Anaerobic infections

PART 3: Infection with Gram-negative obligate anaerobes (*Bacteroides* spp. and other abscess-forming bacteria)

Prof. Cary Engleberg, M.D.
Division of Infectious Diseases,
Department of Internal Medicine

Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by/3.0/
Disclaimers

- I have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.
- Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.
- For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.
- Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.
- Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
What are these lectures about?

- **Clostridium spp.**
 - Gas gangrene/myonecrosis
 - Tetanus
 - Botulism
 - Antibiotic-associated colitis
 - C. perfringens, C. septicum, C. histolyticum, C. novyi, etc.
 - C. tetani
 - C. botulinum
 - C. difficile

- **Bacteroides spp.**
 - Abscesses
 - B. fragilis, B. distasonis, B. thetaiotamicron

- **Other obligate anaerobes**
 - Fusobacterium, Prevotella, Porphyromonas spp.
Bacterial species in the colon present in >90% of fecal specimens

<table>
<thead>
<tr>
<th>Bacterial Category</th>
<th>Log organisms/gm (dry weight)</th>
<th>Range of log organisms/gm (dry weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteroides</td>
<td>11.3</td>
<td>9.3 – 13.8</td>
</tr>
<tr>
<td>Eubacterium</td>
<td>10.8</td>
<td>5.1 – 13.6</td>
</tr>
<tr>
<td>Anaerobic cocci</td>
<td>10.7</td>
<td>4.0 – 13.6</td>
</tr>
<tr>
<td>Clostridium</td>
<td>9.9</td>
<td>4.0 – 13.2</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>8.9</td>
<td>3.9 – 12.8</td>
</tr>
<tr>
<td>Gram-negative facultative</td>
<td>8.7</td>
<td>4.0 – 12.5</td>
</tr>
<tr>
<td>Other facultative organisms</td>
<td>6.8</td>
<td>1.0 – 12.5</td>
</tr>
</tbody>
</table>

Data Source: Mandell et al. Principles & Practice of infectious Diseases
Composition of Feces

- **Bacteria**
 - Undigested debris
 - Gram- obligate anaerobes
 - Gram+ obligate anaerobes
 - All facultative bacteria (Gram + and Gram -)
Gram Stain of Feces

Gram-negative obligate anaerobes

Gram-positive obligate anaerobes

Gram-negative facultative bacteria

Gram-positive facultative bacteria
Case: appendicitis

• An 18-year-old college freshman comes to the hospital with diffuse abdominal pain, diarrhea, and nausea without vomiting. Pain is localized to the right side of the abdomen.
• P.E.: tenderness with rebound tenderness over the right lower quadrant.
• She is treated with a 1st generation cephalosporin
• She is taken to surgery where a perforated appendix is removed. The surrounding peritoneum is irrigated.
• Cultures of the peritoneum grow a mixture of bacteria, typical of those found in stool.
• On post-op day #2, her temp spikes to 38.6°C.
• Blood cultures obtained preoperatively grow *E. coli*.
• She completes a 7-day course of cefazolin and improves. Since she has no further symptoms and follow-up blood cultures are negative, the antibiotic is stopped.
• 36 hours later, her temperature is 38.8°C and she feels diffuse pain over the site of the appendectomy.
• A CT scan of her abdomen reveals a retroperitoneal abscess.
CT scan: Ruptured Appendix

Case (continued)

- The abscess is drained, and cultures of pus from the drainage grow *Bacteroides fragilis*.
- She is treated with ampicillin-sulbactam for 14 more days. Her drain is pulled after 7 days, and she has an uneventful recovery.
Gram stain of drainage
B. fragilis in pure culture
Questions to consider

• How did the two episodes of her disease differ with regard to pathogenesis and to the kind of bacteria involved?
• Why did *B. fragilis* survive the first course of antibiotic treatment?
• Was she treated properly? What could have been done to lessen the likelihood of abscess formation?
• How does *B. fragilis* facilitate intra-abdominal abscess formation?
Gorbach’s experiment

RX GIVEN

None

Clindamicin

Gentamicin

Clindamycin & gentamicin

E. coli & B. fragilis injected i.p.
Bacteroides spp.

- Obligate anaerobes
- 25% of all colonic bacteria
- Usually involved in infections resulting from perforation of an abdominal viscus
 - ruptured appendix
 - diverticulitis
 - post-op after bowel surgery and/or dehiscence of a surgical anastamosis
- Any *Bacteroides* spp. may be involved in a polymicrobial infection, but most abscesses contain *B. fragilis*
Survival features of *Bacteroides*

- Bacterial enzymes digest complex polysaccharides
 - Nutritional advantage
 - May improve human nutrition by digesting complex plant polysaccharides in food (symbiosis with the host)
 - Can digest and consume human glycans, (e.g., mucin, hyaluronate, chondroitin SO_4)
 - Neuraminidase: exposes sialylated polysaccharides to enzyme digestion (required for abscess formation)

- *Bacteroides* spp. are relatively aerotolerant
 - Human peritoneum and tissues are less anaerobic than the colon
What’s special about *B. fragilis*?

1. More aerotolerant than other species and more resistant to reactive oxygen species
 - Possesses a superoxide dismutase (SOD)
 - Possesses catalase (CAT)

\[
\begin{align*}
 \text{O}_2 + 2\text{H}_2\text{O} & \xrightarrow{\text{SOD}} 2\text{H}_2\text{O}_2 \\
 2\text{H}_2\text{O}_2 & \xrightarrow{\text{CAT}} 2\text{H}_2\text{O} + \text{O}_2
\end{align*}
\]
What’s special about *B. fragilis*?

2. The outer membrane LPS (lipid A) is modified to be less toxic than that of *E. coli*
 - Allows for host tolerance of large numbers of organisms without toxicity
What’s special about *B. fragilis*?

3. It has a complex capsular polysaccharide that is essential for abscess formation
 - Composed of at least 8 polysaccharides
 - Each is capable of transcriptional phase variation (synthesis genes preceded by an invertable region containing a promotor)
 - Polysaccharide A is essential for abscesses in animal models and is zwitterionic
Special features of *B. fragilis* CPC

- Phase variation of CPC synthesis genes
- Polysaccharide A
- Activation of CD4⁺ T-lymphocytes
- Abscess formation
Antibiotic resistance in *Bacteroides*

- Most carry a beta-lactamase gene (resistant to penicillin, ampicillin, 1\(^{st}\) gen. ceph.)
- Harbors conjugative transposons
 - Can exchange genes with other *Bacteroides* and with other species
 - ex. clindamycin resistance (only ~60% sensitive now)
Abscess formation

- Infectious inoculum is high
- Spillage of intestinal contents into the peritoneum → most are killed by the immediate inflammatory response
- Containment by the omentum
- Facultative bacteria establish first
- Aerotolerant anaerobes survive
- Microbial synergy is usually required
Microbial synergy in abscess formation

↑ *E. coli* and other facultative bacteria

Carbohydrate digestion = more free sugars

↑ *Bacteroides* spp.

Consumption of O$_2$ + decreased blood flow = more anaerobiasis
Response to bacteria in the peritoneum

- Role of the omentum
- Inflammatory mediators increase vascular permeability → plasma and fibrin influx
 - fibrous collagenous capsule forms around site
 - central area features acidic pH, live and dead PMNs, and mixed bacterial flora
 - may include other *Bacteroides*, *Clostridia*, or *Peptostreptococcus* spp.)
Treatment of peritonitis and peritoneal abscesses

• Abscesses must be drained surgically or by percutaneous catheters (+ repair any leak)

• Antibiotic therapy effective against colonic flora, including facultative and obligate anaerobic organisms
 – β-lactams or cephalosporins + metronidazole
 – β-lactam-β-lactamase inhibitor combinations
 – Carbepenems
 – Clindamycin is becoming less useful
Questions to consider

• How did the two episodes of her disease differ with regard to pathogenesis and to the kind of bacteria involved?
• Why did *B. fragilis* survive the first course of antibiotic treatment?
• Was she treated properly? What could have been done to lessen the likelihood of abscess formation?
• How does *B. fragilis* facilitate intra-abdominal abscess formation?
Other *Bacteroides*-associated diseases and other obligate anaerobes of interest
Case: Fever, cough, chest pain, and really bad breath

• A 53 year old man comes to the ED for fever and chest pain. He is coughing spasmodically with minimal sputum production.

• The patient is a heavy alcohol user and has had “blackouts” and seizures

• P.E. T=38.4. Carious teeth noted, many fractured. Crackles over the left lung noted.
Case (continued)

- He is admitted and started on ceftriaxone for probably pneumonia
- Later the same night, the patient starts coughing copious amounts of grayish, putrid sputum that can be detected on the next ward.
- A chest xray is taken, and treatment with metronidazole is added.
Lung abscess
Aspiration pneumonia
Gram stain of mixed oral flora
Oral, Gram-negative anaerobes

- Common pathogens in dental infections, chronic sinusitis, aspiration pneumonia, lung abscesses
 - *Porphyromonas asaccharolytica, gingivalis, forsythus*
 - *Prevotella melaninogenicus* (named for brown pigment production)
- These species are usually (not always) sensitive to clindamycin. PCN+metronidazole usually works well.
- Infections are polymicrobial and usually include oral (viridans) streptococci, anaerobic strep, and other oral bacteria.
Case: pelvic inflammatory disease

• A 24 year old woman presents with pelvic pain and vaginal discharge.
• She has been treated for gonorrhea in the past and has had two prior episodes of the current illness in the past year.
• P.E. Temp=38C. There is lower abdominal tenderness in the RLQ and exquisite tenderness of the cervix and enlargement of the right Fallopian tube on pelvic exam.
Case (continued)

- A pregnancy test is negative
- Because she has been unable to eat without vomiting, she is admitted and treated with IV ceftriaxone, oral doxycycline, and oral metronidazole
- No cultures are obtained; an HIV test is negative
- Why is metronidazole used?
PID microbiology

• Primary pathogens: gonococcus, chlamydia
• Secondary pathogens:
 – Facultative enteric organisms (e.g., *E. coli*)
 – GI and vaginal anaerobes
 • *Prevotella bivius* and *Prevotella disiens*
 • *Peptostreptococcus* spp.
 – *Haemophilus*
Case: neck and chest pain

• A 22 year old male who recently had an prolonged episode of pharyngitis now presents with high fever, and exquisite pain, tenderness and swelling of his left neck for 2 days.
• This morning, he developed sharp pain in the left lower chest with deep breathing
• A blood culture is positive for an anaerobe
Fusobacterium

Source undetermined
Lemierre’s syndrome

• Or “post-anginal sepsis” (very rare)
• Occurs after prolonged or severe pharyngitis
• Septic thrombophlebitis with *Fusobacterium necrophorum* (probably from the mouth) associated with septic pulmonary emboli to the lungs
What have you learned about Gram-negative, obligate anaerobes

- *Bacteroides* participate in intra-abdominal abscesses when intestinal contents spill into the peritoneum
- Formation of abscesses is a synergistic process involving anaerobes & facultative bacteria
- *B. fragilis* has special capacity to tolerate oxygen and to induce abscess formation via its CPC
- Other *Bacteroides*-like anaerobes are involved in polymicrobial dental, lung, or pelvic infections

Slide 12: Source undetermined

Slide 32: Source undetermined

Slide 33: Source undetermined

Slide 41: Source undetermined