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Note to Students

Welcome to Statistics 250 at the University of Michigan!

This is the first summer term in which R and R Commander will be used as the software package for
Stats 250. Some of the reasons why we made this switch are:

* The ability to use R is a valuable skill recognized by employers.

e Other Statistics courses use R and this will make for an easier transition into these next courses.

* Risafree, open source software that can be downloaded onto student machines, so students
can have access to it any time on their personal devices and won't have to use Virtual Sites.

This lab workbook is designed for you to use in lab and as extra preparation for exams. In the workbook,
you will find the following materials:

Supplemental Material — great summaries for reference throughout the term:

1. R Commands Reference
Notation Sheet

Name That Scenario
Interpretation Examples
Summary of T-tests
Regression Outputin R

oukwN

Weekly Labs (numbered 1 to 12) — each lab contains the follow parts:

e}

Lab Background — objective and brief overview material, which is good to take a couple minutes to
read before you come to lab each week.

Warm-Up Activity — quick questions for you to do before the In-Lab Project, usually a quick review of
concepts you have seen in lecture.

ILP (In-Lab Project) — one or more activities you will work on in lab, in groups.

Cool-Down Activity —questions for you to do after the ILP for further reflection and application of
the concepts covered in the ILP.

The Labs are designed to be interactive and to provide you with a complete example for each concept.
Completing the corresponding PreLab assignment (a link to video instructions for PrelLabs will be on
Canvas and the Stat 250 YouTube channel) and reading the upcoming lab background overview before
lab each week is a good way to prepare for the various lab activities.

Good luck in Statistics 250!
-- The Stat 250 Instructors and GSls

Special Thanks to the Statistics Graduate Students
Kit Clement
Sean Pikosz
Daniel Walter
For their substantial contributions to transition and modernize
the Lab Materials to the Awesome R computing package




Supplement 1: R Commands Summary

By Lab — For Quick Reference

Lab 1 - Bar Charts, Histograms, Numerical Summaries, Boxplots
Open a data file after loading R Commander: Data > Load data set

To produce a Histogram: Graphs > Histogram

To generate Descriptive Statistics: Statistics > Summaries > Numerical summaries
To produce a Bar Chart: Graphs > Bar Graph

To produce a Boxplot: Graphs > Boxplot

Lab 5 - Time Plots, QQ Plots

To produce a Sequence or Time Plot for the variable named “VARIABLE” in the data set “DATA”

you must type these two lines of code into the R Script box:
plot (DATA$VARIABLE, type ="1", main="Normal QQ Plot of variable
by name")

Note that you can find the dataset name in blue text at the top. To find variable names, click View data
set and look at the top row. To create the plot, highlight the above code and click the Submit button.

To produce a QQ Plot: you can use the built in option under Graphs > Quantile-comparison plot
Or you can make a QQ plot for the variable “VARIABLE” in the data set “DATA” by typing these two lines
of code into the R Script box:

qgnorm(DATAS$VARIABLE, main="Normal QQ Plot of variable by
name")
qgline (DATAS$VARIABLE)

Then highlight this code and click the Submit button.

Lab 6 — One-Sample t Procedures for a Population Mean

To perform a One-Sample T Test for a population mean and obtain a confidence interval: Statistics >
Means > Single-sample t-test

Lab 7 — Paired t Procedures
To perform a Paired T Test and obtain a confidence interval: Statistics > Means > Paired t-test

To compute Differences: Data > Manage variables in active data set > Compute new variable.

Lab 8 — Independent Samples t Procedures

To perform Levene’s Test: Statistics > Variances > Levene’s Test



To perform a Two-Samples T Test and obtain a confidence interval: Statistics > Means > Independent
samples t-test
Lab 9 — One-way Analysis of Variance (ANOVA)

To perform an ANOVA: Statistics > Means > One-Way ANOVA

Lab 10 and 11 - Linear Regression

To produce the correlation (R) for all pairs of variables: Statistics > Summaries > Correlation matrix
To produce a Scatterplot: Graphs > Scatterplot

To perform a Linear Regression: Statistics > Fit models > Linear regression

To produce a Residual plot and QQ Plot of residuals, first make sure you have the correct model
selected, then follow: Models > Graphs > Basic diagnostic plots

Lab 12 - Chi-Square Tests

To perform a Goodness of Fit Test: Statistics > Summaries > Frequency distributions. Make sure to
check the box to run a goodness of fit test, and then you can specify the null probabilities.

To perform a Test of Independence: Statistics > Contingency tables > Two-way table

To perform a Test of Homogeneity: Statistics > Contingency tables > Two-way table



Supplement 2: Notation Sheet

The table below defines important notations, including that used by R, which you will come across in the
course. This is not an exhaustive list, but it is a fairly comprehensive overview of the “strange letters”

used in the course.

Note: Blank cells mean there is no corresponding notation.

Notation used in R

Name Population Notation Sample Notation
Commander
Summary Measures
Mean u (read as “mu”) X (x-bar) Mean
Proportion p P (p-hat)
Standard deviation o (sigma) s Varies, often “sd”
Variance o’ s’ Variance
Sample size n n (sometimes N)
Confidence Intervals
L z* (z-star)
Multipliers
t* (t-star)
Margin of error m, m.e.

Hypothesis Testing

z
Test statistics t t
Note: t, F,and ,? statistics F F
have degrees of freedom
(abbreviated df) associated
with them. Look for these X2 (chi-square) Chi-square
on your Formula Card.
Significance level  (alpha)

Pr(*)

p-value p-value (the star will depend on

what test is being used)




Name

Population Notation

Sample Notation

Notation used in R

Analysis of Variance (abbreviated ANOVA)

Sum of squares for

Row labeled with the

FOUDS SSG grouping variable,
group column labeled Sum Sq
Sum of squares for Row labeled Residuals,

SSE
error column labeled Sum Sq
Row labeled with the
Mean square for MSG grouping variable,
groups column labeled Mean
Sq
Row labeled Residuals,
Mean square error MSE column labeled Mean
5q
Regression
Response (dependent) (given by name of y-
variable y y variable)
Predicted (estimated) E(y) (expected value of N
) Y (y-hat)

esponse y)

Explanatory X X (given by name of x-
(independent) variable variable)
B (look in the row

-int t beta-not b
y-intercep B, ) © labeled (Intercept))

B (look in the row
Slope B, (beta-one) by labeled with the name

of the x-variable)
Coefficient of . Values in Correlation

correlation

Matrix

Coefficient of
determination

Multiple-R Squared

Error terms vs
Residuals

€ (error terms)

e (residuals)

Unstandardized
residuals




Supplement 3: Name That Scenario

The first thing to do in any research inference problem is determine what type of inference problem it is.
This will help in deciding what procedure/formulas are appropriate to use. The following questions can
help you determine the data scenario you are working with.

Please note, when answering, “How many variables are there?” do not count the variable which defines

the populations (if there is more than one population).

0 How many populations are there?

One Two More than two

0 How many variables are there?

One Two

0 What type of variable(s)?

Categorical Quantitative

QThen use the following table to determine which type of inference would be appropriate for this
scenario.

Note the corresponding parameter is in parentheses, where appropriate.



Number of Populations

\I\;::a:(:::n d Type One Two More Than Two
1-sample inference a 2indep. samples Q Chi-square:
for population inference for the Homogeneity
proportion (p) difference between 2 (Lab 12)

(Labs 3-4) population
. proportions
Categorical Chi-square: Goodness (p1—p2)
of Fit (Lab 12)
Q Chi-square:
Homogeneity
(Lab 12)

One 1-sample inference a 2indep. samples O ANOVA
for population mean inference for the (wi —where there is
(w) difference between one u, for each
(Lab 6) 2 population means population)

e s (M1- Mz) (Lab 9)
Quantitative Paired samples (Lab 8)
inference for a

population mean
difference (up)
(Lab 7)
) Chi-square:
Categorical
(relationship) Independence
(Lab 12)
Two -
. Regression
Quantitative
(B1)

(relationship)

(Labs 10-11)




Supplement 4: Interpretation Examples

In 1980, Bausch and Lomb Corporation developed a new type of extended-life contact lens made of
silicone, which it claimed had a useful life of more than 4 years. During the research and development
period, a random sample of 6 contact wearers was asked to wear the new contact lenses and record
how long they lasted. The average useful life of the six pairs of lenses was 4.6 years, with a standard
deviation of 0.49 years.

a. Interpretation of the Standard Deviation s:
An estimate of the average distance of the observed useful lives of these lenses from their mean
useful life of 4.6 years is about 0.49 years.

Note: if given the true population standard deviation (o) this becomes:

The average distance of the observed useful lives of these lenses from their mean useful life of 4.6
years is about 0.49 years.

Interpretation:

The standard error is an estimate of the average distance of all the possible sample means from the
true population mean (roughly). In context: An estimate for the average distance of xbar (sample
averages of contact life from samples of size 6) from the population mean useful life, y, is roughly
0.20 years.

c. Construct a 90% confidence interval for the population mean life of all such silicone-based lenses:
4.6 +(2.015)(0.200) = (4.197,5.003)

Interpretation of the Interval:

This interval provides a range of reasonable values for the population mean useful life, u. We would
estimate the population mean useful life, u, to be between 4.197 years and 5.003 years, with 90%
confidence.

Interpretation of the 90% Confidence Level:
If we repeatedly took new samples of the same size (computing new 90% confidence intervals each
time), we would expect 90% of these resulting intervals to contain the population mean life, p.

d. State the hypotheses to test the claim made by Bausch and Lomb about their new contact lens;
that is, test if the population mean useful life is more than 4 years.

H,:u=4, H,:u>4,withan observed t-test statistic of
F-u, 46-4
Y 0.200

=3.00.



The p-value for this test is the probability of getting a t-test statistic at least as extreme as the
observed test statistic, assuming the null hypothesis is true. So we have the p-value =
Prob(T >=3 | Ho=True) found under the t(5) distribution. This p-value turns out to be equal to 0.015.

Interpretation of the value of the test statistic t = 3.00 in terms of a distance: The observed sample
mean was 3 average distances (i.e. 3 standard errors) above the hypothesized mean of 4. In other
words, since the standard error for xbar was .2 it took 3 of them to get from 4 (value under null) to
4.6 (test statistic value)

Interpretation of the resulting p-value of 0.015: If the null hypothesis was true (the population
mean useful life is just 4 years) and this procedure (study) was repeated many times, we would
expect to see a t-test statistic value of 3.00 or larger in only 1.5% of the repetitions. Thus are data
are somewhat unusual under the null hypothesis theory, providing evidence for the alternative
theory that the population mean useful life is greater than 4 years.

At a 10% significance level, what is the decision?
Reject H, since the p-value is less than 0.10.

What is the conclusion? There is sufficient evidence to conclude that the population mean useful
life of the new lenses is greater than 4 years.

NOTE: These interpretations can be extended to the any test and confidence interval,
adjusting for the different parameters, different directions of extreme, different test statistics, etc.




Supplement 5: Summary of the Main t-Tests

The three inference scenarios presented in Labs 6, 7, 8 are: one-sample t procedures, paired t
procedures, and two independent samples t procedures. Data exploration is always essential to
determining whether the model you want to use is appropriate. That is, we need to check the
assumptions. (Recall that checking assumptions is the second step in performing a hypothesis test.)

The t procedures have the following general assumptions:

1. Each sample is a random sample — (the observations can be viewed as realizations of
independent and identically distributed random variables). In the paired t procedures, the
differences are assumed a random sample.

2. Each sample is drawn from a normal population, that is, the response variable has a normal
distribution for each population. In the paired t procedures, the population of differences is
assumed to have a normal distribution. In the two-sample case, both populations of
responses are assumed to have normal distributions.

You need normality of the underlying population for the response in order to have normality
for the sample mean. In the case where you do not have a normal population, you can still
have normality of the sample mean if you have a large enough sample size (most texts state
that a sample size of at least 25-30 is required). Thus we will accept at least 25 as large
enough to assume CLT holds for non-normal populations.

3. For the two independent samples t procedures, we also assume that the two samples are
independent. We also need to assess whether the two population variances can be
assumed equal in order to decide between the pooled and the unpooled t tests.

Graphical tools can be used to check these assumptions (see Labs 1 and 5 for more details about these
various graphs).

Time Plots (or Sequence Plots): If your quantitative data have been gathered over time, then a time plot
can be used to determine if the underlying process that generated that time dependent data appears to
be stable. For example, in paired design problems we assume our set of differences calculated from the
paired observations (d, dy, ..., d,,) are a random sample. To check this, the values should be plotted by
time to see if it is plausible that all values randomly came from one parent population. If that was the
case the graph would be stable, with no patterns and constant mean/variance.

Remember:

#1 Time or Sequence plots are useful for checking stability only when the data are ordered in some
sense. If there is no inherent order to the data, a sequence plot should not be made.

#2 If a Time plot makes sense to be examined and does show evidence of instability, it would not
make sense to treat those observations as being a random sample; thus it would not be
appropriate to make a histogram, QQ plot, or boxplot of the observations. No statistical
procedure taught in this course is appropriate for non-stable data.

Histograms: Histograms are especially useful for displaying the distribution of a quantitative response
variable. You could make a histogram of the observations in a one-sample problem, of the differences in
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a matched pairs design, and of each of the two samples separately in the independent samples design.
Examine the histogram for evidence of strong departures from normality, such as bimodality or extreme
outliers. Since you are just plotting data (just a sample and not the entire population of responses), your
histogram may not look perfectly bell-shaped or normal.

QQ plots: QQ plots (or quantile plots or normal probability plots) are generally better than histograms
for assessing if a normal model is appropriate. If the points in a QQ plot fall approximately in a straight
line (with a positive slope) then the normal model assumption is reasonable.

Boxplots: Boxplots are most useful for assessing the validity of the assumption of equality of population
variances in the two independent samples design. We would see if the IQRs (shown graphically by the
length of the boxes) are comparable, and also compare the overall ranges. If they do have comparable
lengths or sizes (they do not need to be lined up), then we have support that the equality of population
variances assumption is reasonable. We would also want to compare the two sample standard
deviations themselves, and Levene’s test of equality of the two population variances may also be
available.

Name that Scenario Practice for the Three T Tests:

Having just reviewed the three main t-test inference scenarios, you should understand the testing procedures and
be able to interpret the results of a test. However, it is important to know when each scenario applies. Read each
of the following inference scenarios and determine which of the three t-test procedures would be most
appropriate: the one-sample t-test, the paired t-test, or the two-independent samples t-test.

1. A researcher is studying the effect of a new teaching technique for middle school students. One class of 30
students is taught using the new technique and their mean score on a standardized test is compared to the
mean score of another class of 27 students who were taught using the old technique.

2. A company claims that the economy size version of their product contains 32 ounces. A consumer group
decides to test the claim by examining a random sample of 100 economy size boxes of the product, since they
have received reports that the boxes contain less than the 32 ounces claimed.

3. At some universities, athletic departments have come under fire for low academic achievement among their
athletes. An athletic director decides to test whether or not athletes do in fact have lower GPAs. A random
sample of 200 student athletes and a random sample of 500 non-athlete students are taken and their GPAs
are recorded.

4. As part of a biology project, some high school students compare heart rates of 40 of their classmates before
and after running a mile. They want to see if the heart rate of students their age is faster after running a mile
than before, on average.

5. A hospital is studying patient costs; they decide to follow 500 surgery patients’ hospital and medical bills for a
year after surgery, and compare them to the estimated costs provided to the patients before surgery. They
want to see if the estimated and actual costs are comparable on average.

6. A chemical process requires that no more than 23 grams of an ingredient be added to a batch before the first
hour of the process is complete. An analyst feels that due to current settings more than 23 grams may
actually be added. If the analyst is correct, the settings need to be altered and recent batches recalled. A
random sample of 25 batches is obtained from the machine that is supposed to add the ingredient. The
measurements are used to test the analyst’s claim.
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Supplement 6: Regression Output in R

There are several different pieces of output for regression. In this example, we will be using the
dentistry.Rdata data set. In these models, the explanatory x variable is DNA, and the response vy
variable is PLAQUE.

In some situations, we may have many potential predictors of our response variable — here there is just
one potential explanatory variable, DNA. To analyze the correlation potential predictors to our response
variable, we can create a Scatterplot matrix. We see the following matrix for our variables here:

DNA PLAQUE
DNA 1.0000000 0.8557985
PLAQUE 0.8557985 1.0000000

This matrix shows us the correlation coefficient, r, for all pairs of variables. The correlation coefficient
measures the strength of the linear association between the two variables. The closer it is to +1 or -1,
the stronger the linear association.

We choose a pair by picking a column and row for each variable, and checking the value for that column
and row pair. We can see that each pair is listed twice in the matrix (DNA-PLAQUE and PLAQUE-DNA),
and that each variable is perfectly correlated with itself (r = 1). The main information here that we
gather here is that the correlation of our model for predicting plague using DNA is 0.856.

Next, we can generate our model, and R will give us a summary of the model, which looks like this:

call:
Tm(formula = PLAQUE ~ DNA, data = dentistry)

Residuals:
Min 1Q Median 3Q Max
-6.7639 -3.5107 -0.9454 4.0531 6.2532

coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.54830 8.19299 -0.067 0.94829
DNA 0.16685 0.03566 4.679 0.00158 **

§ignif.codes: 0 '"***' 0.001 '"**' 0.01 '*' 0.05 '.' 0.1 '

Residual standard error: 4.851 on 8 degrees of freedom
guéggg1e R-squared: 0.7324, Adjusted R-squared:
F-statistic: 21.89 on 1 and 8 DF, p-value: 0.001584

The summary starts with a Call line — this just tells you what model you are looking at. Here, PLAQUE ~
DNA is saying that we are predicting PLAQUE using the explanatory variable DNA. Next, we see that R
gives us some quartiles for our residuals. We might find the median residual especially useful, as having
a median of -0.9454 here tells us that the majority of residuals are negative.

Next, we see the Coefficients table, which gives us a wealth of information. In this section, the least
square estimates for the regression line are given. These estimated regression coefficients are found
under the column labeled Estimate. The estimated slope is next to the independent variable name (in
this example it is DNA), and the estimated intercept is next to (Intercept). So, by is the coefficient for
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the variable (Constant), and b, is the coefficient for the independent variable x in the model. The next
column heading is Std. Error, which provides the corresponding standard error of each of the least
squares estimates. Also produced in this table, are the t-test statistics in the column labeled t value and
Pr(>|t]), which reports the two-sided p-values for these t-test statistics.

In the last few lines of output, we get our standard deviation, R-squared, and F-statistic. The Residual
standard error gives the value of s, the estimate of the population standard deviation 0. The next line
gives two values, Multiple R-squared and Adjusted R-squared. We ignore the Adjusted and just look at
the Multiple R-squared. This value, which is the square of the correlation has a useful interpretation in
regression. It is often called the coefficient of determination, or r’, and measures the proportion of the
variation in the response that can be explained by the linear regression of y on x. Thus, it is a measure
of how well the linear regression model fits the data. The final line is an F-statistic, which also gives us a
way to test Ho: 81 = 0 versus H,: B; = 0, but it only allows for a two-sided test. This F-statistic comes from
an ANOVA table, which we can generate separately using Model > Hypothesis tests > ANOVA table.
Make sure to select the Type | option to get the ANOVA table into a familiar format.

Analysis of variance Table

Response: PLAQUE

Df Sum Sg Mean Sq F value Pr(>F)
DNA 1 515.14 515.14 21.894 0.001584 **
Residuals 8 188.23 23.53

We see that this ANOVA gives us the same F-statistic as before (F = 21.89). It also gives us some
measures of variance within our model, the Regression Sum of Squares (SSModel = 515.14), and
leftover residual variance, or the Residual Sum of Squares (SSRes = 188.23). We can use this to
calculate r?, or the proportion of variability in plaque that can be explained by its linear relationship with
DNA, by taking the model variability and dividing by the total variability — r’=515.14/(515.14+188.23) =
.7324. Another value we can get again is an estimate of our total variability o, or the residual standard
error, by taking the square root of the MSRes = 23.53, much like we did for ANOVA to find the estimate
of the pooled standard deviation.

Finally, the ratio of the Mean Squares provides the F statistic which tests if the slope is significantly
different from zero (i.e. if there is a significant non-zero linear relationship between the two variables —
Ho: B1 = 0 versus H,: B1 = 0.) The Pr(>F) is the corresponding p-value for the F test of these hypotheses.
In simple linear regression, the 2-sided t-test in the Coefficients output for the slope is equivalent to the
ANOVA F-test. Notice that the square of the t-statistic for testing about the slope is equal to the F-
statistic in the ANOVA table, and the corresponding p-values are the same.

Interpretation of estimated slope b;:
According to our regression model, we estimate that increasing DNA by one unit has the effect of
increasing the predicted plaque by .167 units.

Interpretation of r’:
According to our model, 73% of variation in plaque levels can be accounted for by its linear relationship
with DNA.

Decision for test of a significant linear relationship:
Since the p-value = .002 is less than the significance level a = .05, we can reject the null hypothesis that
the population slope, S, equals 0.

13




Conclusion: There is sufficient evidence to conclude that in the linear model for plaque based on DNA
the population slope, f;, does not equal zero. Hence, it appears that DNA is a significant linear predictor
of plaque.

14




Checking the Simple Linear Regression Assumptions

Here is a summary of some graphical procedures that are useful
in detecting departures from the assumptions underlying the
simple linear regression model.

1. LINEARITY: Do a scatter plot of y versus x.
The plot should appear to be roughly linear.

2. NORMALITY: Examine a QQ plot of the residuals to check
on the assumption of normality for the population (true)
error terms. An example QQ plot is shown below.

3. CONSTANT VARIANCE (or STANDARD DEVIATION) of the
population (true) error terms: Make a plot of the residuals
versus the fitted y values (y). This plot is called a residuals
vs fitted plot. The residuals represent what is left over
after the linear model has been fit. The residuals vs fitted
plot should be a random scatter of points in roughly a
horizontal band, with no apparent pattern. An example
residuals vs fitted plot is shown at the right. Sometimes
this plot can also reveal departures from linearity (i.e. that
the regression analysis is not appropriate due to lack of a
linear relationship).
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Lab 1: Describing Data with Graphs and Numbers

Objective: In this module, you will use some graphical and numerical tools to summarize the distribution
for a quantitative variable or response — a histogram, a boxplot, mean, median, standard deviation, and
interquartile range (IQR). You will also be introduced to side-by-side boxplots for comparing two or
more distributions and bar charts for summarizing categorical data. These techniques can be very useful
at the start of data analysis to get a feel for the data.

Overview: Two graphs that can be used to summarize the distribution for a single quantitative variable
or response are a histogram and a boxplot. Each graph provides different information about the
distribution. When used properly, graphs can be a very effective way to summarize data. Data on a
single quantitative variable should first be examined graphically. The overall shape of the distribution
and existence of outliers can generally be used to assess if the data appear to be coming from a
relatively homogenous population. If so, then various numerical summaries may be used to characterize
the center of the distribution (such as mean and median) and the spread of the distribution (such as the
standard deviation and the IQR). For categorical variables, a bar chart can be used to display the
number falling in each category (frequency distribution).

Histograms: A histogram displays the distribution of a quantitative variable by showing the frequency
(count) or percent of the values that are in various classes. The classes are typically intervals of numbers
that cover the full range of the variable. Histograms can be used to assess the symmetry and modality
of a single distribution or for comparing the relative locations and shapes of several distributions.

Boxplots: One plot that can detect extreme observations or outliers is the boxplot. A boxplot is a
graphical representation of the five-number summary, namely, the minimum, first quartile, median, third
guartile, and maximum of the data. The centerline of the box marks the median or the 50" percentile.
The sides of the box show the first (lower) quartile, Q1, and the third (upper) quartile, Q3. Thus a
boxplot shows the overall range (maximum — minimum) and the interquartile range (IQR = Q3 - Q1). A
modified boxplot uses a rule for identifying values that are extraordinary compared to the others
(outliers or outside values). Circles (o) are used to denote outliers and asterisks (*) to denote extreme
outliers if any are present. Any point below Q1 — (1.5 x IQR) or above Q3 + (1.5 x IQR) is considered an
outlier. Extreme outliers are points below Q1 — (2 x IQR) or above Q3 + (2 x IQR). Box plots cannot tell
you the shape of the distribution.

Side-by-side Boxplots: These plots are helpful for comparing two or more distributions with respect to
the five-number summary. For example, suppose you are interested in comparing the distribution of a
variable, such as the salary of the employees of a certain company. If you have information on sex for
the group, you might be interested in comparing the distribution of salary of females with respect to
males. In this case, the side-by-side boxplot will be an important part of the descriptive analysis of the
data set involved.

Bar Charts: One way to display the number or frequency distribution for a categorical variable is with a
bar chart. A bar chart shows the percentage of items that fall into each category or value of a
categorical variable. It displays a bar for each category with the height of each bar equal to the number,
the proportion, or the percentage of items in that category. If the categories have no inherent order, we
could rearrange the bars in the graph in any way we like. In such cases, the shape of the bar graph
would have no bearing on its interpretation.
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Measures of Center: Measures of center are numerical values that tend to report the middle of a set of
data. The two that we will focus on are the mean and the median.

1. Mean: The mean of a set of n observations is simply the sum of the observations divided by the
number of observations, n.

2. Median: The median of a set of observations, ordered from smallest to largest, is a value such
that at least half of the observations are less than or equal to that value and at least half the
observations are greater than or equal to that value.

Measures of Variation or Spread: Measures of variation include the IQR and standard deviation. These
numerical summaries describe the amount of spread that is found among the data, with larger values
indicating more variability.

a. Standard Deviation: Standard deviation is a measure of the spread of the observations from the
mean. It is actually the square root of an average of the squared deviations of the observations
from the mean. We can think of the standard deviation as approximately an average distance of
the observations from the mean.

b. IQR: The IQR measures the spread of the middle 50% of the data. It is defined as the difference
between the 3™ quartile (Q3) and the 1* quartile (Q1). These quartiles are also called the 75"
and 25" percentiles, respectively. IQR = Q3 - Q1.

Warm-Up: Mean and Median

We are interested in analyzing Lebron James’ scoring output by game. We have his scoring output for 5
games which we have arranged from lowest to highest: 6, 24, 28, 34, 36. There are two measures of
center we could report.

Which measure would be better to report? Median Mean
Which is the most likely value for the mean? 8 12 26
What is the median? 24 28 34

ILP: Visualizing and Exploring a Data Set

In this activity, you will learn how to create graphs and obtain descriptive statistics for a data set using R.

Task: The data set employee.Rdata contains information on employees at a company. Explore possible
guestions this data could be used to address. Create appropriate graphs and obtain descriptive statistics
for current salary, and discuss the results.
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1. First, we must start up R Commander within R. To do this from within R, select Packages > Load
package and from the list, scroll down and select Remdr and click OK. This will boot up the R
Commander window.

2. To obtain the data set, go to Canvas, and find the “Data Sets” folder under the “Files” tool. Select
employee.Rdata and save it to a directory of your choice. To open the employee.Rdata data set
from within R Commander, click on the Data menu at the top, and then select Load data set. Open
employee.Rdata from the directory you saved the file in.

3. We now see that our data is loaded, as we can see employee in the active data set box (next to the R
logo). Before we begin analyzing the data, let’s first view what the data set looks like — to do this,
click on View data set. Here, you can see the variables in the data set and their values. The first
variable you should see is ID.

What is the second variable present in the data set?
What type of variable is it?
What is the eighth variable present in the data set?
What type of variable is it?

4. Create a histogram for current salary. Use the graphs menu — Graphs > Histogram and select
SALARY, then click OK.

Note: All homework and prelab assignments will require that students provide an appropriate title and
their name on each R chart or output. For histograms, click on the Options tab and enter your title
there.

Draw a quick sketch of the histogram and describe what the histogram shows about the distribution
of current salaries. A good description will have information about the shape, general center,
variability, and if relevant, a comment about potential outliers.

5. You would like to compare the distribution of salary for minorities versus non-minorities. Generate
histograms again, but this time, click the Plot by groups button and select MINORITY as the grouping
variable. Note: Since the dataset contains far more non-minorities, it may be useful to go to Options
and select Percentages for the axis scaling. You can also change the number of bins (or bars) if you
are interested in seeing a finer detail. Compare and contrast the distribution of salary for the two
groups — can we use the same descriptions for both histograms?

19




6. Obtain a boxplot for current salary. Use: Graphs > Boxplot and select the SALARY variable again.
Make a quick sketch of this boxplot, and describe what the boxplot shows about the distribution of
current salary. What do the various lines on the boxplot represent?

7. As we did with histograms, we can also use side-by-side boxplots to compare the distributions.
Return to the dialog for boxplots, and again click the Plot by groups button and select MINORITY as
the grouping variable.

How does the distribution for current salary compare for minorities versus non-minorities?

8. Numerical summaries may also be obtained for any quantitative variable. Basic descriptive
summaries can be obtained via Statistics > Summaries > Numerical Summaries. The summaries can
then be found in the output box. Fill in the basic summary measures for current salary (some
require hand calculation).

Mean: Median: Standard Deviation:
Q1l: Q3: IQR: Q3-Q1 =
Min: Max: Range: Max-Min =

Cool-down: Which Measure of Center to Report?

Mark is a Stats 250 GSI who would like to report a measure of center for scores on the first exam. The
mean score for his lab section was 77.46 points and the median was 84 points. One of Mark’s students
did not take the exam and received a zero. Since Mark knows this score will not count against the
student, he removes the score of zero from his data.

How will the mean test score change if the grade of 0 is not included?

If there is an outlier test score of 20 points, which measure of center would you recommend that Mark
report?
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Lab 2: Probability and Random Variables

Objective: The objective of this lab is to become familiar with using the models for random variables and
to find the probabilities associated with the models you have learned. The probabilities we compute
from these models (for example, p-values in testing theories) will help us make reasonable decisions.
You will work with three random variables and the methods used to calculate probability for each
variable. You will also become familiar with several concepts that allow for easier calculation of
probabilities.

Application: Researchers at University of Michigan Hospital and Baylor University were interested in
determining if lack of sleep for teenagers led to an increased incidence of heart disease. These
researchers conducted a study in which the sleep patterns for 37 teenagers were recorded in addition to
the presence of heart disease for each teenager. The researchers can use the probability rules to
determine if lack of sleep and incidence of heart disease are independent events.

Overview: In this lab you will be introduced to several random variables and their models. These
variables can be classified as one of two types: a discrete random variable, which has a finite number of
outcomes, and a continuous random variable which has an infinite number of outcomes. You will
practice computing probabilities for each of these variables, using concepts such as a standardized score
and a Normal Approximation. There are several situations that can make computing probabilities
easier, such as independent events and mutually exclusive events that will also be explored in this lab.

Independent Events: Two events A, B are said to be independent if knowing that one will occur (or has
occurred) does not change the probability that the other occurs. In probability notation this can be
expressed as P(A|B) = P(A). Going back to the application, the researchers from the study can check the
independence of the two events by computing the probability of heart disease for teenagers who sleep
less than the recommended amount as well as the probability of heart disease for all teenagers. If the
incidence of heart disease for a teen is independent of the amount of sleep they get, the two
probabilities will be equal.

Mutually Exclusive: Two events A, B are mutually exclusive (or disjoint) if they do not contain any of the
same outcomes. So their intersection is empty.

Random Variables: A random variable assigns a number to each outcome of a random circumstance,
or, equivalently, a random variable assigns a number to each unit in a population. The distribution of a
random variable is a model that shows us what values are possible for that particular random variable
and how often those values are expected to occur (i.e. their probabilities). The model can be expressed
as a function or table or picture, depending on the type of variable it is. We will consider two broad
classes of random variables: discrete random variables and continuous random variables.

Discrete Random Variable: A discrete random variable, X, is a random variable with a finite or countable
number of possible outcomes. The probability distribution function (pdf) for a discrete random variable
X is a table or rule that assigns probabilities to the possible values of the X.

Two conditions that must always apply to the probabilities for a discrete random variable are:
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Condition 1: The sum of all of the individual probabilities must equal 1.
Condition 2: The individual probabilities must be between 0 and 1.

Binomial Random Variable B(n,p): One discrete random variable is the binomial random variable, which
counts the number of times a certain event occurs out of a particular number of observations or trials of
a random experiment. A binomial experiment is defined by the following conditions:

1. There are n “trials” where n is determined in advance and is not a random value.

2. There are two possible outcomes on each trial, called “success” (S) and “failure” (F).

3. The outcomes are independent from one trial to the next.

4. The probability of a “success” remains the same from one trial to the next, and this

probability is denoted by p. The probability of a “failure” is 1 — p for every trial.

Continuous Random Variable: A continuous random variable, X , takes on all possible values in an
interval (or a collection of intervals). The way that we determine probabilities for continuous random
variables differs in one important respect from how we determine probabilities for discrete random
variables. For a discrete random variable, we can find the probability that the variable X exactly equals a
specified value. We can’t do this for a continuous random variable. Instead, we are only able to find the
probability that X could take on values in an interval. We do this by determining the corresponding area
under a curve called the probability density function of the random variable.

So the probability distribution of a continuous random variable is described by a density curve. The
probability of an event is the area under the curve for the values of X that make up the event. The
probability model for a continuous random variable assigns probabilities to intervals.

Definition: A curve (or function) is called a Probability Density Curve if:
1. It lies on or above the horizontal axis.
2. Total area under the curve is equal to 1.

Normal Random Variable N(u,c): The family of normal distributions is very important because many
variables have this shape and form approximately and many statistics that we use in our inference
methods are based on sums or averages which generally have (approximately) a normal distribution.

A normal curve is symmetric, bell-shaped, centered at the mean and its spread is determined by the
standard deviation. In fact, the points of inflection on each side of the mean mark the values which are
one standard deviation away from the mean.

Standardized Scores: A normal distribution is indexed by its population mean, and its population
standard deviation. Recall that the standard deviation is a useful “yardstick” for measuring how far an
individual value falls from the mean. The standardized score or z-score is the distance between the
observed value and the mean, measured in terms of number of standard deviations. Values that are
above the mean have positive z-scores, and values that are below the mean have negative z-scores.

Normal Approximation to the Binomial Distribution: The easier way involves using a normal
distribution. The normal distribution can be used to approximate probabilities for other types of random
variables, one being binomial random variables when the sample size n is large.

Expected Value: The expected value of a random variable is the mean value of the variable X in the
sample space, or population, of possible outcomes. Expected value, denoted by E(X), can also be
interpreted as the mean value that would be obtained from an infinite number of observations on the
random variable.
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Standard Deviation: The standard deviation can be viewed as approximately the average distance of
the possible values of X from its mean.
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Formula Card

Probablll‘cy Rules

Complement rule
P(A°)=1-P(4)
Addition rule
General: P(A4or B) = P(4)+ P(B)— P(Aand B)
For independent events:
P(Aor B)=P(A4A)+ P(B)-P(A)P(B)
For mutually exclusive events: P(A4or B) = P(4)+ P(B)

Multiplication rule
General:

For independent events:

P(4and B)= P(A)P(B| A)

For mutually exclusive events:

P(A4and B) = P(4)P(B)
P(Aand B)=0

General: P(A4|B)=

For independent events:

e Conditional Probability
P(Aand B)

For mutually exclusive events:

P(B)
P(4|B)=P(4)
P(4|B)=0

Discrete Random Variables

Mean
E(X)=u=Y xp,
Standard Deviation

=X P TPy, X Py

sd.(XN)=0 =3 (4= p; =3 (7, )- 122

Binomial Random Variables

(n) . ek
P(X = k) =| ka‘ a-p)*
n
where [ ] =
k)
Mean
EX)=puy =np
Standard Deviation
sd.(X)=ocy =\np(l-p)

n!

Kl(n—=k)!

Normal Random Variables
observation —mean _
standard deviation &
e DPercentile: x=zo+u

X—U
. Z—score = -

e IfYhasthe N(u. o) distribution, then the variable

7 X-u
c

has the N(0.1) distribution.

Normal Approximation to the
Binomial Distribution

If X'has the B(n, p) distribution and the sample size »
is large enough (namely np =10 and n(l1- p) =10).

then Y'is approximately N (np. \/Inp(l -p) )
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Warm-Up: Types of Variables and Types of Distribution

1. Type of Variables:

Today’s typical undergraduate student is often characterized as preferring teamwork, experiential
activities, and the use of technology. An ECAR (Educause Center for Applied Research) study was
published on technology use among undergraduate students. The study used survey and interviewer
data to create a portrait of today’s students’ experiences with and skill using information technology.

Listed below are some of the response variables that were measured in this study. For each of these
determine whether it is categorical, quantitative discrete, or quantitative continuous.

a.

Technology ownership: Do you own a computer?

categorical quantitative discrete quantitative continuous

Time (per week in minutes) spent using a computer for writing documents (word processing).

categorical quantitative discrete quantitative continuous

Which social networking site(s) are you a member? (Facebook, Myspace, Friendster, etc.)

categorical quantitative discrete quantitative continuous

2. Types of Models:
Identify appropriate model for each of the three variables. (Be complete).

a.

Below is the model for the random variable X which represents waiting time to be served at a deli.
X has a distribution

Density

Wait Time
Suppose that 45% of Michigan residents own dogs. Let X represent the number of Michigan
residents with a dog in a random sample of 10 Michigan residents. A success is defined as the
resident owning a dog.
Xhasa distribution

Below is the model for the random variable X which represents the score on a Stats 250 Exam (out
of 100 points).

Xhasa distribution

Density




ILP: Probability and Random Variable Review

Problem 1: Study on Smiling

In a recent study people were observed for about 10 seconds in public places (e.g. malls and
restaurants) to determine whether they smiled during the randomly chosen 10-second interval. The
table shows the results for comparing Adults (group 1) and Minors (group 2).

Smile | NoSmile| Total
1=Adult 3269 3806 7075
2 = Minor 4471 4278 8749

Total 7740 8084 15824

a. What is the probability that a randomly selected person smiled?

b. The researcher would like to assess if smiling status is independent of age group.
i. To check for independence, the probability found in part (a) should be compared to which of the
following probabilities?

P(smiled and adult) P(smiled given adult)
P(adult given smiled) P(adult)

ii. Find the probability selected above and circle the appropriate conclusion.
The probability =

Thus it appears that smiling status is  is not independent of age group.

Problem 2: Summer Trip Length
Did high gas prices keep Americans from hitting the road this past summer? In a nationwide survey of
adults, one variable measured was how many days vacationers spent driving on the road on their
longest trip. Consider the following (partial) probability distribution for the random variable X = the
number of days for the longest car trip.

X 4 5 6 7 8
Probability 0.10 0.20 0.25

a. Suppose the probability of 7 days is twice as likely as the probability of 8 days. Complete the
probability distribution for X. Show your work.

b. What is the expected number of days for the longest trip?
Include symbol, value, and units.
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Problem 3: How Much Time do You Spend Studying Statistics?

A Washington Post article “Is college too easy? As study time falls, debate rises” (May 21, 2012) stated
that the amount of time college students actually study has dwindled from an average of 24 hours per
week to about 15 hours (based on a survey). A professor of statistics decided to ask all of his current
semester students to report the number of hours per week they spend studying his course material (on
a regular, non-exam week). The mean for the female students was 10 hours and the standard deviation
was 3.5 hours.

a. Consider the following interpretations of the standard deviation and circle those that are correct.
= On average, the number of hours spent studying statistics varied from the mean by about 3.5 hours.
= The average distance between the number of hours spent studying statistics is roughly 3.5 hours.

= The average number of hours spent studying statistics is about 3.5 hours away from the mean.

b. Julie is one of his current students and she studies statistics for about 6 hours per week. What is her
corresponding z-score? Then find the probability a randomly selected statistics student studies
more than 6 hours per week. Use the Z-table and then use the prob() R script to get a more exact
probability and to produce a nice picture and solution.

c. Juan learns that he is in the top 30% of the studying distribution. Based on the distribution, Juan
must study at least how many hours per week? Make a hand sketch of what you are trying to find
to help show your work.
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Problem 4: The Walking Dead

The television series The Walking Dead is an American post-apocalyptic horror drama that is based on
the comic book series by the same name. The first episode aired in October 2010 and earned a
25% audience share. That is, 25% of all TVs in use during the show time period were tuned to a station
airing The Walking Dead.

A random sample of 5 people who watched TV during that time period were selected. Find the
probability that exactly 2 of the 5 people selected watched The Walking Dead.

Cool-Down: True or False
Decide whether the following questions are true or false.

1. If the time to wait for pharmacy help has a uniform distribution from 0 minutes to 30 minutes, then
33% of the customers are expected to wait more than 20 minutes.
True False

2. If X has a Binomial (50, 0.7) distribution, then the criteria to use the normal approximation are met.
True False

3. 68% of all test scores will fall within one standard deviation of the mean test score.
True False

4.. Police report that 78% of drivers stopped on suspicion of drunk driving are given a breath test,
36% are given a blood test and 22% are given both tests. Do the police administer these two tests
independently? Justify your answer with a calculation.

True False
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Lab 3: Confidence Intervals for a Population Proportion

Objective: This lab will help you better understand the ideas involved in confidence interval estimation
as well as how to interpret both the confidence level and confidence interval for a population
proportion. You will construct one-sample confidence intervals for a population proportion, and to
check that the conditions necessary for the interval are valid.

Application: The University of Michigan wants to learn more about the number of computers that are
needed by students on campus as they have the resources to add more computers if needed. We have
access to the total number of students that are enrolled at the University and we are asked to conduct a
study to assess if more computers are needed. Using the data collected from the study, we can estimate
the proportion of all Michigan students who don’t have a laptop and will require access to an on-campus
computer. The University can use this estimate of the population proportion along with the number of
total students on campus to estimate the number of computers on campus that are needed.

Overview: Since this population proportion is an unknown number, we are interested in knowing how
close a sample proportion (based on the random sample) is expected to be to the true proportion.
When we report the estimate, we should provide both the estimate of UM students who don’t own a
laptop (sample proportion) and a statement that describes the precision of the estimation process.

Population Proportion

Confidence intervals (Cls) provide a method of stating

both how close the sample proportion is likely to be to the | Parameter P
\tl)zlitrj]e t(:}fafc:::;gulation proportion and the accuracy of it Statistic p
& ' Standard Error
The basic structure for any confidence interval is: estimate ) N |'13(1—}}_)
T “ . s.e(p) =,/
+ (multiplier x standard error). The “multiplier x standard \ i

error” portion is also called the margin of error (or error

margin).  The multiplier used will depend on the
confidence level we will use and will be a z multiplier since
we are constructing an interval for a population
proportion.

In contrast, the confidence level is the proportion of times
this method will produce an interval that contains the
true proportion of UM students without a laptop in
repeated random sampling (if this study were to be
repeated over and over).
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Confidence Interval (Cl) Summary

For Exploring the Population Proportion of UM Students without a Laptop

1. Interpreting a 95% Confidence Interval itself: We are 95% confident that the true population
proportion of UM students who do not own a laptop lies inside the Cl we will compute. The interval
provides a range of reasonable values for this population proportion.

2. Interpreting a 95% Confidence Level used to make the interval: If the procedure were repeated
many times (that is, if we repeatedly took a random sample of the same size, and computed a 95%
Cl based on each sample), we would expect 95% of the resulting Cls to contain the true population
proportion of UM students who do not own a laptop.

3. Be Careful about how you use probability or chance: The probability that the true population
proportion of UM students without a laptop is located in a particular, already computed confidence
interval is either 0 or 1. Both the interval and the population proportion are fixed entities, so either
the true proportion is in that particular interval, or it is not.

4. How Confidence Intervals can Guide Decision Making:

Principle 1: A value in the Cl we calculate is an “acceptable” or “reasonable” possibility for the
population proportion of UM students without a laptop. A value not in a Cl can be
rejected as a likely value of this population proportion.

Principle 2: When the Cls for the proportion for two different populations do not overlap, it is
reasonable to conclude that the proportions for the two populations are different.

The above summary and interpretations can be used for any problem by adjusting the confidence level
and parameter under study, given the context of the problem. Phrases such as “true population
proportion of UM students who do not own a laptop” should be adjusted accordingly.

Warm-Up: Confidence Level Interpretation

Background: A study was conducted to learn about eating habits for American families. A random
sample of 200 families was selected, and an adult head of household was asked to complete a survey.
One question asked was, “Did your family eat dinner together last Sunday night — yes, no?” Based on the
results, a 95% (conservative) confidence interval for the proportion of all such families that ate dinner
together last Sunday night is given by (0.56, 0.70).

Task: As part of an exam question, students were asked to write a concise statement to explain the
meaning of the confidence level of 95% (‘interpret the confidence level). Below are some of the answers
received. For each, determine if it is a correct or an incorrect interpretation of the 95% confidence
level.

1. If this survey was repeated many times, we are confident the true population proportion of families
that ate dinner together last Sunday night is represented in the data 95% of the time.

Correct Not Correct

2. The 95% confidence level means that with this method, and for similar samples, we would construct
many confidence intervals, and of these, 95% would contain the true population proportion of
families that ate dinner together last Sunday night.

Correct Not Correct

3. Inthe long run, the population proportion of families that ate dinner together last Sunday night will
be found in the interval 0.56 to 0.70, 95% of the time.

Correct Not Correct
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ILP: Calculating a Cl for a Population Proportion

In this ILP, we are going to investigate using the sample proportion as a way of estimating the
population proportion. For the purpose of this activity, we are going to assume that the lab section is a
representative random sample of the UM student body. Follow the steps below to estimate the
population proportion.

1.

Determine a question to investigate by filling in the following question.

“What proportion of UM student ...

Once the question has been determined, the instructor will pose the question to the class using
clickers. Record the results below and provide an estimate of the population proportion of all UM
students that (that is, report the sample proportion).

# of students responding:

# of student who responded “yes”:

Sample proportion of student who responded “yes” :
(symbol and value)

(a) The estimate in part (2) is a sample proportion. About how far away from the population
proportion would you expect such estimates to be, on average? (i.e. report the standard error of the
sample proportion).

(b) There are certain conditions required for this inference procedure to be valid. Are they met
here? If not, how would you update this study so the conditions would be met?

(c) Use your results to construct a 95% confidence interval estimate for the population proportion
of all UM students that
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(d) What would happen to the width of your interval if you were to construct a 99% Cl instead
(using the same survey results)?

(e) Interpret the interval you constructed in part (c).

(f) Explain what the corresponding confidence level means.

(g) What (minimum) sample size would be needed for a 95% (conservative) confidence interval with
a margin of error of 0.06 (or 6%)?
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Cool-Down: Interpretations of Confidence Intervals

Consider once again the survey of American families, and recall that the 95% (conservative) confidence
interval for the proportion of all such families that ate dinner together is given by (0.56, 0.70).

Below are answers provided by students when asked to now give an interpretation of the actual 95%
confidence interval computed in the study. Assess which are correct and which are not correct

explanations as to what the interval (0.56, 0.70) means (in the context of this study)?

1. There is a 95% chance the confidence interval of (0.56, 0.70) will contain the true population
proportion of all families that ate dinner together last Sunday night.

Correct Not Correct

2. We estimate with 95% confidence that the true population proportion of all families that ate dinner
together last Sunday night will be found in the interval 0.56 to 0.70.

Correct Not Correct

3. If we repeated this study many times, the true proportion of all families that ate dinner together last
Sunday night will be in the interval (0.56, 0.70) about 95% of the time.

Correct Not Correct
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Lab 4: Hypothesis Testing for a Population Proportion

Objective: In this lab, you will learn an important statistical technique that will allow you to answer the
qguestion, “Was our observation due to chance, or is it more significant?” The objective is to guide you
through the ideas behind tests of statistical significance and the statistical language involved. This lab
first presents a general overview of testing. Then, the In-Lab Project discusses the large sample
Z-test for a population proportion, as well as providing practice in answering the question of whether an
event can be attributed to chance.

Application: Lucy is an Ann Arbor resident who is considering the possibility of running for a seat on the
City Council. To decide if she should invest time and money in her campaign, she wants to conduct some
research to see if there is evidence that she could win the election (i.e. she could receive a majority of all
the votes).

Overview:

Hypothesis Tests: A test of hypotheses (or significance test) is a procedure designed to assess what the
evidence provided by the data says about some statement about a population parameter. When we
conduct this hypothesis test for Lucy, we are interested in testing if the population proportion of votes
that would be cast for Lucy is greater than 0.5, ensuring her victory.

Hypothesis Testing Steps:

1. Determine appropriate null and alternative hypotheses and set .
2. Check assumptions for performing the test.

3. Calculate the test statistic and determine the p-value.

4

Evaluate the p-value and report a conclusion in the context of the problem.

The first step of this hypothesis test is to identify the hypotheses; this step is crucial, as it dictates the
procedures for the remainder of the test. The null hypothesis, Hy,, represents the status quo or
statement of no effect. The alternative hypothesis, H, (or sometimes Hj), represents the experimenter's
new model, or what the experimenter would like to show.

For our application regarding Lucy, we could define p to represent the true proportion of all Ann Arbor
residents who would vote for Lucy. We want to test the hypothesis Hy: p = 0.5 against the alternative

Ha: p > 0.5.

Both of the hypotheses are postulated about the same population proportion. The alternative
hypothesis can take three different forms — it may be a denial of the null hypothesis (uses=; called a
two-sided test), or it may specify a direction of interest (uses > or <; called a one-sided test). Notice
that we never test for equality in H,.

The purpose of a significance test is to assess whether or not the observed data are consistent with the
null hypothesis (within the reasonable bounds of sampling variability). If we collect our sample and
compute a population proportion of votes for Lucy that is much higher than the 0.5 we specified in the
null hypothesis, we have evidence to reject that null hypothesis.
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To help us make this decision, we use a test statistic, which represents a summary of the data. When
we conduct a test about a population proportion, we are performing a Large Sample Z test. The test

statistic for this Large sample z test has the following form:
P—py

(o) 1-p)/n

This pg is the value specified in the null hypothesis. For Lucy’s test: pg = 0.5. The sample proportion of

Z =

people who will vote for Lucy is our p. The test statistic tells us how many standard errors the sample
proportion, p , is from the test value, po.

The test relies on two key assumptions: that we have a random sample (our sample of responses is
representative of the large population of all such responses), and that our sample size is large enough.
To achieve a large enough sample size, we need at least 10 hypothesized yes answers and at least 10
hypothesized no answers, or said another way, under the null hypothesis, would we expect to see at
least 10 yes answers and at least 10 no answers.

Conditions: npy>10 and n(1 — py)>10

The Z test statistic has a known probability distribution (under the null hypothesis), and will be
examined for evidence in favor of or against Ho. Under the null hypothesis that the true proportion of
votes for Lucy is equal to 0.5, the test statistic Z has a standard normal distribution.

In hypothesis testing, another frequently reported value is the p-value, a number that is used to indicate
the degree of significance of the data. The p-value is the probability of getting a test statistic as extreme
or more extreme than the observed value of the test statistic, assuming the null hypothesis is true. For
Lucy’s test, the p-value is the probability of getting a z test statistic like we did or greater, assuming that
the true proportion of votes for Lucy is equal to 0.5.

We must decide in advance how much evidence against Hy we will require for rejection. This designated
amount of evidence is called the level of significance, denoted by a (alpha). Common values of a are
0.01, 0.05, and 0.10. If the p-value is less than or equal to o, we make the decision to reject Ho. For
Lucy’s test, if we encounter a p-value smaller than the significance level, we would decide to reject the
hypothesis that the true proportion of votes for Lucy is exactly 0.5.

If we reject the null hypothesis, the results of the test are said to be statistically significant at level a.
A “significant” result in the statistical sense does not necessarily imply an “important” result in the
practical sense. It simply means that such a difference from the null hypothesis is not likely to happen
just by chance.

Of course, no procedure is perfect, and as such, there are two types of errors possible during hypothesis
testing. If the null hypothesis is true but the decision is to reject Ho, then we say that a Type | error has
occurred. If we commit a Type | error for Lucy’s test, we would reach the decision that Lucy will win the
election by receiving more than 50% of the votes, when in fact the true proportion of votes cast for Lucy
is 0.5. Lucy would invest her time and money in her campaign when in fact she will not win the election.
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A Type Il error occurs when the alternative hypothesis is true, but we fail to reject Ho. A Type Il error
could be committed in Lucy’s test if we decide Lucy will lose the election by receiving 50% of the votes
or less, when in fact Lucy will receive greater than 50% of the votes and win the election. Lucy would
decide not to run in the election when she would have won a seat on the City Council.

Each type of error has a probability of occurring. If the null hypothesis is true, the level of significance,
a, is also the probability of a Type | error, while the probability of a Type Il error is denoted by B.

Truth | Decision Made Result Associated Probability
Reject Hy Type | Error a
Ho True
Do Not Reject Hy | Correct Decision l-a
Reject Hqg Correct Decision 1-B =power
H, True
Do Not Reject Hy | Type Il Error B

Another important component of a hypothesis test is its power. The power of a test measures its ability
to detect an alternative hypothesis when it is true. Power of a particular test is calculated as the
probability that the test will reject Hyg when the alternative hypothesis is true.

For Lucy’s test, the power is calculated as the probability that we conclude Lucy will receive more than %
the votes in the election when the truth is that she actually will win the election. Since we just learned
that B is the probability that we did NOT reject Ho when the H, is true, we can see that power is
represented by 1 — B.

Population Proportion

Parameter P

Statistic )
Formula Card Standard Error
vy
Corresponding details and formulas as they appear on the V' »
Stats 250 formula card are shown at the right. Confidence Interval
przse(p)

Conservative Confidence Interval

*

24n
Large-Sample z-Test
P—Po
[Po(1=py)
\1' n
Sample Size

* )\

n:' - l
2m

5
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Warm-Up: Stating the Hypotheses

and Defining the Parameter of Interest

For each example, fill in the hypotheses and define the parameter of interest.

1.

The Detroit Tigers advertising team believes that about 70% of Ann Arbor residents will attend a
Tigers game this season. Suppose the general manager wants to cut back on advertising in the area
and speculates that Ann Arbor residents are less likely to attend a Detroit Tigers game this season
than previously assumed.

Let the parameter represent

Ho: H.:

The University of Michigan is interested in examining the proportion of students who graduate in
four years. Suppose that a researcher speculates that the University has a majority of students who
graduate four years after they enroll.

Let the parameter represent

HOZ Ha:

ILP: Hypothesis Testing for a Population Proportion
In this ILP, we are going to use a sample proportion to test a theory about the value of the population

proportion. Again, we assume the lab section is a representative random sample of the UM student
body.

1.

Determine a question to investigate by filling in the following question.

“What proportion of UM students ...
?II

Once the question has been determined, the instructor will pose the question to the class using
clickers. Record the results below and provide an estimate of the population proportion of all UM
students that (that is, report the sample proportion).

# of students responding:

# of student who responded “yes”:

Sample proportion of student who responded “yes” :
(symbol and value)

The estimate in part (2) is a sample proportion. About how far away from the population proportion
would you expect such estimates to be, on average? (i.e. report the standard error of the sample
proportion).
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We wish to use the data collected to assess:
“Do a ... (selectone) minority  majority of UM students ?”
Express this as an appropriate null and alternative hypothesis:

Ho: H.:

where p represents:

A large sample Z test can be performed using a normal approximation for the binomial if the sample
size is large enough. Provide the checks necessary to see if this approximation may be made.

Assume the sample is large enough and calculate the corresponding z test statistic value. Show your
work.

What is the distribution of the test statistic under the null hypothesis?

Use your test statistic to find the corresponding p-value. First make a quick sketch by hand and use
Table A.1 to find your p-value; then try the new pval() script in R to check your answer.

What would the p-value look like if the alternative hypothesis had been that the population
proportion did not equal 0.5?

What is your decision at the 5% significance level? Reject H, Fail to Reject Hy

Also write out your real world conclusion in the context of the problem.
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Cool-Down: Errors and Power Computation
Maize and Blue Marbles: Cory is going to play the game ‘What is in the Box?’ He will win season tickets

to the Red Wings if he can correctly identify the contents of a box (which he cannot see). There are two
possibilities for the box contents:

Ho: The box contains eight red marbles and four white marbles.
H,: The box contains two red marbles and ten white marbles.

Cory will select one marble from the box without looking. He must make his decision based on the color
of that one selected marble. He has picked the following decision rule to use: Reject H, if the observed
color of the selected marble is WHITE.

It may help to make a quick visual picture of these two boxes.

a. For this situation, what is the probability of incorrectly rejecting Hy?

2/12  4/12 10/12

b. Which of the following terms is appropriate for the probability described in part (a)?

Type | error Type Il error Power

c. For this situation, what is the probability of incorrectly failing to reject Hy?

2/12  4/12 10/12

d. Which of the following terms is appropriate for the probability described in part (c)?

Type | error Type Il error Power

e. For this situation, what is the power?

2/12  4/12 10/12
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Lab 5: Understanding Normal and Random Data

Objective: In this lab, you will use some additional graphical tools to summarize the distribution for a
variable or response and check assumptions before performing a statistical test. Graphs you might need
to examine include time plots for data collected over time and QQ plots for checking whether a normal
(bell-curve) model is a reasonable distribution for a quantitative variable. These techniques can be very
useful at the start of data analysis to get a feel for the data.

Application: Brad is the manager of the Detroit Tigers and to prepare for the next round of the playoffs,
he would like to run a hypothesis test involving the mean number of runs his players have scored over
the last month of play. Brad knows that one assumption required for performing this analysis about the
mean is that his data must be considered a random sample (the observations can be viewed as coming
from the same parent population). He can examine this assumption by collecting the number of runs
scored over the last month and creating a time plot.

Overview: Data on a quantitative variable should be examined graphically. If the data has been collected
over time, the first graph to examine is a time plot. If the resulting time plot appears to be stable, or if
the data was not collected over time, then graphs that can be used to summarize the distribution for a
single quantitative variable or response are a histogram, a boxplot, and perhaps a QQ plot. Each graph
provides different information about the distribution. The overall shape of the distribution and
existence of outliers can generally be used to assess if the data appear to be coming from a relatively
homogenous population. If so, then various numerical summaries may be used to characterize the
center of the distribution and the spread of the distribution.

Note that some graphical tools are introduced solely in lab, not in lecture,
so it will benefit you to read this overview thoroughly

Sequence (Time) Plots: Data might be gathered over time. Employment rate, stock prices, and sales
figures are just a few examples. When data is gathered over time, such as the number of runs scored
over a one month by the Tigers, it is generally wise to examine the data plotted against time. Plots
against time can reveal the main features of a time series, overall patterns and striking deviation from
those patterns. Some overall patterns that may arise are:

O A persistent, long-term rise or fall called a trend (either increasing or decreasing).

O A pattern that repeats itself at regular intervals of time called seasonal variation.

O A persistent, long-term increase or decrease in the variation of the observations called a
pattern in variation.

If data is collected over time, a sequence plot can be used to check the assumption of a random sample,
often needed for inference procedures. A random sample consists of independent and identically
distributed (i.i.d.) observations. This means the observations can be considered as all coming from the
same parent population (with the same or identical distribution) and are independent of one other.

With a sequence plot, you can check the identically distributed aspect of a random sample by looking for
evidence of stability in the plot. Stability is supported when both the mean of the observations and the
amount of variation among observations appear to be constant over time and there does not appear to
be any pattern in the resulting plot.
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Below are two sequence plots; in the first plot the observations appear to support that the underlying
process that generated the observations is stable, but that is not the case for the observations in the

second plot on the right.

In this case, there appears to be an increasing trend, thus the underlying

process does not appear to be stable; the observations should not be considered a random sample.

Example Stable Sequence Plot
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Going back to the
earlier application,
here is the time plot
Brad created of the
number of runs the
Detroit Tigers scored
between September
1, 2013 and October
19, 2013. This is
another example of

an unstable time plot. Brad notes that there is a large
variation in the number of runs scored by the Tigers early in
September but less variation in their run total around game
21. The underlying process for the number of runs scored does not appear to stable, so Brad should not
consider this a random sample.

QQ Plots: Sometimes the assumption of a normal model for a population of responses will be needed

in order to perform certain inference procedures. A histogram can be
used to get an idea of the shape of a distribution. However, there are
more sensitive tools for checking whether the shape is close to a
normal (bell-curve) model. The best plot that can be used to check for
normality is called a QQ Plot, which plots the percentiles (quantiles) of
a standard normal distribution against those of the observed data. If
the observations follow an approximately normal distribution, the
resulting points should follow roughly a straight line with a positive
slope. Strong deviations would indicate possible departures from a
normal distribution. At the right is an example of a QQ Plot showing
data that does seem to come from a population with an
approximately normal distribution.

Expected Normal Value

Normal Q-Q Plot of ACT

T T T T
-4 2 0 2

Observed Value

The three graphs below are examples for which a normal model for the response does not seem
reasonable. The QQ plot on the far left indicates the existence of two clusters of observations. The QQ
plot in the center shows an example where the shape of the distribution appears to be skewed right.
The QQ plot on the far right shows evidence of an underlying distribution that has shorter tails
compared to those of a normal distribution.

Normal Q-Q Plot of CLUSTER

Normal Q-Q Plot of SKEW Normal Q-Q Plot of TAILS

Expected Normal Value

20 a0

Expected Normal Value
Expected Normal Value
%

Ohserved Value

Obhserved Value Observed Value
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Note: Many inference procedures, including some you will use later in the semester, require the
assumption of normally distributed population(s). Most of these procedures are robust which means we
would need to see strong evidence of a departure from normality to conclude this assumption is not
met. Some mild departures from normality would still allow us to conclude the underlying model for the
response is reasonably normally distributed.

Normal Q-Q Plot of OUTLIER

Finally, consider the QQ plot at the right. In this case, we ”

would say the QQ plot shows evidence of an underlying 10 5
distribution which is approximately normal except for one :: iaf’ﬁ

large outlier that should be further investigated. Outliers could
appear in either the upper or lower tail.

Expected Normal Value
N s oo @
Og

Observed Value

Warm-Up: Matching

Match the graph or descriptive statistic to one of its primary uses.

1. Histogram A. Measure of center, not sensitive to outliers

2. BarChart B. Compare distributions (but not their shapes)

3. Mean C. Examine distribution of a categorical variable
4. Median D. Helps assess if can treat data as a random sample
_____ 5. Side-by-side Boxplots E. Measure of spread

____6.1QR F. Examine distribution of a quantitative variable
7. Time Plot G. Helps assess if underlying distribution is bell-shaped.
____8.QQ-Plot H. Measure of center, sensitive to outliers
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ILP: More Visualizing and Exploring Quantitative Data

In this In-Lab Project, you will create additional useful graphs and obtain more descriptive statistics for
guantitative data using R.

Task 1: QQ Plots.

1. Recall the data set employee.Rdata contains information on employees at a company, and that a
histogram of the current salary data indicated a strongly skewed to the right distribution. Let’s
examine a QQ plot (otherwise known as a Quantile-comparison plot) to see that it supports this
non-normal feature. To create a QQ plot, go to Graphs > Quantile-comparison plot and select the
SALARY variable.

Provide a sketch and explain how the QQ plot supports that the underlying distribution of salary
does not appear to be normal (or bell-shaped)

2. We can also consider making QQ plots for different populations. Recall that the distribution of salary
for minorities was far less skewed than the whole distribution. Let’s try making a QQ plot of salary
for minorities. To do this, we will need to make a new dataset that only contains minorities in it. We
do this by going to Data > Active data set > Subset active data set. The subset expression should be
formatted like VARIABLE=="value” — here, the variable we are splitting by is MINORITY, and we want
all observations with the value “Yes” for MINORITY; so type in MINORITY=="Yes’. Give the data set a
new name and click OK — if done correctly, the new data set will appear in blue text at the top.

Now, make a QQ plot of the SALARY variable as we did before with the new data set. How does this
distribution of minorities compare to the entire distribution from the previous question? Would you
consider this a normal distribution?

3. Let’s try analyzing the normality of IQ scores given in the dataset igq.Rdata, which contains
information from high school students collected for the purpose of examining the relationship
between 1Q scores and GPA. Before creating a QQ plot, we can get an idea of the distribution of IQ
scores by simply making a histogram. Make a sketch of this histogram below. Do you think the
population of IQ scores might follow a normal distribution?

46



Let’s see if our suspicions from the previous problem are correct, and make a QQ plot of the IQ
scores. You will need code similar to what we used in problem 1 — recall that variable names can be
viewed by clicking on View data set.

Draw the resulting QQ plot below. Is a normal distribution a reasonable model for IQ scores in the
population based on this QQ plot?

Task 2: Time Plots.

1.

The data set oldfaithful.Rdata contains the date and duration of eruptions (in minutes) of the Old
Faithful geyser. The data was collected several times per day over 23 consecutive days. To make a
time plot, we will have to use some custom code, as there is no R Commander function for a time
plot. To make a time plot of the DURATION variable from the oldfaithful data set, type the following
code into the R Script box at the top of your R Commander window (note the type is the letter L but
must be lowercase):

plot(oldfaithful$DURATION, type=“1", main="Time Plot of variable
by name")

Highlight this code, and then click the Submit button. Make a sketch of this time plot.

Does the plot appear to show any trends or changing variation? Would you consider it to be stable?

Would it be reasonable to conclude these data are a random sample of eruptions?

Would it make sense to go on to make a histogram of these data? A QQ plot of these data?
Descriptive summaries? Why or why not?
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5. Let’s examine another time plot — download the data set chemical.Rdata, which contains the
concentrations of a certain chemical in 15 consecutively produced batches of solution. Create a
time plot of the concentration variable and make a quick sketch here, using code similar to problem

1.

6. Does the plot appear to show any trends or changing variation? Would you consider it to be stable?

7. Would it be reasonable to conclude these data are a random sample of eruptions?

8. Would it make sense to go on to make a histogram of these data? A QQ plot of these data?

Descriptive summaries? Why or why not?

Cool-Down: Check Your Understanding About Time Plots

A new method of measuring phosphorus levels in soil is
under consideration. A sample of 11 soil specimens is
analyzed using the new method. The time series
(sequence plot) for the 11 observations is presented.

Comment on the overall stability of these data based on
this plot.

Would it be appropriate to go on to make a histogram of
these data? Explain.
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Optional Review of Time Plot and QQ Plot Examples

If you would like to look at more examples of QQ plots (which help assess whether the model for the
underlying population of responses seems to be normal) and examples of time plots (which help assess
whether our underlying process appears to be stable and if we can consider the data to be a random
sample) ... try out these tasks using some simulations with R (R scripts).

Task 1: Go to the Extra Review link on your course site and click on the QQ Plots in R link in the list.
Review the background about the simulator and download the gqqgplot script file (which will open up the
R program).

1. Begin the program by entering the following command. qqgplot ()

2. Select your sample size by entering a number between 1 and 10000.

3. Select if you want a QQ plot from a normal or non-normal distribution.

4. If a non-normal distribution, select the type of distribution you would like to see.
5

Once your QQ plots and the corresponding histograms have been created, you will be asked if you
wish to save the plot. You will then be prompted to select a sample size. Create QQ plots for many
different samples.

6. Sketch the QQ plot and Histogram for a sample from a skewed right distribution.
QQ plot: Histogram:

Task 2: Go to the Extra Review link on your course site and click on the Time Plots in R link in the list.
Review the background about the simulator and download the timeseries script file (which will open up
the R program).

1. Begin the program by entering the following command: timeseries ()

2. Select your sample size by entering a number between 1 and 10000.

3. Select if you would like an example of a stable or unstable time plot.

4. If unstable time plots are selected, select the type of pattern you want to see.
5

Once your time plots have been created, you will be asked if you want to save the plot. You will then
be prompted to select a sample size. Try out the various options and explore the various patterns of
time plots.

6. Create a time plot for a sample of 1000 data points taken from a process with an increasing mean
and decreasing variance. Sketch the time plot below.
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Lab 6: Learning about a Population Mean

Objective: In this lab, you will learn an important statistical technique that will allow you to answer the
question, “Was our observation due to chance, or is it more significant?” The objective is to guide you
through the ideas behind tests of statistical significance and the statistical language involved. This In-
Lab Project discusses the one-sample t-test for a population mean, as well as providing practice in
answering the question of whether an event can be attributed to chance.

Application: Derek is considering attending the University of Michigan and he wants to consider the cost
of rent in Ann Arbor to help make his decision. Ann Arbor’s website claims that the average price for
apartments in Ann Arbor is $800 a month. However, Derek’s friends lead him to believe that the average
price for all apartments in Ann Arbor is actually greater than $800 a month. Derek would like to conduct
a hypothesis test to see if his friends’ statement is supported.

Overview:

Hypothesis Tests: A one-sample t test is a procedure designed to assess what the evidence provided by
the data says about some statement about the population mean. The key elements of the one-sample t
test include: a null and alternative hypothesis, assumptions that must be checked, a test statistic t and
its p-value, a decision, and a conclusion.

Hypothesis Testing Steps:

Determine appropriate null and alternative hypotheses about u, and set «.

2. Check assumptions for performing the test.
3. Calculate the test statistic and determine the p-value.
4. Evaluate the p-value and report a conclusion in context of the problem.

The first step of a hypothesis test is to identify the hypotheses; this step is crucial, as it dictates the
procedures for the remainder of the test. A one-sample t-test is used to test whether the mean of a
guantitative variable is significantly different from some value. This value, the test value or py, is given
in the null hypothesis (Ho: 4 = tg), and is often taken to be zero (i.e., Ho: 4 = 0). In Derek’s test, his null
hypothesis is Ho: 4 = 800.

The alternative hypothesis, H, (or sometimes H;), represents the experimenter's new model, or what
the experimenter would like to show. The alternative hypothesis can take three different forms — it may
be a denial of the null hypothesis (uses =; called a two-sided test), or it may specify a direction of
interest (uses > or <; called a one-sided test). Notice that we never test for equality in H,. Derek’s
alternative hypothesis will be H,: u > 800.

The test relies on two key assumptions: (1) the data can be considered a random sample from the larger
population of interest and (2) the data are observations from a normally distributed population. The
Central Limit Theorem allows the assumption of normality to be more relaxed if our sample size, n, is
large. (Generally, “large” means more than 30 observations, although it also depends somewhat on
how serious the data depart from normality.) The sampling distribution applet that you worked with
demonstrated the CLT using a large sample size of 25. Thus we will accept at least 25 as large enough for
inference about means.
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The purpose of a significance test is to assess whether or not the observed data are consistent with the
null hypothesis (within reasonable bounds of sampling variability). If the data seem unlikely to occur if
the null hypothesis is assumed true, then we would reject the null hypothesis statement.

To help us make this decision, we use a test statistic, which represents a summary of the data. Going
back to the application, Derek samples 40 students at the University by asking about their monthly rent.

From the sample he computes a sample mean rent of $900 as well as a standard error for this sample
X—g

s/\/; '

mean. This test statistic takes the form: t =

The test statistic tells us how many standard errors the sample mean, Xx, is from the test value, yo .
Derek calculated a test statistic of t = 1.2. His interpretation would state: The sample mean rent of $900
per month is 1.2 standard error away from the hypothesized mean rent of $800.

In hypothesis testing, another frequently reported value is the p-value, a number that is used to indicate
the degree of significance of the data. The p-value is the probability of getting a test statistic as extreme
or more extreme than the observed value of the test statistic, assuming the null hypothesis is true.

In Derek’s case, the p-value is the probability of observing a test statistic of 1.2 or larger, if the
population mean rent in Ann Arbor really was 800 dollars more month. Note that more “extreme”
means in the direction of Ha. His test statistic, t, has a t-distribution with n-1 degrees of freedom (df),
where n represents the sample size. In Derek’s test, the t statistic has a t (39) distribution.

We must decide in advance how much evidence against Hy we will require for rejection. This designated
amount of evidence is called the level of significance, denoted by a (alpha). Common values of a are
0.01, 0.05, and 0.10. If the p-value is less than or equal to a, Derek would make the decision to reject
Ho. If Derek makes the decision to reject the null hypothesis, the results of the test are said to be
statistically significant at level a.

A “significant” result in the statistical sense does not :
necessarily imply an “important” result in the practical sense. POPUIaﬂOn Mean
It simply means that such a difference from the null hypothesis | Parameter U
is not likely to happen just by chance. Statistic X

Standard Error

Formula Card se(¥)= T

Confidence Interval
Y+t s.e(x) df=n-1

Paired Confidence Interval
d+t'se(d) df=n-1

One-Sample 7-Test
X—pHy, X—u
f= Ho Hy

= — = df=n-1
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Warm-Up: Check Your Understanding

A researcher wants to determine if a filling machine at a cereal plant fills the boxes well on average or if
the machine needs to be replaced. The machine is intended to fill the packages with 28 grams of cereal.
He wants to test the machine to see if the average weight of cereal is less than the intended 28 grams.
He takes a sample of 30 cereal boxes and measures the weight of each box. The histogram of the
weights indicates some skewness.

Which result allows him to conduct the one sample t-test even though his histogram shows some
skewness?

He performs a one sample t test and finds a statistically significant p-value.
If the significance level was 5%, what are possible options for the p-value?

0.0067 0.043 0.14 0.22

ILP: How Fast is your Stats 250 Lab at the Tangrams game?

Background: The Tangram is a dissection puzzle that is claimed to have originated in China, and
players must try to make the shapes out of seven pieces of varying shapes. The most common goal of
the game is to make a square out of the seven pieces, but the goal can be changed to a varying number
of shapes. In today’s lab, you will be completing the “House of Tangrams” puzzle, with your time to
complete the puzzle recorded. A previous Stats 250 GSI claims that her lab completed the puzzle in 120
seconds, on average — can your lab beat this?

Task: Perform a test to assess if the average time to complete the “House of Tangrams” puzzle is
significantly faster than 120 seconds.

Complete the “House of Tangrams” puzzle.
Your GSI will provide you with a link to access the Tangrams puzzle online. Some tips before you begin:

e Use an alias when playing so you can find the row corresponding to you in the dataset. It does
not need to be your real name, but it can be if you'd like.

¢ Please, only play the game once, as repeated entries will be added to the dataset and will cause
our results to be incorrect!

¢ To rotate a piece clockwise, double-click it (and hold alt to rotate counter-clockwise). If you are
having trouble rotating multiple times, it may help to slightly move the cursor after each click.

e If you are attending remotely, please make a quick post in the backchannel saying that you are
starting the tangrams puzzle. Reply to that same post when you are done so | can keep track of
who still needs to complete the puzzle.

We will need to wait until all the results are entered before we download the data set, so review the

overview section of this lab (before the Warm-Up) and when done, you can start working on the next
page while you wait for your GSI to announce that the data is ready to download.
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Procedure: The appropriate inference procedure for this scenario is the one-sample t test and the

specific parameter of interest is

Hypothesis Test: You can complete the steps for conducting a test of hypotheses.

1. State the Hypotheses: Hg: = and Hj: ,

where represents:

Determine Alpha: We were told the significance level was 5%.

Remember: Your hypotheses and parameter definition
should always be a statement about the population(s) under study.

2. Checking the Assumptions
a. For this scenario, we need to assume that the data are a random sample. To check this

assumption, we would make a plot (if there was time order) of the observations, and

look for

b. We also need to assume that the responses come from a normally distributed

. To check this assumption, we would make a plot.

c. Create the qqgplot of the data on time to complete the “House of Tangrams” puzzle and comment.

d. Based on your sample size, is the assumption of normality for the population of all times to
complete the “House of Tangrams” puzzle? Why or why not?

3. Importing Tangrams data into R Commander

When the GSI tells you that everyone has completed the tangrams game, you can then download
the data. To do this, click on "Get Game Data" on the page from the link that your GSI gave you
earlier. The GSI will give you a group name for your class. Make sure that you select "CSV" as the
type to return.

CSV files are "Comma Separated Values," so each item in a row is separated by a column. Most
Microsoft Excel spreadsheets have the option to export data as CSV files, so you can use the
following importing method to import your own data for analysis into R Commander.

To import this CSV data in R Commander, go to Data > Import data > From text file. This gives some
options on how to import text -- you can give the dataset a name like "Tangrams" or whatever suits
you. For our file, the Field Separator will be commas, as this is a comma-separated-values
file. After that, you can click OK, and find the file that you downloaded from the tangrams website.
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4. Compute the Test-Statistic and Calculate the p-value

Test-Statistic

a. Before conducting the test, we will compute some summary statistics used in computing a test
statistic. Go to Statistics > Summaries > Numerical summaries to generate these, and fill out
the table below. Be sure to check the standard error option under the Statistics tab.

Summary Statistics

Mean

Std. Dev (s)

Sample Size (n)

Std. Error

b. Generate the t-test output using Statistics > Means > Single-Sample T Test. Enter a test value of

and specify the correct direction for the alternative hypothesis. (This should match

your answer in question 1) Use this to fill out the following output table for this test. Note that

when conducting a one-sided test, R will provide a confidence bound (instead of a confidence
interval), which is not taught in this course.

One Sample T Results

df

p-value

c. What distribution does the test statistic follow if the null hypothesis is true?

This will be the model used to find the p-value.
This is not the same as the distribution of the population that the data were drawn from.

Calculate the p-value:

d. Draw a picture of the p-value, with labels for the distribution and x-axis.

4. Evaluate the p-value and Conclusion

Evaluate the p-value:
What is your decision at a 5% significance level? Reject Hy

Fail to Reject H,

Remember: Reject Hy
Fail to Reject Hy

<& Results statistically significant
<& Results not statistically significant

Conclusion:

What is your conclusion in the context of the problem?

Note: Conclusions should always include a reference to the population parameter of interest.
Conclusions should not be too strong; you can say that you have sufficient evidence,

but do NOT say that we have proven anything true or false.
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5. Providing a Confidence Interval Estimate

Note: In order to get a 95% confidence interval with R Commander,
you will need to run a two-sided test (regardless of what test you are conducting).

a. Generate the two-sided test output and report the 95% confidence interval (include units):
The 95% confidence interval estimate for the population mean time to complete the

“House of Tangrams” puzzle was found to go from to

b. How would the 99% confidence interval compare to the 95% interval in part (a)?

Cool-Down: Check Your Understanding

Provide an interpretation of the test statistic value that you found in lab to test if the average time to
complete the “House of Tangrams” puzzle is significantly faster than 120 seconds.

How would you explain the meaning of the 95% confidence level used in making the confidence interval
for the population mean time to complete the “House of Tangrams” puzzle above?
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Lab 7: Paired Data Analysis

Objective: In this lab, you will learn how to perform a hypothesis test in the case when we have two
guantitative variables collected in pairs, called a paired t-test. You will make a confidence interval for
and test hypotheses about the population mean difference, ug. Using these, you will be able to provide
a statement about how confident you are regarding your interval estimate or in your decision.

Application: Mackenzie believes that college students can run a mile faster in the afternoon then they
can in the morning. She has ten of her friends run a mile early in the morning and also late in the
afternoon and she records their time in seconds. For each of her ten friends Mackenzie computes a
difference: time to run the morning mile (in seconds) — time to run the afternoon mile (in seconds).

Runner AM PM Difference (AM — PM)
Runner 1 633.8 618.9 14.9
Runner 2 588.9 569.6 19.3
Runner 3 619.4 630.9 -11.5
Runner 4 640.9 628.5 12.4
Runner 5 613.9 574.2 39.7
Runner 6 590.0 627.3 -37.3
Runner 7 613.4 603.3 10.1
Runner 8 568.6 593.1 -24.5
Runner 9 637.0 596.2 40.8
Runner 10 648.6 613.4 35.2

Overview:

Matched or paired data results from a deliberate experimental design scheme. Mackenzie’s scenario is
one example of a paired design. Another example of a paired design is an experiment where rats are
matched by weight, where one rat in each match receives a new diet and the other rat in the match
receives a control diet.

These types of design are called paired data designs. Note that paired designs can occur when you have
two measurements on the same individual OR when you have two individuals that have been matched
or paired prior to administering a treatment.

The inference procedures for a paired data design are based on the one-sample t-test procedures from
the previous lab. The change is that we want to estimate or test hypotheses about the population mean
difference ug, which is generally compared to a hypothesized value of zero, indicating no difference on
average.

The assumptions are similar to those assumptions made for the one sample t-test. Going back to the
application, Mackenzie now must assume the sample of the ten differences in running time is a random
sample. This can be verified by creating a time plot of those ten sample differences and checking for
stability. She must also assume that the population of differences is normally distributed. Mackenzie can
check this assumption by creating a QQ plot of those ten sample differences.
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The test statistic t is created by taking the sample mean difference

and dividing by the standard error of the sample mean difference,
d

se(d)’

If the null hypothesis is true, this test statistic has a t distribution
with n-1 degrees of freedom, where n is the number of pairs. For
Mackenzie’s 10 runners, the degrees of freedom will be 10 -1 =9.

Formula Card

Warm-Up: Check Your Understanding

Population Mean

Parameter V%

Statistic X

Standard Error

s.e(x)= =

Jn

Confidence Interval
X+ r*s.e.(.\_')

Paired Confidence Interval
d+ r*s.e.(ﬁ )

df=n-1

df=n-1

One-Sample 7-Test
X—piy, X—u
f= Ho _ Ho

Cse(®) 5};"‘\/;

Paired r-Test
. d-0 d
s.e.((7) S'd,r"""\/’—’

df=n-1

df=n-1

Eight cars were run to determine their mileage, in miles per gallon (MPG). Then each car was given a
tune-up, and run again to measure the mileage a second time. The difference in mileage was computed
as difference = After MPG minus Before MPG. Assume that the selection of 8 cars represents a random

sample of cars.

1. Select the appropriate alternative hypothesis to assess if on average mileage significantly improves

after a tune up.
a.Ha:ug>0

b.Ha:ug<0
C.Ha:ug#0

2. The researcher of course is hoping that the results of the experiment are statistically significant.

What type of p-value would the researcher want to obtain?

a. A large p-value.

b. A small p-value.

c. The magnitude of a p-value has no impact on statistical significance
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ILP: Do Books Purchased from Barnes and Noble (in-store)
Cost More on Average than If Purchased at Amazon.com (Online)?

Background: The popularity of purchasing books online has increased dramatically, and the
conventional bookstore no longer dominates the sales of books. The most influential factor that sways
customers into purchasing online is lower prices. A group of statistics students decided to perform a
comparison of the Amazon.com prices versus local Barnes and Noble bookstore prices based on a
sample of 40 books, selected from a wide range of categories. For Amazon, a standard ground shipping
of $4.29 and local state tax were included in the cost. The corresponding costs are available in the R
data set called books.Rdata (Source: Statistics group project). Do the data provide sufficient evidence to
conclude that, on average, Barnes and Noble (in-store) books are more expensive than Amazon.com
books?

Task: Perform a test regarding the mean difference in book price, u, , where the differences are

computed as “Barnes and Noble less Amazon“ (i.e. ‘price at Barnes and Noble’ minus ‘price on Amazon’).

Procedure: The appropriate inference procedure for this scenario is a paired t-test, and the specific
parameter of interest is . Think about why this is this a paired procedure.

Hypothesis Test:
1. State the Hypotheses: Hg: and Hj: ,

where the parameter represents:

Determine Alpha: We were told the significance level was 5%.

Remember: Your hypotheses and parameter definition
should always be a statement about the population(s) under study.

2. Checking the Assumptions
a. For this scenario, we need to assume that the sampled differences are a random sample. Since
the data was collected at one time point, a time plot is not appropriate to make. However we
would want to learn more about how the books were selected.

b. We also need to assume that the population of differences is normally distributed. To check this
assumption, we would make a plot of the . (What you
would hope to see?)

3. Compute the test statistic and calculate the p-value

Test statistic

a. Let's create a variable for the differences so we can get summary statistics needed to compute
the test statistic. First, we need to compute a difference for each pair. We can do this in R
fairly easily by going to Data > Manage variables in active data set > Compute new variable.
Call the new variable difference, and enter the difference of the two variable names in the
Expression to compute box. You can double click on a variable name to insert it into the
expression box.
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b. Now, we will compute those summary statistics. Go to Statistics > Summaries > Numerical
summaries to generate these, making sure you select your difference variable, and fill out the
table below. Be sure to check the standard error option under the Statistics tab.

Summary Statistics
Mean diff (a) Std. Dev (sq) Sample size (n) Std. Error

c. Generate the t-test output using Statistics > Means > Paired T Test. Select the two variables,
and specify the correct direction for the alternative hypothesis. (This should match your answer
in question 1.) Use the output to fill out the following output table for this test.

Paired T Results
t df p-value

d. Our sample mean difference is standard errors below the hypothesized mean
difference of zero.

e. What is the distribution of the test statistic if the null hypothesis is true?

Note: This is not the same as the distribution of the population that the data were drawn from,
and will be the model used to find the p-value.

f. Now, try conducting a one mean test on the difference variable we created earlier, using the
same hypotheses from problem 1. This can be found by going to Statistics > Means > One
Mean T Test. Are the results similar to those you found in part ¢? Why is this the case?

One Sample T Results for the Differences
t df p-value

Visualize the p-value:
g. Draw a picture of the p-value,
with labels for the distribution and x-axis.

60



4. Evaluate the p-value and Conclusion

Evaluate the p-value:
What is your decision at a 5% significance level? Reject Hy Fail to Reject Hy

Remember: Reject Hy <& Results statistically significant
Fail to Reject Hg <& Results not statistically significant

Conclusion:
What is your conclusion in the context of the problem?

Note: Conclusions should always include a reference to the population parameter of interest.
Conclusions should not be too strong; you can say that you have sufficient evidence,
but do NOT say that we have proven anything true or false.

Cool-Down: Setting Up Hypotheses and Writing Conclusions

The Major League Baseball Organization would like to assess whether or not players have the same
batting averages during the nighttime games as during the daytime games using a 5% significance level.
Eight players are selected at random and their nighttime and daytime batting averages are collected for
a given period of time.

Let uq represent the population mean difference between the nighttime minus the daytime batting
average. Write out the corresponding null and alternative hypothesis using the appropriate notation

Hypothesis Test: Ho: H.:

Why is this a paired t-test?

The p-value for this paired t-test was 0.028. Make a decision for this test and write a conclusion in
context of the problem.
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Lab 8: Comparing Two Means

Objective:

In this lab, you will learn an important statistical technique that will allow you to compare two
populations with respect to their means by looking at p;-i,. The aim is to help you understand the ideas
behind confidence intervals, tests of significance, and the statistical language involved in the comparison
of two population means.

Application:

Jim believes that the mean GPA for all English majors is different from the mean GPA for all Math
majors. He takes a random sample of students in the Math and English buildings and he ends up with 32
English majors and 35 Math majors in his sample. He has more Math majors, which leaves Jim with no
method to pair an English major with Math major and no way to perform the paired t test.

Overview:

The two independent samples t procedures (sometimes called Student's t procedures) are used when
you want to compare the means of two populations that are not related or matched in any way. The
idea is that we use the two sample means to estimate the corresponding population means.

We may want to construct a confidence interval to estimate the difference between the two population
means. Or, we may wish to test if the difference in the two population means equals a value specified in
a null hypothesis; generally, the hypothesized test value is 0.

Going back to the application, we will assume that we have a random sample from each of the two
populations. This means Jim will assume that he has a random sample of English majors and a random
sample of Math majors. To check this assumption, he will create a time plot with the GPAs for the
English majors and assess the stability as well as creating a separate time plot with the GPAs for the
Math majors.

The second assumption needed to perform the two independent sample t-test is that the variable being
measured has a normal model for each population, although possibly with different means. To assess
this assumption, Jim will create two separate QQ plots; one of the GPAs for English majors and one of
the GPAs for Math majors.

In addition, the two random samples are assumed independent of each other. However, there are two
versions of independent samples t procedures: pooled and unpooled (also known as general). In a

pooled t procedure, we assume equal population variances for the two populations of responses.

Whether or not we can assume the two populations have equal variances will dictate which of the two
procedures we use. Details on determining which version to use are provided next.
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Checking the Equal Population Variance Assumption: There are several ways to check the equal
population variances assumption required for a pooled t-test. Which one you will use will often depend
on the information provided.

Q

Side-by-side Boxplots: Examine the IQRs of the sample data. If they are similar, then the
assumption is valid. (NOTE: “Similar” in this sense does not mean that the boxes need to line up
right next to each other. It means that the lengths or sizes of the boxes should be similar.) If one
IQR is twice as large as the other, the assumption of equal population variances is not valid.

Sample Standard Deviations: Since variance is standard deviation squared, if the sample standard
deviations are similar, then the assumption is valid. If one standard deviation is twice as large as the
other, the assumption of equal population variances doesn’t hold.

Levene’s Test for Homogeneity of Variances: Levene’s test is a hypothesis test, but it is a test about
population variances rather than means. In Jim’s case the null hypothesis is that the populations of
English and Math majors do have equal variances (Ho: 0:° = 0,°) and the alternative is that these
populations have equal variances (Ha: 01> # 0,°). When the null hypothesis from the Levene’s test is
NOT rejected, it would be reasonable for Jim to perform the pooled t-test for the two population
mean GPAs. If the null hypothesis from Levene’s test IS rejected, then the assumption of equal
population variances is unreasonable, and Jim should use the unpooled (general) version instead of
the pooled. To make this determination, we will use an alpha of 10% for Levene’s tests.

Common Population Standard Deviation: If Jim concludes that the populations of Math and English
majors have the same variances, he is also stating that these populations have the same standard
deviation. In order to run the pooled version of this test, he must estimate the common population
standard deviation with the common sample standard deviation. This common standard deviation is
written as s, and Jim will calculate it by taking a weighted average of the standard deviation of English

majors’ GPAs and the standard deviation of Math majors’ GPAs.

f(my =1)s; +(n, =1)s;
S, - -

! \ no+n, =2
Formula Card
Two Population Means
General Pooled
Parameter 1y — [t Parameter Iy — [ty
Statistic X, —X, Statistic X, —-X,

Standard Error

Standard Error

2 2 L 11
5 pooled s.e(x, —.\'2)=sp [—+
\m m

f B B

[(ny —1)s; +(n, —1)s5

where 5, =/ = =
\ n +n, =2

Confidence Interval

Confidence Interval

(® -x,)xt (se(x -5,)) df = min(n, —1.n, —1) (%, -x, )£ (pooleds.e.(¥, - X,)) df=n +n, -2
Two-Sample 7-Test Pooled Two-Sample 7-Test
X, —X,—0 X, —X, A . 4-x,-0 X, -x N
= — = = df = min(n, —1.n, -1) = = - df=mn+n,-2
se(X, —-%,) [s2 s - pooled s.e.(X; —X,) 1 1 -
} N B T e
\n' mon \nmoom
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Warm-Up: Check Your Understanding

A student researcher, Jackie, is interested in learning about how much time students spend studying per
week. She is curious to find out if study time is higher for female students (group 1) versus male
students (group 2). Data from a survey of 47 female and 45 male undergraduate students is collected.
One question asked students to report the number of hours that they study in a typical week. Assume
that all the needed conditions are met to perform a pooled two independent samples t-Test.

State the hypotheses to be tested and provide the test statistic value.

Ho: versus Hj:

The test was run and the difference in the two sample means, Xx; — x5 has been computed. This
difference turned out to be 3 standard errors above the hypothesized difference for gy — o of 0.

Test Statistic Value:

Which of the following is a correct graph of the p-value?

Density {t( b}
-9 '° . i &£-valves
Dchs;*y
(.t( )
B.
-3 e 3 £ yalves
Density
PRI
£
3 ] 3 t-values

If the p-value for this test was 0.076,
are the results significant at a 5% level? Yes No

What are the appropriate degrees of freedom for the pooled t test? 91 43 90
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ILP: Do Men and Women Differ in Their SSHA Scores?

Background: A total of 38 college freshmen at a private college were administered the Survey of Study
Habits and Attitudes (SSHA), a psychological test designed to measure motivation and attitude towards
study habits in college students. The sampled students were a simple random sample consisting of
18 females and 20 males. Scores on the test range from a low of 0 to a high of 200 and it is known that
they may explain collegiate success. School administrators are interested in whether or not there is a
difference between the mean scores for males and females. The scores for females (Group 1) and males
(Group 2) are listed in the SSHA.Rdata data set. (Source: Moore and McCabe (1999), pg 563).

Task: Perform a test to assess if there is a difference between the mean score for women on the SSHA
and the mean score for men on the SSHA.

Procedure: Since the SSHA score is a quantitative response and we have two sets of scores to compare,
the appropriate inference procedure for this scenario is the two independent samples t-test, and the
specific parameter of interest is . Think about why is this not a paired procedure.

Hypothesis Test
1. State the Hypotheses: Hg: versus Ha: ,

where p; represents

and p; represents

Note: In order to state the appropriate direction in the alternative hypothesis, it is important to
know which population is being referred to as population 1 and which is population 2.
Determine Alpha: We were told the significance level was 5%.

Remember: Your hypotheses and parameter definition
should always be a statement about the population(s) under study.

2. Check Assumptions (Exploratory Data Analysis)
a. Checking Normality
i. Based on the information provided in the background of the problem, we will assume that
we have independent, random samples of SSHA scores. One remaining assumption that
needs to be checked is that each sample comes from a normally distributed population. The
QQ plots for each sample are provided next.

QQ Plot of Scores -- Males QQ Plot of Scores -- Females
| — o
8 8- 8 84 °
c Z °
S S A .
3 o <] o2
@ N — [ (=}
s - s I
& ? o°
s o
- T T T T T
2 1 0 1 2 2 1 0 1 2
Theoretical Quantiles Theoretical Quantiles

ii. Does it appear that the assumption that each sample comes from a normally distributed
population is met? Why?

iii. What remaining assumption needs to be checked before we can conduct the two
independent samples t-test?
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Now, we must determine if we can assume equal g | 537
population variances or not. We will utilize all three o
methods discussed earlier to do this. 2 - T
i. Side-by-side Boxplots: o | '
The side-by-side boxplots show that the IQRs are: § . : '
similar not similar o 9 i
[o] ~
ii. Sample Standard Deviations: Remember that we can & 5 :
generate summary statistics by using Statistics > & |
Summaries > Numerical Summaries, and be sure to o _._
summarize by groups to get results for both sexes. =7 i
o | !
Summary Statistics @ _i_
Group Mean Std. Dev Sample Size T T
Female Male
Male
Sex
Female

These sample standard deviations

are: similar not simi

Levene’s Test: Write the appropriate hypotheses for Levene’s test using correct notation:

Ho: Ha:

We can perform Levine’s test in RCommander using Statistics > Variances > Levene’s Test
(be sure to use MEANS and not MEDIANS).

The Levene’s test statisticis F = , with a p-value of

Therefore, we can cannot reject the hypothesis that the population variances are equal.

Based on these results, we can say:
the assumption of equal population variances is isnot  valid.

Thus, the procedure that we will use for this test is the  pooled unpooled procedure.

The symbol for the estimate of the common population standard deviation is

Calculate its value:
_ :’(nl —l)sf +(n, —l)s::

| n +n, -2

Next, use the estimate s, to compute the pooled standard error:

’,
pooled s.e(F, —_\"-:):sp\:'”l + ”1
1 2
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3. Compute the Test-Statistic and Calculate the p-value

Test Statistic and P-value

a. Generate the t-test output using Statistics > Means > Independent-Samples T Test. Make sure
to choose the appropriate direction for this test. Recall, we want to assess if there is a
difference between the mean score for women on the SSHA and the mean score for men on the
SSHA. Go to the Options tab, and you will find an “Allow equal variances?” setting. We have
already looked at the data in various ways to make our decision of a Yes (pooled) setting. Using
this output, fill out the table below.

Two Sample T Results
t df p-value 95% Cl lower 95% Cl upper

Pooled

b. What is the distribution of the test statistic if the null hypothesis is true?

Note: This is not the same as the distribution of the population that the data were drawn from,
and will be the model used to find the p-value.

Visualize the p-value:
c. Draw a picture of the p-value,
with labels for the distribution and x-axis.

d. Provide an interpretation of the p-value.

e. Think about it ... how would you report the p-value for this test if you were trying to determine if
males’ mean SSHA score is larger than the females SSHA score on average? (Hint: You would
need to be careful on the order of the subtraction!)
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4. Evaluate the p-value and Conclusion
Evaluate the p-value:
What is your decision at a 5% significance level? Reject Hy Fail to Reject Hy

Remember: Reject Hy <& Results statistically significant
Fail to Reject Hg <& Results not statistically significant

Conclusion:
What is your conclusion in the context of the problem?

Note: Conclusions should always include a reference to the population parameter of interest.
Conclusions should not be too strong; you can say that you have sufficient evidence,
but do NOT say that we have proven anything true or false.

5. Confidence Interval (Cl):
a. Provide the corresponding 95% confidence interval from the output for the difference in the

two population mean scores.

a. Based on the confidence interval, would you reject the null hypothesis of no difference in
population means at a 5% significance level?
Circle one: Yes No
Explain.

Did your conclusion here match the one you made in the previous part 4? Yes No

Cool-Down: Check Your Understanding
Consider the following sets of boxplots of scores between two age groups.

e . o

Set 1l Set 2 Set 3
a. Which set(s) that indicate a pooled test is appropriate: Setl Set2 Set 3

b. For which set(s) are you most likely to reject the null hypothesis
that the population mean scores are equal? Set 1 Set2  Set3
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Lab 9: One-Way Analysis of Variance (ANOVA)

Objective: In this lab you will perform a one-way analysis of variance, often abbreviated ANOVA. We
have already seen that the two independent samples t-test can be used to compare the means of two
populations (when the samples are independent). However, when we want to compare the means of
three or more populations, we turn to ANOVA. You can think of ANOVA as an extension of the two
independent sample pooled t-test since it compares several population means and requires the
assumption that the populations have equal variances.

Application: Andy is conducting a test for UM Hospital to explore the effects of a new antibiotic drug.
They wish to explore if this drug has the same effects on the mean white blood cell count for the four
different age populations: 1 = 0 to 19 years, 2 = 20 to 29 years, 3 = 31 to 40 years, and 4 = 40 years and
older. They need a test that would allow them to compare the mean white blood cell count for these
four populations. In this example, the number of populations under study is k=4, and the total sample
size is 24 (6 people in each age group).

Overview: ANOVA is a statistical tool for analyzing how the mean value of a quantitative response (or
dependent) variable is affected by one or more categorical variables, known as treatment variables or
factors. While ANOVA allows us to compare the means of more than two populations, it can only tell us
whether differences appear to exist, not specifically which population means are different.
Consequently, the appropriate hypotheses for ANOVA are Hg: 11 = W, = ... = Y (that the population mean
responses are equal, where k is the number of populations or treatment groups) and H,: at least one of
the population mean responses, L, is different.

Going back to the application, for Andy’s test we have:

Ho: 1= M2 = H3 = M4
H.: at least one of the population mean white blood cell counts, ;, is different.

As with our other hypothesis tests, several assumptions are required for ANOVA. Andy will need to
assume that the white blood cell count measurements in each of the four age populations follows a
normal model. To check this assumption, he can create four QQ plots, one for each sample of
measurements.

He will also need to assume that the four populations of white blood cell counts have equal variance.
The equal population variance assumption can be checked as done in the two independent samples t-
test — side-by-side boxplots, comparing sample standard deviations, and Levene’s test. Further, the data
are assumed to consist of independent random samples.

The analysis of variance that Andy will run involves decomposing the total variation of the white blood
cell count into two parts: (1) that due to variation among the four sample white blood cell counts
(between groups variation) and (2) that due to the natural variation of the white blood cell count in each
of the four age groups (variation due to error, or within groups variation): SS Total = SS Groups + SS
Error.

If Andy finds that the sum of squares between groups (SS Groups) is large relative to the sum of squares
within groups (SS Error), it implies that the model of different white blood cell means explains a
significant portion of the observed variability.
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In order to determine what is "relatively large," the sum of squares values are divided by their
respective degrees of freedom, creating what are called mean square terms. The degrees of freedom
for SS Groups is the number of treatment groups, k, minus one (k - 1).
MS Groups =SS Groups/(k—1)
MS Error = SS Error/(N — k)
In Andy’s test, the degrees of freedom for SS Groups is equal to 3. For SS Error, the degrees of freedom

is the total number of observations, N, minus the number of treatment groups (N - k). For Andy’s
ANOVA procedure, the degrees of freedom for the SS Error is equal to 20.

The ratio of these two mean squares forms the F-statistic, which has numerator degrees of freedom
(k- 1) and denominator degrees of freedom (N - k). Note in the equation that MSE stands for MS Error.

_ Variation among sample means _ MS Groups

* Natural variation within groups MSE

We can view this F-statistic as the ratio of two estimators of the common population variance, o>, where
the denominator (MSE) is a good (unbiased) estimator, and the numerator (MS Groups) is only good
when the Hg is true (otherwise, it tends to overestimate ¢°). If Andy’s data results in a large F value then
there is some evidence against the null hypothesis of equal population white blood cell count means.

If Andy rejects the null hypothesis, indicating that at least one of the population mean white blood cell
count is different, then we can turn to a multiple comparisons procedure for determining which
population mean(s) appear to be different and how they differ. The most common method to analyze
this is by looking at the set of all pairwise comparisons. Two equivalent techniques can be used by Andy
for each pair of means: either perform a hypothesis test to see if two population mean white blood cell
counts are significantly different, or construct a confidence interval for the difference in population
mean white blood cell counts to see whether the value of 0 is contained in the interval. Specifically, a
multiple comparisons procedure called Tukey’s procedure, which is available in most computer
packages, controls for the overall Type | error rate (overall significance level) or the overall confidence
level.

Formula Card

One-Way ANOVA
T o e — o — = 2 SSG ANOVA Table
SS Groups = SSG = > ', (X, - %) MS Groups = MSG = :SC;
eroups - _
3 Source SS DF MS F
SS Error = SSE = n.—1)s.~ . . , SSE
mz‘“;:( =D, MS Error = MSE =5 = Nk Groups  SSGroups k-1 MSGroups F
- - Error SS Error N-k  MS Error
$S Total =SSTO = 3 (x, %)’ 7 MS Groups Total SSTO N-1
values MS Error
.S, ) Under Hy. the F statistic follows
Confidence Interval X, xt = df=N-k an F(k — 1. N— k) distribution.
N
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Warm-Up: Content of TV Shows

A study examined whether the content of TV shows influence the ability of viewers to recall brand
names of items featured in the commercials. The researchers randomly assigned 90 adults to watch one
of three programs (30 to each). One program had violent content, another sexual content, and the third
neutral content. Each program contained the same nine commercials. After the shows ended, the
subjects were asked to recall the brands of products that were advertised. The ANOVA table based on
the data is provided below.

ANOVA

Df Sum Sq Mean Sq F value Pr(>F)
Ccontent 2 11.8 5.90 7.47 0.001
Residuals 87 68.6 0.79

a. The researcher would like to assess if there is any effect of the program type on the average number
of brands recalled, namely, test Hy: u;= W= Us. Provide the appropriate alternative hypothesis in the
context of the problem.

H.:

b. One assumption is the model for number of brands recalled for each population is normal.
What graph(s) would you would make to assess this assumption?

c. Atthe 5% level, was there a significant effect of the program type on the average number of brands
recalled? Explain your answer.

ILP: Is There a Difference Among the Mean Freshman GPAs for Three
Different Socioeconomic Classes?

Background: Sociologists often conduct experiments to investigate the relationship between
socioeconomic status and college performance. Socioeconomic status is generally partitioned into three
classes: lower, middle, and upper. Consider the problem of comparing the mean grade point average
(GPA) of college freshmen across the three socioeconomic populations. The GPAs for random samples
of seven college freshmen from each of the three socioeconomic classes were selected from a

74



university’s files at the end of the first academic year. The data are in the gpa.Rdata data set. (Source:
Mendenhall and Sincich, 1996, page 589)

Task: Perform a test to assess whether the population mean freshman GPAs among the three
socioeconomic classes differ. If there is sufficient evidence to indicate significant differences, determine

which groups differ and how.

Procedure: We want to compare three populations with respect to a quantitative response (GPA). The
appropriate inference procedure for this scenario is ANOVA and the value of k for this problem is

Hypothesis Test:

1. State the Hypotheses: Hg:

versus Hj: ,

Clearly define the one of the parameters in the null hypothesis in context:

M1 represents

Determine Alpha: We were told the significance level was 5%.

Remember: Your hypotheses and parameter definition
should always be a statement about the population(s) under study.

2. Checking the Assumptions

We need to assume:

The k samples are from each other.

* Each sample is a random sample. To check this assumption, we would
make a plot (if there was time order) for each sample.

Each sample needs to come from a normally distributed population.
To check this assumption, we would make a plot for each sample.

All k populations have equal

a. Based on the description about how these samples were collected, can we assume we have
random and independent samples?
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Note that there is no time order for this data. If there were, since you need EACH sample to be
a random sample, how many time plots would you need to make to check this assumption?

Answer = Need to make time plot(s)
Construct the QQ plots necessary to check the assumption about normally distributed
populations. To do this, we have to subset the file for the three subgroups (or classes).

To do this, go to Data -> Active data set -> Subset active data set

2 R Commander

e E Statistics Graphs Models Distrib

taset W
v Include all variables
OR

Variables (select one or more)

gpa
socclass

.
% Subset D.

Subset expression

socclass=="Lower Class
< Hi »

Name for new data set

| gpa_lowed |

“‘ @Help \ « OK H ¥ cancel ]

Enter socclass=="Lower" as the subset expression, give an appropriate new data set name
gpa_lower and click OK. Note that this corresponds to the line command:

gpa_lower <- subset(gpa, subset=socclass=="Lower")
This should result in the message: NOTE: The dataset gpa_lower has 7 rows and 2 columns.

With this new data set as the active data set, create the qqplot by going to
Graphs > Quantile-comparison plot and select the gpa variable.

Alternatively you could type in, then highlight, and submit these commands:
qqnorm(gpa_lowerSgpa,main="Normal QQ Plot by yournamehere")
qqline(gpa_lowerSgpa)

Based on your qgplot, does it appear that the population of GPAs for all students in the lower
socioeconomic class is (approximately) normal? Why or why not?

Note: you would need to repeat the above steps for the “Middle Class” and “Upper Class” to
complete the normal model for each population assumption checking. You will not need to
make the other qqplots here, but when you do repeat these steps, you would need to be sure
you go back and select the original gpa data set each time. The resulting three commands lines
would look like:

gpa_lower <- subset(gpa, subset=socclass=="Lower")
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gpa_middle <- subset(gpa, subset=socclass=="Middle")
gpa_upper <- subset(gpa, subset=socclass=="Upper")

3. Compute the Test-Statistic and Calculate the p-value
Test-Statistic

a.

First, test to see if the variances are equal using Levene’s test, using Statistics > Variances >
Levene’s test... making sure to select “mean” as the measure of center, not “median.”
If the p-value > 0.10, then we fail to reject the null hypothesis that the variances are equal.

The assumption of equal population variances seems: valid not valid

Next, generate the ANOVA output using Statistics > Means > One-way ANOVA. (Make sure you
are using the full gpa dataset, not one of the subsets)

The symbol for the estimate of the common population standard deviation is ,

which for this problem is found to be

What is the value of the test statistic? =

What is the distribution of the test statistic if the null hypothesis is true?

Note: This is not the same as the distribution of the population that the data were drawn from,

and will be the model used to find the p-value.

Calculate the p-Value:

e. Whatis the reported p-value?

f.

Draw a picture of the p-value, with labels for the distribution and x-axis.
Use the pval() function in R to check your work.

4. Evaluate the p-value and Conclusion

Evaluate the p-value:
What is your decision at a 5% significance level? Reject H, Fail to Reject Hy

Remember: Reject Hy < Results statistically significant
Fail to Reject Hy <> Results not statistically significant

Conclusion:
What is your conclusion in the context of the problem?
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Note: Conclusions should always include a reference to the population parameter(s) of interest.
They should not be too strong; you can say that you have sufficient evidence,
but do NOT say that we have proven anything true or false.

5.

Follow-up Analyses: If ANOVA has indicated that there appears to be significant differences
between two or more of groups, we can use a multiple comparison test to tell us which groups
appear to be different and by how much.

a. Obtain the multiple comparisons output using using Statistics > Means > One-way ANOVA. This
time, click on the “Pairwise comparison of mean” box, which has a default significance level of
0.05. The multiple comparisons output contains both p-values and confidence intervals for every
possible pairwise comparison of groups; either can be used to determine where differences exist.
The p-values that are less than or equal to 0.05 or confidence intervals that do NOT contain 0
indicate a difference between those two population means.

95% family-wise confidence level

Linear Hypotheses:

Estimate Twr upr
Middle - Lower == 0 0.727143 0.029443 1.424843
Upper - Lower == 0.021429 -0.676271 0.719128

Upper - Middle == 0 -0.705714 -1.403414 -0.008014

The “estimate” is the estimated difference of means, and the “lwr” and “upr” are the lower and
upper bounds of the confidence intervals. If these Cl’s contain zero, we fail to reject the null
hypothesis that the two means are equal.

You also can see this chart, which illustrates the same information:

IR R Graphics: Device 2 (ACTIVE) o | @R

95% family-wise confidence level

Middle - Lower —

ARTTTTTT

Upper - Lower —

—~
L

Upper - Middle —|

—~

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Linear Function

b. Summarize the findings about the differences in population means for the GPAs of freshmen in
the different socioeconomic classes. Which pairs are significantly different at the 5% level?
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c. Calculate a 95% confidence interval for the mean GPA for the middle class group. The sample
mean GPA for the 7 subjects in the group was 3.25.

- s ~
Confidence Interval X, 2 — df=N-k
n
Vi

Cool-Down: Check Your Understanding

Complete the following sentences by circling words or filling in blanks as necessary.
* The p-value of 0.025 from this activity implies that if this study were repeated many times,
we would see an F test statistic of 4.579 or greater less

in about % of repetitions if the population means were really all equal.

* ANOVA procedures can be thought of as
an extension of the two independent samples  pooled unpooled t-test,

and hence requires the assumption of equal population sample variances.

* One way to check this assumption is to use Levene’s test and see if

the p-valueis greaterthan less thanorequalto 0.10.
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Offline socializing (hrs)

Lab 10: Exploring Linear Regression

Objective: In this lab, you will examine relationships between two quantitative variables using a
graphical tool called a scatterplot. You will interpret scatterplots in terms of form, direction, and
strength of the relationship, and use it to assess the appropriateness of using a linear regression model
to describe the relationship between the two variables. If appropriate, you can then perform a linear
regression analysis to produce an estimated model that can be used to predict the value of the response
y for a given value of the predictor x.

Application: Pam believes that the number of Facebook friends a person has could interfere with the
number of hours they spends socializing offline. She wants to be able to predict the number of hours a
person spends socializing offline for a given number of Facebook friends. She will collect data from her
friends and examine the relationship between these two variables. Pam will be able to fit a linear
regression model if the relationship between these variables is linear.

Overview: A regression model describes how the mean of one variable is thought to depend on the
value of one or more other variables. If we think the number of Facebook friends may explain changes
in the amount of time spent socializing online, we call the number of Facebook friends an explanatory
variable (or predictor variable or independent variable) and the amount of time spent socializing offline
is called the response variable (or dependent variable).

To start, we use a scatterplot to display the relationship
between two quantitative variables, plotting the number of
Facebook friends on the x-axis and the amount of time spend
socializing offline on the y-axis. In examining the relationship,
Pam looks at the overall pattern showing the form, which
appears to be linear. She notes that the direction of the form is
negative and strength of the relationship is moderate. She
notes that there are no apparent outliers.

One of the many misconceptions about regression arises from
the concept of association. Scatterplots can show the
association between variables, but Pam should remember that
correlation does not imply causation. For example: weekly flu medication sales and weekly sweater
sales for an area with extreme seasons would exhibit a positive association because both tend to go up
in winter and down in summer. However, neither causes the other. The observed association between
two variables is sometimes due to other factors, such as confounding variables.

Number of Facebook Friends

This correlation value, r, explains the strength of the linear relationship between x and y. The
correlation can take on values between -1 and 1. The sign of the correlation also describes the direction
of the linear relationship. The correlation between number of Facebook friends and time spent
socializing offline is reported to be -0.59, which confirms what Pam observed in her scatterplot. The
square of this correlation is known as the coefficient of determination and also has an important
interpretation. Pam calculates this coefficient to be 0.348 and she can interpret this value by stating
that 34.8% of the variation in the amount of time spent socializing online can be explained by the linear
relationship between number of Facebook friends and time spent socializing online.
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Since Pam’s scatterplot suggested that the dependence of amount of time spent socializing online on
the number of Facebook friends can be summarized by a straight line, the least squares regression line
can be calculated. The least squares regression line is the line that minimizes the sum of the squared
vertical distances of the data points to the line — hence the name least squares. This fitted line can be
used to describe the linear relationship between the amount of time spent socializing offline and the
number of Facebook friends and to predict the amount of time spent socializing online for a given
number of Facebook friends.

The distances from the observed amount of time spend socializing offline to the predicted amount of
time spent socializing offline are known as the residuals. These residuals are estimates of the true error
terms associated with Pam’s model.

Pam has fit a linear regression model, which is what will also be fit during the lab. Pam’s regression is
based on a linear model relating the number of Facebook friends to the mean amount of time spend
socializing offline as follows: E(time spent socializing offline) = o+ Bi(number of Facebook friends). Here
Po and B are parameters — fixed but unknown constants. Specifically, B, is the population y-intercept
(the amount of time spent socializing offline when the number of Facebook friends is zero) and p; is the
population slope (the change in the mean time spent socializing offline for every additional Facebook
friend). These two values are unknown, but can be estimated using the least squares criterion. The
resulting estimated regression line is generally written as: j = p, + b,(x). The estimates, by and b; are

referred to as the least squares estimates of 5, and ;.

Formula Card:

Regression
Linear Regression Model Standard Error of the Sample Slope
s K
Population Version: se(b) = [ ~ o
Mean: uy(x)=EX) =By + pyx Vi (> (x-%)
Individual:  y, = 8, + Bix; + &,
where &, is N(0.c) Confidence Interval for g,
b xt'se(d) df=n-2
Sample Version:
Mean: y=b,+bx t-Test for B,
Individual:  y;, =b, +byx;, +¢ Totest Hy: 5, =0
b -0
t=—t df=n-2
se.(by)
MSREG
or F= df=1.n-2
MSE
Parameter Estimators Confidence Interval for the Mean Response
, S > -¥y-3) X x-%p Pt se(fi) df=n-2
1= = > = o) PG
S N (v—7) N (v—5)2 | 72
X _I.\ %) _(A X) where s.e(ﬁt)::"l (,\‘ x)
by =V-bF Vno Sw
Residuals Prediction Interval for an Individual Response
e=y—y=observed y — predicted y y= r's.e.(pred) df=n-2
where s.e.(pred) = \,::: +(s.e(fit) )
Correlation and its square Standard Error of the Sample Intercept
Sxr : =2
N se(by) =5 |—+—
VS Sy o) Vn Sy
2 _SSTO-SSE _ SSREG
" ssTO SSTO Confidence Interval for 5,
where SSTO = Syy = Z(_\'—)")_ by :"5~e~(bo) df=n-2
Estimate of o t-Test for g,
e
r SSE ~\2 2 Totest Hy: By =0
s=~+MSE = 1'— where SSE = Z(.\‘—J‘) = Ze' otest Ho : fo
Vn-2 by -0
t= df=n-2
s.e.(by)

82



Warm-Up: Check Your Understanding

For which scatterplot(s) does a linear regression analysis seem appropriate?

Plot 1 Plot 2 Plot 3

ILP: Using a Scatterplot and Correlation to Analyze the Relationship

Background: As we approach the final exam, it may be of interest to you to know if there is a
relationship between your existing exam and homework scores and your final exam score. To analyze
this, we have a sample of exam and homework scores from Stats 250 students in a previous term, found
in the Stats250Data.Rdata file.

Task: First, we would like to determine what measure predicts Final Exam scores best — Homework,
Exam 1, or Exam 2? To do this, we will examine scatterplots and correlations to ensure that a linear
relationship is appropriate, and determine which model is strongest.

Procedure: We will have two variables being measured — Final Exam scores (which is quantitative and
playing the role of the response) and your chosen predictor variable (which is also quantitative and
plays the role of the explanatory variable). The goal is to assess the relationship between these two
guantitative variables. The appropriate inference procedure for this scenario is linear regression.

1. Open the data set and produce a scatterplots for each of the potential predictor variables (AvgHW,
Exam1, Exam2) against the Final Exam score, using Graphs > Scatterplot. Under Options, you will
want to uncheck Show Spread and Smooth Line. Write a few sentences to describe each scatterplot
in terms of:

A. form (does there appear to be a linear relationship?)

B. direction (positive or negative)?

C. strength (generally weak, moderate, or strong?)

D. outliers (any unusual observations or outliers present?)

Interpret the Scatterplot for Final Exam versus AvgHW
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Interpret the Scatterplot for Final Exam versus Exam 1

Interpret the Scatterplot for Final Exam versus Exam 2

2. Let’s now assess the strength of the relationship via the correlation, or R (not the software, but the
value!). To get R values for each pair of variables, select Statistics > Summaries > Correlation
Matrix. This will display an array of values, where each value is the correlation of the variables given
in the row and column headers. Report the following correlation values:

AvgHW and Final Exam: Exam 1 and Final Exam: Exam 2 and Final
Exam:

3. Based on the scatterplots and correlation values, which variable will you use to predict Final Exam
scores? Explain.
AvgHW Exam 1 Exam 2

ILP: Describing a Linear Relationship with a Regression Line

Now that we have chosen an appropriate linear model to predict final exam score, we are ready to
estimate that model and use it to predict Final Exam scores.

Task: Fit a linear model to the data. If you have questions about the regression output after the activity,
refer to Supplement 6 in this workbook for more details.

1. Obtain the linear regression output first by creating a model using Statistics > Fit Models > Linear
Regression, making sure to enter the appropriate response and explanatory variables. Give your
model an appropriate name, and click OK. A summary of the model will appear in the output.
Report the estimated regression line (the predicting equation or least squares regression line):

2. Interpret the estimated slope by in terms of the change in your explanatory variable.

3. Report the coefficient of determination, r?, and interpret it: r* =
Interpretation:
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4. Use your regression line to predict the Final Exam score for a student
with score given in the table for your predicting (explanatory)
variable (include units).

residual (include units)?

Cool-Down: Check Your Understanding

Variable Value
Exam 1 58
Exam 2 50
Avg HW 25.6

Could you use this regression line to predict your final exam score in this class?

What are some potential issues with the prediction this line gives you?
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Lab 11: Regression Inference

Objective: Last lab, we looked at a linear regression model for Stats 250 scores, and started to examine
if it was an appropriate to use a linear model. In this lab, you will learn how to perform hypothesis tests
and compute confidence intervals in regression and assess if the linear relationship is significant, as well
as learn how to check the assumptions needed for these inference procedures to be valid.

Application: Recall our example from last lab -- Pam believes that the number of Facebook friends a
person has could interfere with the number of hours they spends socializing offline. She wants to be
able to predict the number of hours a person spends socializing offline for a given number of Facebook
friends. She will collect data from her friends and examine the relationship between these two variables.
Pam will be able to fit a simple linear regression model if the relationship between these variables is
linear.

Overview: To do this, Pam has fit a linear regression model, which is what will also be fit during the lab.
Pam’s regression is based on a linear model relating the number of Facebook friends to the mean
amount of time spend socializing offline as follows: E(time spent socializing offline) = o+ P1(number of
Facebook friends). Here 3, and f; are parameters — fixed but unknown constants. Specifically, S, is the
population y-intercept (the amount of time spent socializing offline when the number of Facebook
friends is zero) and p; is the population slope (the change in the mean time spent socializing offline for
every additional Facebook friend). These two values are unknown, but can be estimated using the least
squares criterion. The resulting estimated regression line is generally written as y =p, +5,(x). The

estimates, by and b, are referred to as the least squares estimates of 5, and ;.

There are also several assumptions that Pam must check in order for inferences to be valid. First, the
time spent socializing offline must be normal with a mean that varies linearly with the number of
Facebook friends and a standard deviation that does not depend on the predicted socializing time. To
check her assumption Pam would create a residuals vs fitted plot: a plot with residuals on the y-axis and
the predicted social time on the x-axis. For this assumption to hold, the residuals should be randomly
scattered.

Pam must also assume that the error terms are normally distributed and are identically distributed. To
check this assumption about the normal distribution she will create a QQ plot of the residuals. To check
if the errors are identically distributed, she will create a time plot of the residuals and look for stability.
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Warm-Up: Check Your Understanding
A linear regression model was built to assess the relationship between the weight (pounds) and the
height (inches) of men aged 18 to 29. The estimate of the least squares regression line is given to be:

Predicted weight = -250 + 6*(Height)

a. What is the predicted weight for a male with a height of 70 inches?
250 170 420

b. We know that the average height of a male aged 18 to 29 is 72 inches. If we were to construct a
95% confidence interval for the weight of a male that is 72 inches tall, how would the width of that
interval compare to a 95% confidence interval for the weight of a male that is 70 inches tall?

NARROWER WIDER STAYS THE SAME

ILP: Is There a Significant Linear Relationship Between Final Exam Score
and Our Selected Predictor?

Recall our previous lab on the Stats 250 data. Is the explanatory variable that we chose a useful linear
predictor for the Final Exam score? That is, do we observe a significant, non-zero linear relationship
between the Final Exam Score and our selected predictor variable?

Remember that another way to make inferences about the significance of the linear relationship is
through a confidence interval for the population slope. Further, recall the basic form of a confidence
interval: point estimate + (a few) standard errors.

Most standard computer regression output provides the slope estimate and its standard error, and the
“few” will correspond to a t* value for the corresponding confidence level with degrees of freedom for
regression of n — 2. Since a confidence interval provides a range of reasonable values for the parameter,
it can be used to perform two-sided hypothesis tests by seeing whether the hypothesized value falls in
the interval or not.

Task: Assess if the chosen explanatory variable is significant in the linear model.

NOTE: You may have to re-run some of the output that we ran in our last class, specifically
creating the regression model. Refer to the last lab for instructions on how to do this.

Hypothesis Test:
1. State the Hypotheses: Hg: and Hj: ,

where represents:

Determine Alpha: We were told the significance level was 5%.

Remember: Your hypotheses and parameter definition
should always be a statement about the population(s) under study.

2. Checking the Assumptions - Covered in the next activity.

3. Compute the Test-Statistic and calculate the p-value:
Test-Statistic
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a.

Using the computer output generated by the regression model, which two test statistics could
you use to test these hypotheses? Give the value for each test statistic.

t= F =

Check it out: What happens if you square your t statistic value? Think about the shape of the t
distribution and if you squared all the t values, it would look like an F distribution.

Calculate the p-Value:

b.

The p-value for both test statistics is the same. What is that p-value?
Note: this p-value is for testing the two-sided alternative H,: B; # 0. If we want to conduct a
one-sided version of the alternative hypothesis we could only use the t test statistic and would
need to work with the two-sided p-value in the output to find the appropriate one-sided p-
value. Drawing a quick sketch of what that one-sided p-value looks like can help.
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c. We could also get the F-test statistic value from running an ANOVA table to summarize the
variance in our regression model. To do this, go to Models > Hypothesis Tests > ANOVA. To
ensure that we see the table in a familiar format, select Sequential “Type I” as our option and
click OK. Use this ANOVA table to calculate the r’value, and verify that this is the same as last
lab. Remember that SSTotal = SSRegressionModel + SSError(or residuals).

2

SSRegression model
re = =

SSTotal

4. Evaluate the p-value and Conclusion
Evaluate the p-value:
What is your decision at a 5% significance level? Reject Hy Fail to Reject Hy

Remember: Reject Hy <& Results statistically significant
Fail to Reject Hg <& Results not statistically significant

Conclusion:
What is your conclusion in the context of the problem?

Note: Conclusions should always include a reference to the population parameter(s) of interest.
They should not be too strong; you can say that you have sufficient evidence,
but do NOT say that we have proven anything true or false.

5. Confidence Intervals (Cl):
a. Generate the confidence interval for estimating the population slope using Models >
Confidence Intervals. Give the 95% confidence interval for the population slope.

b. Provide an interpretation of the resulting interval in context.

c. Based on the confidence interval, would you reject the null hypothesis at a 5% significance

level? Circle one: Yes No

Explain.
Did your conclusion here match the one you made in part 4?
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ILP: Is the Linear Model Appropriate? Are Assumptions Met for Inference?

You will produce and examine the residuals from the regression line as well as create some plots to
assess the fit of the linear model. This will also serve to evaluate the validity of the testing and
confidence intervals performed in the earlier activities.

Regression assumptions may be stated in terms of the response variable or in terms of the error terms.
The statistical model for simple linear regression assumes that for each value of x, the observed values
of the response are normally distributed with some mean (that may depend on x in a linear way) and a
standard deviation o that does not depend on x. For each x, Y is N(E(Y), o), where E(Y) = B, + Bix.

Thinking about the error terms, we can say the true error terms (those that we do not observe) are the
difference of the response and the true mean (for a given x). These errors are to have a normal
distribution with a mean of 0 and a standard deviation of o (that does not depend on x).

Task: Create diagnostic plots for regression and check that assumptions are met.
To create diagnostic plots for regression, go to Models > Graphs > Basic diagnostic plots.

1. The graph generated in the upper left shows a scatterplot of residuals on the y-axis against fitted y
values on the x-axis. This is called a residuals vs fitted plot. Sketch the general pattern of the plot.

What assumption of the error terms does this plot help assess?
What conclusion can you draw from this plot?

2. The graph generated in the upper right shows a QQ plot of residuals.
Sketch the general pattern of the plot.

What assumption of the error terms does this plot help assess?

Based on the plot what is your conclusion about this assumption?

Cool Down: Check Your Understanding
1. Which is the only test statistic you can use if you want to test if the Final Exam score is a significant
positive linear predictor of your chosen explanatory variable?

2. Some other Stats 250 students were interested in predicting their final exam score, so you
calculated some prediction intervals for your curious friends. Some of your friends Exam 2 scores
are given below. Which score will have the narrowest prediction interval? (Hint: You may need to
run some summary statistics to do this)

52 55 58 61 64 67
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Lab 12: Chi-Square Tests

Objective: In this lab, you will learn how to perform three Chi-square tests (the test of goodness of fit,
the test of independence, and the test of homogeneity) that are used to analyze categorical responses.

Overview: You will see three Chi-Square tests: the tests of goodness of fit, independence, and
homogeneity. For all three tests, the data are generally presented in the form of a contingency table
(a rectangular array of numbers in cells). All three tests are based on the Chi-Square statistic:

0. -E)>
;(2 = EM , Where O; is the observed count and
Ei

E;is the expected count under the corresponding null hypothesis.

Goodness of Fit Test: This test answers the question, “Do the data fit well compared to a specified
distribution?” It considers one categorical response, and assesses whether the proportion of sampled
observations falling into each category matches well to a specified distribution. The null hypothesis
specifies this distribution which describes the population proportion of observations in each category.

Test of Homogeneity: This test answers the question, “Do two or more populations have the same
distribution for one categorical variable?” It considers one categorical response, and assesses whether
the model for this response is the same in two (or more) populations. The null hypothesis is that the
distribution of the categorical variable is the same for the two (or more) populations.

Test of Independence: This test answers the question, “Are two factors (or variables) independent for a
population under study?” It considers two categorical variables (sometimes one is a response and the
other is explanatory), and assesses whether there appears to be a relationship between these two
variables for a single population. The null hypothesis is that the two categorical variables are
independent (not related) for the population of interest.

There are a few properties of the Chi-square distribution that you might find useful. The expected value
of a Chi-square distribution is its degrees of freedom (mean = u = df ), and its variance is 2 times its
degrees of freedom. Thus, its standard deviation is the square root of 2 times the degrees of freedom (

o’ =2*df so o =./2*df ). This frame of reference can help assess if our observed statistic is

unusual under the null hypothesis or somewhat consistent with the null hypothesis.

Formula Card

Chi-Square Tests

Test of Independence & Test o(HomogeneH:y Test for Goodness of Fit
Expected Count Expected Count

E = expected = row total x column total E, = expected = np;,

total n
Test Statistic Test Statistic
5 (o-E ): (observed —expected)’ > (0- E) (observed —expected)®
X = = X* = =
Z E Z expected Z E Z expected
df=(Fr-1(c-1) df=k-1

If Y follows a 13 (df) distribution. then E(Y) = df and Var(¥) = 2(df).
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Warm-Up: Check Your Understanding
Fill in the blank with the name of the most appropriate Chi-square test to address the research question.

1. A researcher wants to determine if scoring high or low on an artistic ability test depends on being
right or left-handed.

Answer: Chi-Square test of

2. A national organization wants to compare the distribution of level of highest education completed
(high school, college, masters, doctoral) for Republicans versus Democrats.

Answer: Chi-Square test of

3. A preservation society has the percentages of five main types of fish in the river from 10 years ago.
After noticing an imbalance recently, they add some fish from hatcheries to the river. How can they
determine if they restored the ecosystem from a new sample of fish?

Answer: Chi-Square test of

ILP: Is There a Different Pattern in the Distribution of Accidental Deaths in
a Certain Region Compared to the Pattern in the Entire United States?

Background: According to the records of the National Safety Council, accidental deaths in the United
States during 2002 had the following distribution according to the principal types of accidents.

Motor Vehicle Falls Drowning Fire Poison Other

45% 15% 4% 3% 16% 17%

Suppose that an accidental death data set from a particular geographical region yielded the following
frequency distribution for the principal types of accidents:

Motor Vehicle Falls Drowning Fire Poison Other

442 161 42 33 162 150

Do these data show a significantly different pattern in the distribution of accidental deaths in the
particular region compared to the pattern in the entire United States? Use a 5% significance level.
(Source: National Safety Council Website, 2005)

Task: Perform a Chi-square goodness of fit test to assess whether the data fit well with the model
specified in the null hypothesis.

1. State the null hypothesis: Ho:

Determine Alpha: We were told to use a significance level of 5%.

Remember: Your hypotheses and parameter definition should always be a statement about
the population(s) under study.
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2. Checking the Assumptions
a. Find the expected counts and fill them in the table below.

MotorVehicle Falls Drowning Fire Poison Other Total
Null % 45% 15% 4% 3% 16% 17% 100%
Observed 442 161 42 33 162 150 990

Expected

b. Do all cells have expected counts greater than 5? Yes No

3. Compute the Test Statistic and Calculate the p-value
Test-Statistic
a. Complete the calculation of the test statistic based on your table above by calculating the
contribution of “other” accidental deaths to the total test statistic.

. (442-4455) , (161~ 148.5)’ ,(42- 39.6)’
445.5 148.5 39.6
(33-29.7)° . (162 -158.4)" iy Cmmm—
29.7 158.4

Calculate the p-Value:
b. Based on the output below, answer the following:

Chi-squared test for given probabilities

data: .Table
X-squared = 3.6635, df = 5, p-value = 0.598805

i. The p-valueis

ii. The expected value of the test statistic assuming Hg is true is

iii. The large p-value we obtained is consistent with the fact that our observed test statistic value is
greater than less than the expected test statistic value (under the null hypothesis).

4. Evaluate the p-value and Conclusion:
Evaluate the p-value:
What is your decision at a 5% significance level? Reject H, Fail to Reject Hy

Remember: Reject Hy < Results statistically significant
Fail to Reject Hy <> Results not statistically significant

Conclusion:
What is your conclusion in the context of the problem?
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ILP: Comparison of the Distribution of Academic Degrees:
Males Versus Females
Background: How do women and men compare in the pursuit of academic degrees? The table presents

counts (in thousands) from the Statistical Abstract of degrees earned in 1996 categorized by the level of
the degree and the sex of the recipient.

Bachelor Master Professional Doctorate
Female 642 227 32 18
Male 522 179 45 27

Task: Perform a Chi-square test of homogeneity. Use a 1% significance level.

Hypothesis Test:
1. State the null hypothesis:

Hol

Determine Alpha: We were told to use a significance level of 1%.

2. Checking the Assumptions

Sex * Degree Crosstabulation

Degree
Bachelor Master Professional | Doctorate Total

Sex Female  Count 642 227 32 18 919
Expected Count 632.2 2205 41.8 24.4 919.0

Male Count 522 179 45 27 773
Expected Count 531.8 185.5 35.2 20.6 773.0

Total Count 1164 406 77 45 1692
Expected Count 1164.0 406.0 77.0 45.0 1692.0

a. Show how the expected count 531.8 (first cell for males) was computed.
b. Based on the table, do the assumptions appear to be met to perform the test? (Are all expected
counts greater than 57?) Yes No

3. Compute the Test-Statistic and Calculate the p-value
Pearson's Chi-squared test

data: .Table
X-squared = 9.5135, df = 3, p-value = 0.02319

Test-Statistic
a. Based on the output above, the test-statistic is =

Calculate the p-value
b. Based on the output above, the p-value is
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4,

Evaluate the p-value and Conclusion
Evaluate the p-value:
What is your decision at a 1% significance level? Reject Hy Fail to Reject Hy

Conclusion:
What is your conclusion at a 1% significance level in context of the problem?

Would your decision and conclusion change if the significance level was:

+ 5% instead of 1%?
+ 3% instead of 1%?
+  2.3% instead of 1%?
+ 2% instead of 1%?

Based on your answers, the p-value represents the significance level at which
the results would be statistically significant.

Cool-Down: Name That Scenario

Match each research question with the appropriate Chi-Square test that should be used to answer the
question

1.

2.

Is student status (in-state versus out-of-state) associated with one’s eventual graduation outcome
(graduating versus not graduating)?

Answer: Chi-Square test of

To test a theory that people have no preference among four different outdoor activities, you ask 100
people to select among jogging, bicycling, hiking, or swimming.

Answer: Chi-Square test of

A biostatistician would like to determine if the ratio of the blood type in the storage for transfusions
should be different in Hawaii from the main land. She collected a sample of blood types of 10,000
people in Hawaii and that of 100,000 people in the mainland. She wishes to see if the breakdown of
blood types (A, B, AB and 0) is the same for both populations.

Answer: Chi-Square test of
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