
Regular Expressions	

Chapter 11	

Python for Informatics: Exploring Information	

www.pythonlearn.com	

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2011- Charles Severance

Regular Expressions	

http://en.wikipedia.org/wiki/Regular_expression	

In computing, a regular expression, also referred to as
"regex" or "regexp", provides a concise and flexible

means for matching strings of text, such as particular
characters, words, or patterns of characters. A regular

expression is written in a formal language
that can be interpreted by a regular expression

processor.	

Regular Expressions	

http://en.wikipedia.org/wiki/Regular_expression	

Really clever "wild card" expressions for matching and
parsing strings.	

Really smart "Find" or "Search"	

Understanding Regular
Expressions	

•  Very powerful and quite cryptic	

•  Fun once you understand them	

•  Regular expressions are a language unto themselves	

•  A language of "marker characters" - programming with
characters	

•  It is kind of an "old school" language - compact	

http://xkcd.com/208/	

Regular Expression Quick Guide	

^ Matches the beginning of a line	
$ Matches the end of the line	
. Matches any character	
\s Matches whitespace	
\S Matches any non-whitespace character	
* Repeats a character zero or more times	
*? Repeats a character zero or more times (non-greedy)	
+ Repeats a chracter one or more times	
+? Repeats a character one or more times (non-greedy)	
[aeiou] Matches a single character in the listed set	
[^XYZ] Matches a single character not in the listed set	
[a-z0-9] The set of characters can include a range	
(Indicates where string extraction is to start	
) Indicates where string extraction is to end	

The Regular Expression Module	

•  Before you can use regular expressions in your program, you must
import the library using "import re"	

•  You can use re.search() to see if a string matches a regular expression
similar to using the find() method for strings	

•  You can use re.findall() extract portions of a string that match your
regular expression similar to a combination of find() and slicing:
var[5:10] 	

Using re.search() like find()	

import re	

	

hand = open('mbox-short.txt')	

for line in hand:	

 line = line.rstrip()	

 if re.search('From:', line) :	

 print line	

hand = open('mbox-short.txt')	

for line in hand:	

 line = line.rstrip()	

 if line.find('From:') >= 0:	

 print line	

Using re.search() like startswith()	

import re	

	

hand = open('mbox-short.txt')	

for line in hand:	

 line = line.rstrip()	

 if re.search('^From:', line) :	

 print line	

hand = open('mbox-short.txt')	

for line in hand:	

 line = line.rstrip()	

 if line.startswith('From:') :	

 print line	

We fine-tune what is matched by adding special characters to the string	

Wild-Card Characters	

•  The dot character matches any character	

•  If you add the asterisk character, the character is "any number of
times"	

X-Sieve: CMU Sieve 2.3	

X-DSPAM-Result: Innocent	

X-DSPAM-Confidence: 0.8475	

X-Content-Type-Message-Body: text/plain	

^X.*:	

Wild-Card Characters	

•  The dot character matches any character	

•  If you add the asterisk character, the character is "any number of
times"	

X-Sieve: CMU Sieve 2.3	

X-DSPAM-Result: Innocent	

X-DSPAM-Confidence: 0.8475	

X-Content-Type-Message-Body: text/plain	

^X.*:	

Match the start of the line	

Match any character	

Many times	

Fine-Tuning Your Match	

•  Depending on how "clean" your data is and the purpose of your
application, you may want to narrow your match down a bit	

X-Sieve: CMU Sieve 2.3	

X-DSPAM-Result: Innocent	

X-Plane is behind schedule: two weeks	
 ^X.*:	

Match the start of the line	

Match any character	

Many times	

Fine-Tuning Your Match	

•  Depending on how "clean" your data is and the purpose of your
application, you may want to narrow your match down a bit	

X-Sieve: CMU Sieve 2.3	

X-DSPAM-Result: Innocent	

X-Plane is behind schedule: two weeks	
 ^X-\S+:	

Match the start of the line	

Match any non-whitespace character	

One or more
times	

Matching and Extracting Data	

•  The re.search() returns a True/False depending on whether the string

matches the regular expression	

•  If we actually want the matching strings to be extracted, we use
re.findall()	

>>> import re	

>>> x = 'My 2 favorite numbers are 19 and 42'	

>>> y = re.findall('[0-9]+',x)	

>>> print y	

['2', '19', '42']	

[0-9]+	

One or more digits	

Matching and Extracting Data	

•  When we use re.findall() it returns a list of zero or more sub-strings
that match the regular expression	

>>> import re	

>>> x = 'My 2 favorite numbers are 19 and 42'>>> y = re.findall('[0-9]+',x)>>> print y['2', '19', '42']	

>>> y = re.findall('[AEIOU]+',x)	

>>> print y	

[]	

Warning: Greedy Matching	

•  The repeat characters (* and +) push outward in both directions
(greedy) to match the largest possible string	

>>> import re	

>>> x = 'From: Using the : character'	

>>> y = re.findall('^F.+:', x)	

>>> print y	

['From: Using the :']	

^F.+:	

One or more
characters	

First character in the
match is an F	

Last character in the
match is a :	
Why not 'From:'?	

Non-Greedy Matching	

•  Not all regular expression repeat codes are greedy! If you add a ?
character - the + and * chill out a bit...	

>>> import re	

>>> x = 'From: Using the : character'	

>>> y = re.findall('^F.+?:', x)	

>>> print y	

['From:']	

^F.+?:	

One or more
characters but
not greedily	

First character in the
match is an F	

Last character in the
match is a :	

Fine Tuning String Extraction	

•  You can refine the match for re.findall() and separately determine

which portion of the match that is to be extracted using parenthesis	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

>>> y = re.findall('\S+@\S+',x)	

>>> print y	

['stephen.marquard@uct.ac.za']>>> y = re.findall('^From:.*? (\S+@\S+)',x)>>> print y['stephen.marquard@uct.ac.za']	

\S+@\S+	

At least one non-
whitespace
character	

Fine Tuning String Extraction	

•  Parenthesis are not part of the match - but they tell where to start

and stop what string to extract	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

>>> y = re.findall('\S+@\S+',x)	

>>> print y	

['stephen.marquard@uct.ac.za']	

>>> y = re.findall('^From (\S+@\S+)',x)	

>>> print y	

['stephen.marquard@uct.ac.za']	

^From (\S+@\S+)	

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'	

>>> atpos = data.find('@')	

>>> print atpos	

21	

>>> sppos = data.find(' ',atpos)	

>>> print sppos	

31	

>>> host = data[atpos+1 : sppos]	

>>> print host	

uct.ac.za	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

21	
 31	

Extracting a host
name - using find
and string slicing.	

The Double Split Version	

•  Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

The Double Split Version	

•  Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

words = line.split()	

email = words[1]	

pieces = email.split('@')	

print pieces[1]	

stephen.marquard@uct.ac.za	

['stephen.marquard', 'uct.ac.za']	

'uct.ac.za'	

The Regex Version	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('@([^]*)',lin)
print y['uct.ac.za']

'@([^]*)'

Look through the string until you find an at-sign	

The Regex Version	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('@([^]*)',lin)
print y['uct.ac.za']

'@([^]*)'

Match non-blank character	
 Match many of them	

The Regex Version	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('@([^]*)',lin)
print y['uct.ac.za']

'@([^]*)'

Extract the non-blank characters	

Even Cooler Regex Version	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y['uct.ac.za']

'^From .*@([^]*)'

Starting at the beginning of the line, look for the string 'From ' 	

Even Cooler Regex Version	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y['uct.ac.za']

'^From .*@([^]*)'

Skip a bunch of characters, looking for an at-sign	

Even Cooler Regex Version	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y['uct.ac.za']

'^From .*@([^]*)'

Start 'extracting'	

Even Cooler Regex Version	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y['uct.ac.za']

'^From .*@([^]*)'

Match non-blank character	
 Match many of them	

Even Cooler Regex Version	

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008	

import re
lin = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'
y = re.findall('^From .*@([^]*)',lin)
print y['uct.ac.za']

'^From .*@([^]*)'

Stop 'extracting'	

Spam
Confidence	

import re!
hand = open('mbox-short.txt')!
numlist = list()!
for line in hand:!
 line = line.rstrip()!
 stuff = re.findall('^X-DSPAM-Confidence: ([0-9.]+)', line)!
 if len(stuff) != 1 : continue!
 num = float(stuff[0])!
 numlist.append(num)!
print 'Maximum:', max(numlist)!

python ds.py 	

Maximum: 0.9907	

Regular Expression Quick Guide	

^ Matches the beginning of a line	
$ Matches the end of the line	
. Matches any character	
\s Matches whitespace	
\S Matches any non-whitespace character	
* Repeats a character zero or more times	
*? Repeats a character zero or more times (non-greedy)	
+ Repeats a chracter one or more times	
+? Repeats a character one or more times (non-greedy)	
[aeiou] Matches a single character in the listed set	
[^XYZ] Matches a single character not in the listed set	
[a-z0-9] The set of characters can include a range	
(Indicates where string extraction is to start	
) Indicates where string extraction is to end	

Escape Character	

•  If you want a special regular expression character to just
behave normally (most of the time) you prefix it with '\'	

>>> import re	

>>> x = 'We just received $10.00 for cookies.'	

>>> y = re.findall('\$[0-9.]+',x)	

>>> print y	

['$10.00']	
 \$[0-9.]+	

A digit or period	
A real dollar sign	

At least one
or more	

Summary	

•  Regular expressions are a cryptic but powerful language for
matching strings and extracting elements from those strings	

•  Regular expressions have special characters that indicate
intent	

