
Python Dictionaries	

Chapter 9	

Python for Informatics: Exploring Information	

www.pythonlearn.com	

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles Severance

What is a Collection?	

•  A collection is nice because we can put more than one value in them
and carry them all around in one convenient package.	

•  We have a bunch of values in a single “variable”	

•  We do this by having more than one place “in” the variable.	

•  We have ways of finding the different places in the variable	

What is not a “Collection”	

•  Most of our variables have one value in them - when we put a new

value in the variable - the old value is over written	

$ python	

Python 2.5.2 (r252:60911, Feb 22 2008, 07:57:53) 	

[GCC 4.0.1 (Apple Computer, Inc. build 5363)] on darwin	

>>> x = 2	

>>> x = 4	

>>> print x	

4	

A Story of Two Collections..	

•  List	

•  A linear collection of values that stay in order	

•  Dictionary	

•  A “bag” of values, each with its own label	

Dictionaries	

money	

tissue	

calculator	

perfume	

candy	

http://en.wikipedia.org/wiki/Associative_array	

Dictionaries	

•  Dictionaries are Python’s most powerful data collection	

•  Dictionaries allow us to do fast database-like operations in Python	

•  Dictionaries have different names in different languages	

•  Associative Arrays - Perl / Php	

•  Properties or Map or HashMap - Java	

•  Property Bag - C# / .Net	

http://en.wikipedia.org/wiki/Associative_array	

Dictionaries	

•  Lists index their entries
based on the position in the
list	

•  Dictionaries are like bags -
no order	

•  So we index the things we
put in the dictionary with a
“lookup tag”	

>>> purse = dict()	

>>> purse['money'] = 12	

>>> purse['candy'] = 3	

>>> purse['tissues'] = 75	

>>> print purse	

{'money': 12, 'tissues': 75, 'candy': 3}	

>>> print purse['candy']	

3	

>>> purse['candy'] = purse['candy'] + 2’	

>>> print purse	

{'money': 12, 'tissues': 75, 'candy': 5}	

Comparing Lists and Dictionaries	

•  Dictionaries are like Lists except that they use keys instead of
numbers to look up values	

>>> lst = list()	

>>> lst.append(21)	

>>> lst.append(183)	

>>> print lst[21, 183]	

>>> lst[0] = 23	

>>> print lst[23, 183]	

>>> ddd = dict()	

>>> ddd['age'] = 21	

>>> ddd['course'] = 182	

>>> print ddd	

{'course': 182, 'age': 21}	

>>> ddd['age'] = 23	

>>> print ddd	

{'course': 182, 'age': 23}	

>>> lst = list()	

>>> lst.append(21)	

>>> lst.append(183)	

>>> print lst	

[21, 183]	

>>> lst[0] = 23	

>>> print lst	

[23, 183]	

>>> ddd = dict()	

>>> ddd['age'] = 21	

>>> ddd['course'] = 182	

>>> print ddd	

{'course': 182, 'age': 21}	

>>> ddd['age'] = 23	

>>> print ddd	

{'course': 182, 'age': 23}	

[0]	
21	

[1]	
183	

lll	

Key	
 Value	

['course']	
183	

['age']	
21	

ddd	

Key	
 Value	

List	

Dictionary	

Dictionary Literals (Constants)	

•  Dictionary literals use curly braces and have a list of key : value pairs	

•  You can make an empty dictionary using empty curly braces	

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}	

>>> print jjj	

{'jan': 100, 'chuck': 1, 'fred': 42}	

>>> ooo = { }>>> print ooo{}	

>>>	

Most Common Name?	

csev	

zhen	
 zhen	

marquard	

zhen	

cwen	

csev	

marquard	

zhen	

marquard	

csev	
 cwen	

zhen	

Most Common Name?	

Most Common Name?	

csev	

zhen	
 zhen	

marquard	

zhen	

cwen	

csev	

marquard	

zhen	

marquard	

csev	
 cwen	

zhen	

Many Counters with a Dictionary	

•  One common use of dictionary is

counting how often we “see” something	

Key	
 Value	

>>> ccc = dict()	

>>> ccc['csev'] = 1	

>>> ccc['cwen'] = 1	

>>> print ccc	

{'csev': 1, 'cwen': 1}	

>>> ccc['cwen'] = ccc['cwen'] + 1	

>>> print ccc	

{'csev': 1, 'cwen': 2}	

Dictionary Tracebacks	

•  It is an error to reference a key which is not in the dictionary	

•  We can use the in operator to see if a key is in the dictionary	

>>> ccc = dict()	

>>> print ccc['csev']	

Traceback (most recent call last):	

 File "<stdin>", line 1, in <module>	

KeyError: 'csev'	

>>> print 'csev' in ccc	

False	

When we see a new name	

•  When we encounter a new name, we need to add a new entry in the

dictionary and if this the second or later time we have seen the name,
we simply add one to the count in the dictionary under that name	

counts = dict()!
names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']!
for name in names :!
 if name not in counts: !
 counts[name] = 1!
 else :!
 counts[name] = counts[name] + 1!
print counts!

{'csev': 2, 'zqian': 1, 'cwen': 2}	

The get method for dictionaries	

•  This pattern of checking to
see if a key is already in a
dictionary and assuming a
default value if the key is not
there is so common, that
there is a method called get()
that does this for us	

 if name in counts:	

 x = counts[name]	

 else :	

 x = 0	

x = counts.get(name, 0)	

Default value if key does not
exist (and no Traceback).	

{'csev': 2, 'zqian': 1, 'cwen': 2}	

Simplified counting with get()	

•  We can use get() and provide a default value of zero when the key is
not yet in the dictionary - and then just add one	

counts = dict()!
names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']!
for name in names :!
 counts[name] = counts.get(name, 0) + 1!
print counts!

{'csev': 2, 'zqian': 1, 'cwen': 2}	
Default	

http://www.youtube.com/watch?v=EHJ9uYx5L58	

counts = dict()!
names = ['csev', 'cwen', 'csev', 'zqian', 'cwen']!
for name in names :!
 counts[name] = counts.get(name, 0) + 1!
print counts!

Simplified counting with get()	

Writing programs (or programming) is a very creative and rewarding activity. You can
write programs for many reasons ranging from making your living to solving a difficult

data analysis problem to having fun to helping someone else solve a problem. This
book assumes that everyone needs to know how to program and that once you know
how to program, you will figure out what you want to do with your newfound skills.	

We are surrounded in our daily lives with computers ranging from laptops to cell
phones. We can think of these computers as our ``personal assistants'' who can take

care of many things on our behalf. The hardware in our current-day computers is
essentially built to continuously ask us the question, ``What would you like me to do

next?''.	

Our computers are fast and have vasts amounts of memory and could be very helpful
to us if we only knew the language to speak to explain to the computer what we would
like it to ``do next''. If we knew this language we could tell the computer to do tasks
on our behalf that were reptitive. Interestingly, the kinds of things computers can do

best are often the kinds of things that we humans find boring and mind-numbing.	

the clown ran after the car and the car ran into the tent and the
tent fell down on the clown and the car 	

Counting Pattern	

counts = dict()!
print 'Enter a line of text:!
'line = raw_input('')!
!
words = line.split()!
!
print 'Words:', words!
!
print 'Counting...’!
for word in words:!
 counts[word] = counts.get(word,0) + 1!
print 'Counts', counts!

The general pattern to count the
words in a line of text is to split
the line into words, then loop
thrugh the words and use a

dictionary to track the count of
each word independently.	

Counting Words	

python wordcount.py Enter a line of text:the clown ran
after the car and the car ran into the tent and the tent
fell down on the clown and the car 	

Words: ['the', 'clown', 'ran', 'after', 'the', 'car', 'and', 'the',
'car', 'ran', 'into', 'the', 'tent', 'and', 'the', 'tent', 'fell', 'down',
'on', 'the', 'clown', 'and', 'the', 'car']	

Counting...	

Counts {'and': 3, 'on': 1, 'ran': 2, 'car': 3, 'into': 1, 'after': 1,
'clown': 2, 'down': 1, 'fell': 1, 'the': 7, 'tent': 2}	

http://www.flickr.com/photos/71502646@N00/2526007974/	

counts = dict()!
print 'Enter a line of text:!
'line = raw_input('')!
words = line.split()!
!
print 'Words:', words!
print 'Counting...’!
!
for word in words:!
 counts[word] = counts.get(word,0) + 1!
print 'Counts', counts!

python wordcount.py 	

Enter a line of text:the clown ran after
the car and the car ran into the tent and
the tent fell down on the clown and the
car	

	

Words: ['the', 'clown', 'ran', 'after', 'the',
'car', 'and', 'the', 'car', 'ran', 'into', 'the',
'tent', 'and', 'the', 'tent', 'fell', 'down', 'on',
'the', 'clown', 'and', 'the', 'car']Counting...	

	

Counts {'and': 3, 'on': 1, 'ran': 2, 'car': 3,
'into': 1, 'after': 1, 'clown': 2, 'down': 1, 'fell':
1, 'the': 7, 'tent': 2}	

Definite Loops and Dictionaries	

•  Even though dictionaries are not stored in order, we can write a for
loop that goes through all the entries in a dictionary - actually it goes
through all of the keys in the dictionary and looks up the values	

>>> counts = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}
>>> for key in counts:
... print key, counts[key]
...
jan 100chuck 1fred 42
>>>

Retrieving lists of Keys and Values	

•  You can get a list of keys,
values or items (both) from a
dictionary	

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}	

>>> print list(jjj)	

['jan', 'chuck', 'fred']	

>>> print jjj.keys()	

['jan', 'chuck', 'fred']	

>>> print jjj.values()	

[100, 1, 42]	

>>> print jjj.items()[('jan', 100), ('chuck', 1), ('fred', 42)]>>> 	

What is a 'tuple'? - coming soon...	

Bonus: Two Iteration Variables!	

•  We loop through the
key-value pairs in a
dictionary using *two*
iteration variables	

•  Each iteration, the first
variable is the key and
the the second variable is
the corresponding value
for the key	

>>> jjj = { 'chuck' : 1 , 'fred' : 42, 'jan': 100}	

>>> for aaa,bbb in jjj.items() :	

... print aaa, bbb	

... 	

jan 100	

chuck 1	

fred 42	

>>> 	

	
 [chuck]	
1	

[fred]	
42	

aaa	
 bbb	

[jan]	
100	

Summary	

• What is a collection?	

• Lists versus Dictionaries	

• Dictionary constants	

• The most common word	

• Using the get() method	

• Hashing, and lack of order	

• Writing dictionary loops	

• Sneak peek: tuples	

• Sorting dictionaries	

