Regular Expressions m
Chapter || 4

Python for Informatics: Exploring Information
www.pythonlearn.com

OPEN.MIChigan

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2011- Charles Severance

UNIVERSITY OF MICHIGAN ‘ @ @ \

UMSI

Regular Expressions

In ,a regular expression, also referred to as
"regex" or "regexp’, provides a concise and flexible
means for matching strings o such as particular
characters, words, or patterns of characters.A regular
expression is written in a formal language
erpreted by a regular expression

Processor.

http://en.wikipedia.org/wiki/Regular expression

Regular Expressions

Really clever "wild card" expressions for matching and
parsing strings.

http://en.wikipedia.org/wiki/Regular expression

Reqular expression - Wikipedia, the free encyclopedia
4 4+ W http://en.wikipedia.org/wiki/Regular_expression
More than 100 matches | < Q reqular Done

& Log in/create account
@

: T
:,* W)
& gz

A i Article Discussion Read Edit View history Q

1
P

-~

it

\
-

WikipEpIA ~ Regular expression

The Free Encyclopedia From Wikipedia, the free encyclopedia

o

In computing, a regular expression, also referred to as regex or regexp, provides a
concise and flexible means for matching strings of text, such as particular characters,
words, or patterns of characters. A regular expression is written in a formal language that
can be interpreted by a regular expression processor, a program that either serves as a
parser generator or examines text and identifies parts that match the provided
specification.

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
The following examples illustrate a few specifications that could be expressed in a regular
expression:

» Interaction

Help
About Wikipedia e The sequence of characters "car' appearing consecutively in any context, such as in

Community portal "car", "cartoon", or "bicarbonate"
Recent changes » The sequence of characters "car" occurring in that order with other characters between
Contact Wikipedia them, such as in "lcelander" or "chandler"

Really smart "Find" or "Search”

Understanding Regular
Expressions

Very powerful and quite cryptic
Fun once you understand them
Regular expressions are a language unto themselves

A language of "marker characters” - programming with
characters

It is kind of an "old school"” language - compact

BUT TD FIND THEM WE'D HAVE T0 SEARCH

OH NO! THE KILLER
WHENEVER T LEARN A | | MUST HAVE ROLLOWED)| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEW SKILL I ConcoCT | [HER ON VACATION | SqVETle\G FORMATTED LIKE AN ADDRESS!

ELABORATE FANTASY
SCENARI0S WHERE (T
LETS ME SAVE THE DAY.

Regular Expression Quick Guide

Matches
Matches
Matches
Matches
Matches

Re
Re
Re
Re

neats
neats
neats

neats

Matches
Matches
The set

the
the

beginning of a line
end of the line

any character
whitespace
any non-whitespace character

C
C
C
C

QO QO Q9 Q9

naracter zero or more times
naracter zero or more times (non-greedy)
nracter one or more times

naracter one or more times (nhon-greedy)

single character in the listed set
single character not in the listed set

of characters can include a range
Indicates where string extraction 1s to start
Indicates where string extraction 1s to end

The Regular Expression Module

® Before you can use regular expressions in your program, you must
import the library using "import re"

® You can use re.search() to see if a string matches a regular expression
similar to using the find() method for strings

® You can use re.findall() extract portions of a string that match your
regular expression similar to a combination of find() and slicing:

var[5:10]

Using re.search() like

Import re
hand = open('mbox-short.txt')
for line in hand: hand = open('mbox-short.txt')
line = line.rstrip() for line in hand:
if |) >=0: line = line.rstrip()
print line if re.search('From:}, line) :

print line

Using re.search() like

Import re

hand = open('mbox-short.txt') | |
for line in hand: hand = open('mbox-short.txt’)

line = line.rstrip() foroline_in.hand: .
£ . y - line = line.rstrip()
if re.search('"*From:}, line) :

print line N
print line

We fine-tune what is matched by adding special characters to the string

Wild-Card Characters

® The dot character matches any character

® If you add the asterisk character, the character is "any number of
times"”

X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent

X-DSPAM-Confidence: 0.8475 AX.*:
X-Content-Type-Message-Body: text/plain

Wild-Card Characters

® The dot character matches any character

® If you add the asterisk character, the character is "any number of

times"
Y Sieve: CMU Sieve 2 3 Match the start of the Il\n‘e }ny times
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475 D &
X-Content-Type-Message-Body: text/plain ‘

Match any character

Fine-Tuning Your Match

® Depending on how "clean" your data is and the purpose of your
application, you may want to narrow your match down a bit

Match the start of the line Many times
X-Sieve: CMU Sieve 2.3 \ /
X-DSPAM-Result: Innocent AX x.
X-Plane is behind schedule: two weeks © e

\

Match any character

Fine-Tuning Your Match

® Depending on how "clean" your data is and the purpose of your
application, you may want to narrow your match down a bit

One or more

Match the start of the line times
X-Sieve: CMU Sieve 2.3 \ /
X-DSPAM-Result: Innocent /\X \S+

X-Plane is behind schedule: two weeks

/

Match any non-whitespace character

Matching and Extracting Data

® The re.search() returns a True/False depending on whether the string
matches the regular expression

® If we actually want the matching strings to be extracted, we use

re.findall()
>>> import re
[O_9]+ >>> x = 'My 2 favorite numbers are 19 and 42’
‘ >>>y = re.findall('[0-9]+,x)

>>> print 'y
One or more digits ['2','19','42']

Matching and Extracting Data

® When we use re.findall() it returns a list of zero or more sub-strings
that match the regular expression

>>> import re

>>> x = 'My 2 favorite numbers are 19 and 42'>>>y = re findall('[0
>>>y = re.findall(JAEIOU]+',x)

>>> printy

]

Warning: Matching

® The repeat characters (* and +) push in both directions

(greedy) to match the largest possible string
One or more

>>> import re characters
>>> x = character’ /
>>>y = re.findall('F+, x) AF +-

>>> printy

['From: Using the :] / \

First character in the Last character in the
Why not 'From:" match is an F match is a :

Non-Greedy Matching

® Not all regular expression repeat codes are greedy! If you add a?
* . .
character - the + and * chill out a bit... One or more

characters but

>>> import re not greedily
>>> x = Using the : character’

>>>y = re.findall(' R+, x) /\F +7-

>>> print y TN

['From:'] / \

First character in the Last character in the
match is an F match is a :

Fine Tuning String Extraction

® You can refine the match for re.findall() and separately determine
which portion of the match that is to be extracted using parenthesis

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> y = re.findall(\S+@\S+'x) \S+@\S+

>>> print y \ f

['stephen.marquard@uct.ac.za'] At least one non

whitespace
character

Fine Tuning String Extraction

® Parenthesis are not part of the match - but they tell where to start
and stop what string to extract

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> y = re findall(\S+@\S+',x)

>>> print y AFrom (\S+@)\S+)
['stephen.marquard@uct.ac.za']

>>>y = re.findall('AFrom (\S+@\S+)',x) \ f
>>> printy

['stephen.marquard@uct.ac.za']

21 31

| |
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> data = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’
>>> atpos = data.find('@)
>>> print atpos

21

>>> sppos = data.find(' ',atpos)

>>> print sppos Extracting a host
3 name - using find

>>> host = dataatpos+| : sppos]
>>> print host
uct.ac.za

and string slicing.

The Double Split Version

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

The Double Split Version

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split() stephen.marquard@uct.ac. za
email = words[1]
pieces = email.split('@') ['stephen.marquard', 'uct.ac.za']

print pieces[|]

'uct.ac.za'

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquardW@uct.ac.za Sat Jan 5 09:14:16 2008

y = re.findall ('@([”]1*)"',1lin)
print y['uct.ac.za']
G R R

/

Look through the string until you find an at-sign

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquardW@uct.ac.za Sat Jan 5 09:14:16 2008

y = re.findall('@(["”]*)',1lin)

print y['uct.ac.za'] @ ([A/J *) 7
VARG

Match non-blank character =~ Match many of them

The Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquardW@uct.ac.za Sat Jan 5 09:14:16 2008

y = re.findall ('@([”]1*)"',1lin)
print y['uct.ac.za']
A R

N\ /

Extract the non-blank characters

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquardW@uct.ac.za Sat Jan 5 09:14:16 2008

y = re.findall('"*From .*@([”]*)',1lin)

print y['uct.ac.za']
'"“From .*@(["]*)"

N

Starting at the beginning of the line, look for the string 'From '

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquardW@uct.ac.za Sat Jan 5 09:14:16 2008

y = re.findall('"From .*Q@(["]*)',1l1in)
print y['uct.ac.za']
"*From]*@ 1 %) T

Skip a bunch of characters, looking for an at-sign

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquardW@uct.ac.za Sat Jan 5 09:14:16 2008

y = re.findall('"*From .*@([”]*)',1lin)

print y['uct.ac.za']
"*From .*@d(["]*)'

Start 'extracting

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquardW@uct.ac.za Sat Jan 5 09:14:16 2008

y = re.findall('"*From .*@([”]*)',1lin)

print y['uct.ac.za']
"*From .*@d ([~ |7*)"

Match non-blank character =~ Match many of them

Even Cooler Regex Version

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

import re
lin = 'From stephen.marquardW@uct.ac.za Sat Jan 5 09:14:16 2008

y = re.findall('"*From .*@([”]*)',1lin)

print y['uct.ac.za']
'"“From .*@ ([~]*)'

[

Stop 'extracting’

Spam
Confidence

import re
hand = open('mbox-short.txt')

numlist = list()

for line 1n hand:
line = line.rstrip()
stuff = re.findall('"X-DSPAM-Confidence: ([0-9.]+)', line)
1f len(stuff) != 1 : continue

num = float(stuff[0])
numlist.append(num)
print 'Maximum:', max(numlist)

python ds.py
Maximum: 0.9907

Regular Expression Quick Guide

Matches
Matches
Matches
Matches
Matches

Re
Re
Re
Re

neats
neats
neats

neats

Matches
Matches
The set

the
the

beginning of a line
end of the line

any character
whitespace
any non-whitespace character

C
C
C
C

QO QO Q9 Q9

naracter zero or more times
naracter zero or more times (non-greedy)
nracter one or more times

naracter one or more times (nhon-greedy)

single character in the listed set
single character not in the listed set

of characters can include a range
Indicates where string extraction 1s to start
Indicates where string extraction 1s to end

Escape Character

® If you want a special regular expression character to just
behave normally (most of the time) you prefix it with '\’
>>> import re At least one
>>> x = 'We just received for cookies.’ or more
>>>y = re.findall("\$[0-9.]+',x) /
>>> print 'y
'$10.007 \$[0-9.]+

7 I

A real dollar sign A digit or period

Summary

Regular expressions are a cryptic but powerful language for
matching strings and extracting elements from those strings

Regular expressions have special characters that indicate
intent

