called "definite loops" because they execute an exact
number of times	

•  We say that "definite loops iterate through the members of a set"	

Loop Idioms���
What We Do in Loops���

Note: Even though these examples are simple, the
patterns apply to all kinds of loops	

Making �lsmart�z loops	

•  The trick is �lknowing�z something
about the whole loop when you
are stuck writing code that only
sees one entry at a time	

Set some variables to initial
values	

Look for something or
do something to each

entry separately, updating
a variable.	

for thing in data:	

Look at the variables.	

Looping through a Set	

print 'Before'	

for thing in [9, 41, 12, 3, 74, 15] :	

 print thing	

print 'After'	

$ python basicloop.py	

Before	

9	

41	

12	

3	

74	

15	

After	

What is the Largest Number?	

3	

What is the Largest Number?	

largest_so_far	
 -1	
3	
41	
74	

41	
 12	
 9	
 74	
 15	

Counting in a Loop	

zork = 0	

print 'Before', zork	

for thing in [9, 41, 12, 3, 74, 15] :	

 zork = zork + 1	

 print zork, thing	

print 'After', zork	

$ python countloop.py	

Before 0	

1 9	

2 41	

3 12	

4 3	

5 74	

6 15	

After 6	

To count how many times we execute a loop we introduce a counter
variable that starts at 0 and we add one to it each time through the loop.	

Summing in a Loop	

zork = 0	

print 'Before', zork	

for thing in [9, 41, 12, 3, 74, 15] :	

 zork = zork + thing	

 print zork, thing	

print 'After', zork	

$ python countloop.py 	

Before 0	

9 9	

50 41	

62 12	

65 3	

139 74	

154 15	

After 154	

To add up a value we encounter in a loop, we introduce a sum variable that
starts at 0 and we add the value to the sum each time through the loop.	

Finding the Average in a Loop	

count = 0	

sum = 0	

print 'Before', count, sum	

for value in [9, 41, 12, 3, 74, 15] :	

 count = count + 1	

 sum = sum + value	

 print count, sum, value	

print 'After', count, sum, sum / count	

$ python averageloop.py 	

Before 0 0	

1 9 9	

2 50 41	

3 62 12	

4 65 3	

5 139 74	

6 154 15	

After 6 154 25	

An average just combines the counting and sum patterns
and divides when the loop is done.	

Filtering in a Loop	

print 'Before’	

for value in [9, 41, 12, 3, 74, 15] :	

 if value > 20:	

 	
 print 'Large number',value	

print 'After'	

$ python search1.py 	

Before	

Large number 41	

Large number 74	

After	

We use an if statement in the loop to catch / filter the
values we are looking for.	

Search Using a Boolean Variable	

found = False	

print 'Before', found	

for value in [9, 41, 12, 3, 74, 15] : 	

 if value == 3 :	

 found = True	

 print found, value	

print 'After', found	

$ python search1.py 	

Before False	

False 9	

False 41	

False 12	

True 3	

True 74	

True 15	

After True	

If we just want to search and know if a value was found - we use a variable that starts
at False and is set to True as soon as we find what we are looking for.	

What is the Smallest Number?	

9	

What is the Smallest Number?	

smallest_so_far	
 -1	

41	
 12	
 3	
 74	
 15	

9	

What is the Smallest Number?	

largest_so_far	
 None	
9	
3	

41	
 12	
 3	
 74	
 15	

Finding the smallest value	

smallest = None	

print 'Before’	

for value in [9, 41, 12, 3, 74, 15] :	

 if smallest is None : 	

 smallest = value	

 elif value < smallest : 	

 smallest = value	

 print smallest, value	

print 'After', smallest	

$ python smallest.py 	

Before	

9 9	

9 41	

9 12	

3 3	

3 74	

3 15	

After 3	

We still have a variable that is the smallest so far. The first time through the
loop smallest is None so we take the first value to be the smallest.	

The "is" and "is not" Operators	

•  Python has an "is" operaror that
can be used in logical
expressions	

•  Implies 'is the same as'	

•  Similar to, but stronger than ==	

•  'is not' also is a logical operator	

smallest = None	

print 'Before’	

for value in [3, 41, 12, 9, 74, 15] :	

 if smallest is None : 	

 smallest = value	

 elif value < smallest : 	

 smallest = value	

 print smallest, value	

print 'After', smallest	

Summary	

•  While loops (indefinite)	

•  Infinite loops	

•  Using break	

•  Using continue	

•  For loops (definite)	

•  Iteration variables	

•  Largest or smallest	

